Information on Organism Azotobacter vinelandii

TaxTree of Organism Azotobacter vinelandii
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-propane-1,2-diol degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
acetaldehyde biosynthesis I
-
-
acetylene degradation (anaerobic)
-
-
alpha-Linolenic acid metabolism
-
-
Biosynthesis of secondary metabolites
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
chitin degradation to ethanol
-
-
Chloroalkane and chloroalkene degradation
-
-
Drug metabolism - cytochrome P450
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
Fatty acid degradation
-
-
Glycine, serine and threonine metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
heterolactic fermentation
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
leucine metabolism
-
-
Metabolic pathways
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
methionine metabolism
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Naphthalene degradation
-
-
noradrenaline and adrenaline degradation
-
-
phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
phytol degradation
-
-
propanol degradation
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Retinol metabolism
-
-
salidroside biosynthesis
-
-
serotonin degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
valine metabolism
-
-
1,3-propanediol biosynthesis (engineered)
-
-
glycerol-3-phosphate shuttle
-
-
Glycerophospholipid metabolism
-
-
phosphatidate biosynthesis (yeast)
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
Bifidobacterium shunt
-
-
Cysteine and methionine metabolism
-
-
L-lactaldehyde degradation
-
-
lactate fermentation
-
-
Propanoate metabolism
-
-
pyruvate fermentation to (S)-lactate
-
-
Pyruvate metabolism
-
-
superpathway of glucose and xylose degradation
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
4-oxopentanoate degradation
-
-
acetyl-CoA fermentation to butanoate II
-
-
butanoate fermentation
-
-
Butanoate metabolism
-
-
CO2 fixation in Crenarchaeota
-
-
ethylmalonyl-CoA pathway
-
-
Glyoxylate and dicarboxylate metabolism
-
-
lipid metabolism
-
-
polyhydroxybutanoate biosynthesis
-
-
alanine metabolism
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
formaldehyde assimilation I (serine pathway)
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
glyoxylate cycle
-
-
incomplete reductive TCA cycle
-
-
malate/L-aspartate shuttle pathway
-
-
Methane metabolism
-
-
methylaspartate cycle
-
-
partial TCA cycle (obligate autotrophs)
-
-
pyruvate fermentation to propanoate I
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
-
-
L-glutamine biosynthesis III
-
-
ethylene biosynthesis V (engineered)
-
-
Glutathione metabolism
-
-
NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
D-galactose degradation II
-
-
Galactose metabolism
-
-
Entner-Doudoroff pathway I
-
-
formaldehyde oxidation I
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (oxidative branch) I
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
C5-Branched dibasic acid metabolism
-
-
isoleucine metabolism
-
-
Valine, leucine and isoleucine biosynthesis
-
-
L-isoleucine biosynthesis I (from threonine)
-
-
L-isoleucine biosynthesis III
-
-
L-valine biosynthesis
-
-
Pantothenate and CoA biosynthesis
-
-
Entner Doudoroff pathway
-
-
alginate biosynthesis
-
-
alginate biosynthesis I (algal)
-
-
alginate biosynthesis II (bacterial)
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Fructose and mannose metabolism
-
-
Benzoate degradation
-
-
Phenylalanine metabolism
-
-
degradation of hexoses
-
-
L-rhamnose degradation II
-
-
L-rhamnose degradation III
-
-
L-isoleucine biosynthesis II
-
-
L-isoleucine biosynthesis IV
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
Steroid degradation
-
-
glucose and glucose-1-phosphate degradation
-
-
glucose degradation (oxidative)
-
-
glycogen metabolism
-
-
L-ascorbate biosynthesis VI (engineered pathway)
-
-
degradation of sugar alcohols
-
-
glycerol degradation I
-
-
glycerol-3-phosphate to cytochrome bo oxidase electron transfer
-
-
glycerol-3-phosphate to fumarate electron transfer
-
-
glycerol-3-phosphate to hydrogen peroxide electron transport
-
-
glycerophosphodiester degradation
-
-
nitrate reduction IX (dissimilatory)
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
long chain fatty acid ester synthesis (engineered)
-
-
glycolysis
-
-
glycolysis IV (plant cytosol)
-
-
L-lactaldehyde degradation (aerobic)
-
-
lactate biosynthesis (archaea)
-
-
methylglyoxal degradation V
-
-
L-lysine degradation XI (mammalian)
-
-
Lysine degradation
-
-
lysine metabolism
-
-
acetate fermentation
-
-
acetyl-CoA biosynthesis II (NADP-dependent pyruvate dehydrogenase)
-
-
oxidative decarboxylation of pyruvate
-
-
photosynthesis
-
-
heme metabolism
-
-
Porphyrin and chlorophyll metabolism
-
-
tetrapyrrole biosynthesis I (from glutamate)
-
-
acetyl CoA biosynthesis
-
-
pyruvate decarboxylation to acetyl CoA
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
Tryptophan metabolism
-
-
vitamin B1 metabolism
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
pantothenate biosynthesis
-
-
Valine, leucine and isoleucine degradation
-
-
3,8-divinyl-chlorophyllide a biosynthesis I (aerobic, light-dependent)
-
-
chlorophyll metabolism
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
Oxidative phosphorylation
-
-
propionate fermentation
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
3,8-divinyl-chlorophyllide a biosynthesis II (anaerobic)
-
-
3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
-
-
4-aminobutanoate degradation V
-
-
beta-alanine biosynthesis II
-
-
beta-Alanine metabolism
-
-
gallate degradation III (anaerobic)
-
-
glutamate and glutamine metabolism
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-lysine fermentation to acetate and butanoate
-
-
oleate beta-oxidation
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol I
-
-
succinate fermentation to butanoate
-
-
Alanine, aspartate and glutamate metabolism
-
-
Arginine biosynthesis
-
-
ethylene biosynthesis IV (engineered)
-
-
L-alanine degradation II (to D-lactate)
-
-
L-glutamate degradation I
-
-
Nitrogen metabolism
-
-
Taurine and hypotaurine metabolism
-
-
L-glutamate biosynthesis I
-
-
L-glutamine degradation II
-
-
ammonia assimilation cycle I
-
-
L-glutamate biosynthesis IV
-
-
Arginine and proline metabolism
-
-
beta-alanine biosynthesis I
-
-
histamine degradation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
N-methyl-Delta1-pyrrolinium cation biosynthesis
-
-
glycine biosynthesis II
-
-
glycine cleavage
-
-
glycine metabolism
-
-
Cyanoamino acid metabolism
-
-
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
One carbon pool by folate
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
tetrahydrofolate metabolism
-
-
NAD metabolism
-
-
NAD/NADH phosphorylation and dephosphorylation
-
-
Nicotinate and nicotinamide metabolism
-
-
non-pathway related
-
-
superpathway of photosynthetic hydrogen production
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
vitamin K-epoxide cycle
-
-
nitrate reduction II (assimilatory)
-
-
ammonia oxidation II (anaerobic)
-
-
denitrification
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction VII (denitrification)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
formate to nitrite electron transfer
-
-
nitrate reduction IV (dissimilatory)
-
-
assimilatory sulfate reduction I
-
-
assimilatory sulfate reduction III
-
-
sulfate reduction
-
-
Sulfur metabolism
-
-
glutathione metabolism
-
-
glutathione-peroxide redox reactions
-
-
Selenocompound metabolism
-
-
thioredoxin pathway
-
-
sulfide oxidation IV (mitochondria)
-
-
sulfite oxidation IV
-
-
justicidin B biosynthesis
-
-
matairesinol biosynthesis
-
-
sesamin biosynthesis
-
-
ethanol degradation IV
-
-
methanol oxidation to formaldehyde IV
-
-
reactive oxygen species degradation
-
-
superoxide radicals degradation
-
-
manganese oxidation I
-
-
hydrogen oxidation II (aerobic, NAD)
-
-
hydrogen production
-
-
hydrogen production II
-
-
hydrogen production III
-
-
hydrogen production VI
-
-
hydrogen production VIII
-
-
L-glutamate degradation VII (to butanoate)
-
-
hydrogen oxidation I (aerobic)
-
-
Nitrotoluene degradation
-
-
2-nitrotoluene degradation
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
phenol degradation
-
-
Styrene degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
Xylene degradation
-
-
4-hydroxymandelate degradation
-
-
4-sulfocatechol degradation
-
-
gallate degradation
-
-
Polycyclic aromatic hydrocarbon degradation
-
-
protocatechuate degradation II (ortho-cleavage pathway)
-
-
cysteine metabolism
-
-
L-cysteine degradation I
-
-
taurine biosynthesis I
-
-
2,2'-dihydroxybiphenyl degradation
-
-
2-chlorobenzoate degradation
-
-
Fluorobenzoate degradation
-
-
bacterial bioluminescence
-
-
heme degradation I
-
-
ammonia oxidation I (aerobic)
-
-
ammonia oxidation III
-
-
nitrate assimilation
-
-
ethylene biosynthesis III (microbes)
-
-
formate oxidation to CO2
-
-
oxalate degradation III
-
-
oxalate degradation VI
-
-
purine nucleobases degradation I (anaerobic)
-
-
purine nucleobases degradation II (anaerobic)
-
-
reductive acetyl coenzyme A pathway
-
-
caffeine degradation III (bacteria, via demethylation)
-
-
Caffeine metabolism
-
-
Drug metabolism - other enzymes
-
-
Purine metabolism
-
-
theophylline degradation
-
-
Photosynthesis
-
-
photosynthesis light reactions
-
-
nitrogen fixation I (ferredoxin)
-
-
nitrogen fixation II (flavodoxin)
-
-
arsenate detoxification I (mammalian)
-
-
arsenate detoxification II (glutaredoxin)
-
-
linezolid resistance
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
UMP biosynthesis I
-
-
UMP biosynthesis II
-
-
UMP biosynthesis III
-
-
acetate and ATP formation from acetyl-CoA I
-
-
methanogenesis from acetate
-
-
purine metabolism
-
-
pyruvate fermentation to acetate II
-
-
pyruvate fermentation to acetate IV
-
-
sulfoacetaldehyde degradation I
-
-
sulfolactate degradation II
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
2-deoxy-D-ribose degradation II
-
-
2-methylpropene degradation
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
4-ethylphenol degradation (anaerobic)
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
acetoacetate degradation (to acetyl CoA)
-
-
androstenedione degradation
-
-
Biosynthesis of unsaturated fatty acids
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
Ethylbenzene degradation
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
fermentation to 2-methylbutanoate
-
-
Geraniol degradation
-
-
glutaryl-CoA degradation
-
-
isoprene biosynthesis II (engineered)
-
-
isopropanol biosynthesis (engineered)
-
-
jasmonic acid biosynthesis
-
-
ketogenesis
-
-
ketolysis
-
-
L-isoleucine degradation I
-
-
methyl tert-butyl ether degradation
-
-
mevalonate pathway I
-
-
mevalonate pathway II (archaea)
-
-
mevalonate pathway III (archaea)
-
-
pyruvate fermentation to acetone
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to hexanol (engineered)
-
-
sitosterol degradation to androstenedione
-
-
Biosynthesis of various secondary metabolites - part 3
-
-
D-cycloserine biosynthesis
-
-
L-cysteine biosynthesis I
-
-
L-cysteine biosynthesis VII (from S-sulfo-L-cysteine)
-
-
N-3-oxalyl-L-2,3-diaminopropanoate biosynthesis
-
-
seleno-amino acid biosynthesis (plants)
-
-
reductive monocarboxylic acid cycle
-
-
threonine metabolism
-
-
Fatty acid biosynthesis
-
-
fatty acid biosynthesis initiation (animals and fungi, cytoplasm)
-
-
palmitate biosynthesis (animals and fungi, cytoplasm)
-
-
Biosynthesis of various secondary metabolites - part 1
-
-
gamma-glutamyl cycle
-
-
hypoglycin biosynthesis
-
-
leukotriene biosynthesis
-
-
L-leucine biosynthesis
-
-
coenzyme B biosynthesis
-
-
FeMo cofactor biosynthesis
-
-
L-lysine biosynthesis IV
-
-
L-lysine biosynthesis V
-
-
Lysine biosynthesis
-
-
Starch and sucrose metabolism
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose biosynthesis II
-
-
sucrose biosynthesis III
-
-
ABH and Lewis epitopes biosynthesis from type 1 precursor disaccharide
-
-
ABH and Lewis epitopes biosynthesis from type 2 precursor disaccharide
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
glucosylglycerol biosynthesis
-
-
dolichyl-diphosphooligosaccharide biosynthesis
-
-
N-Glycan biosynthesis
-
-
protein N-glycosylation initial phase (eukaryotic)
-
-
4-amino-2-methyl-5-phosphomethylpyrimidine biosynthesis
-
-
5-aminoimidazole ribonucleotide biosynthesis I
-
-
5-aminoimidazole ribonucleotide biosynthesis II
-
-
superpathway of 5-aminoimidazole ribonucleotide biosynthesis
-
-
2'-deoxymugineic acid phytosiderophore biosynthesis
-
-
ethylene biosynthesis I (plants)
-
-
L-methionine degradation I (to L-homocysteine)
-
-
S-adenosyl-L-methionine biosynthesis
-
-
S-adenosyl-L-methionine cycle II
-
-
L-nicotianamine biosynthesis
-
-
L-lysine biosynthesis I
-
-
L-lysine degradation II (L-pipecolate pathway)
-
-
L-lysine degradation V
-
-
arginine metabolism
-
-
Glucosinolate biosynthesis
-
-
L-alanine biosynthesis I
-
-
L-isoleucine biosynthesis V
-
-
L-leucine degradation I
-
-
L-leucine degradation IV (Stickland reaction)
-
-
L-valine degradation I
-
-
NAD phosphorylation and dephosphorylation
-
-
NAD phosphorylation and transhydrogenation
-
-
NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast)
-
-
Glycerolipid metabolism
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
glycerol degradation to butanol
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis V (Pyrococcus)
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
Rubisco shunt
-
-
glycine degradation (Stickland reaction)
-
-
L-threonine degradation I
-
-
3-dehydroquinate biosynthesis II (archaea)
-
-
dipicolinate biosynthesis
-
-
ectoine biosynthesis
-
-
grixazone biosynthesis
-
-
L-homoserine biosynthesis
-
-
L-lysine biosynthesis II
-
-
L-lysine biosynthesis III
-
-
L-lysine biosynthesis VI
-
-
L-methionine biosynthesis IV (archaea)
-
-
Monobactam biosynthesis
-
-
norspermidine biosynthesis
-
-
spermidine biosynthesis II
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
Thiamine metabolism
-
-
UTP and CTP de novo biosynthesis
-
-
assimilatory sulfate reduction II
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
dissimilatory sulfate reduction II (to thiosulfate)
-
-
selenate reduction
-
-
sulfate activation for sulfonation
-
-
sulfite oxidation III
-
-
CDP-4-dehydro-3,6-dideoxy-D-glucose biosynthesis
-
-
streptomycin biosynthesis
-
-
L-selenocysteine biosynthesis I (bacteria)
-
-
L-selenocysteine biosynthesis II (archaea and eukaryotes)
-
-
selenocysteine biosynthesis
-
-
thiosulfate disproportionation IV (rhodanese)
-
-
L-cysteine degradation III
-
-
biotin biosynthesis
-
-
biotin biosynthesis from 8-amino-7-oxononanoate I
-
-
biotin biosynthesis from 8-amino-7-oxononanoate II
-
-
Biotin metabolism
-
-
[2Fe-2S] iron-sulfur cluster biosynthesis
-
-
lipoate biosynthesis
-
-
lipoate biosynthesis and incorporation I
-
-
lipoate biosynthesis and incorporation II
-
-
lipoate biosynthesis and incorporation III (Bacillus)
-
-
lipoate biosynthesis and incorporation IV (yeast)
-
-
Lipoic acid metabolism
-
-
retinol biosynthesis
-
-
triacylglycerol degradation
-
-
Steroid biosynthesis
-
-
sterol:steryl ester interconversion (yeast)
-
-
Ether lipid metabolism
-
-
formaldehyde oxidation
-
-
formaldehyde oxidation II (glutathione-dependent)
-
-
diethylphosphate degradation
-
-
Folate biosynthesis
-
-
sulfopterin metabolism
-
-
adenosine nucleotides degradation I
-
-
adenosine nucleotides degradation II
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
guanosine nucleotides degradation III
-
-
inosine 5'-phosphate degradation
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
pyridine nucleotide cycling (plants)
-
-
tunicamycin biosynthesis
-
-
UTP and CTP dephosphorylation I
-
-
choline biosynthesis III
-
-
glycine betaine biosynthesis
-
-
phosphatidate metabolism, as a signaling molecule
-
-
phospholipases
-
-
tRNA processing
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
melibiose degradation
-
-
metabolism of disaccharids
-
-
Sphingolipid metabolism
-
-
stachyose degradation
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
lactose degradation II
-
-
Other glycan degradation
-
-
xyloglucan degradation II (exoglucanase)
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
(1,4)-beta-D-xylan degradation
-
-
d-xylose degradation
-
-
fructan degradation
-
-
adenosine nucleotides degradation III
-
-
autoinducer AI-2 biosynthesis I
-
-
autoinducer AI-2 biosynthesis II (Vibrio)
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
S-adenosyl-L-methionine cycle I
-
-
NAD salvage pathway I (PNC VI cycle)
-
-
nocardicin A biosynthesis
-
-
aspartate and asparagine metabolism
-
-
L-asparagine degradation I
-
-
L-asparagine degradation III (mammalian)
-
-
superpathway of L-aspartate and L-asparagine biosynthesis
-
-
acrylonitrile degradation I
-
-
Aminobenzoate degradation
-
-
degradation of aromatic, nitrogen containing compounds
-
-
IAA biosynthesis
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
Atrazine degradation
-
-
urea cycle
-
-
urea degradation II
-
-
NAD salvage pathway II (PNC IV cycle)
-
-
Penicillin and cephalosporin biosynthesis
-
-
adenine salvage
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
purine ribonucleosides degradation
-
-
(aminomethyl)phosphonate degradation
-
-
glyphosate degradation III
-
-
oxidative phosphorylation
-
-
pyrimidine deoxyribonucleotides biosynthesis from CTP
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis I
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis III
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis IV
-
-
lipid A biosynthesis
-
-
lipid IVA biosynthesis (E. coli)
-
-
lipid IVA biosynthesis (P. putida)
-
-
Lipopolysaccharide biosynthesis
-
-
acetaldehyde biosynthesis II
-
-
pyruvate fermentation to acetate VIII
-
-
pyruvate fermentation to acetoin III
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
gluconeogenesis
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
nucleoside and nucleotide degradation (archaea)
-
-
indole-3-acetate biosynthesis VI (bacteria)
-
-
L-tryptophan degradation VIII (to tryptophol)
-
-
tryptophan metabolism
-
-
2,3-dihydroxybenzoate degradation
-
-
2-amino-3-carboxymuconate semialdehyde degradation to 2-hydroxypentadienoate
-
-
2-aminophenol degradation
-
-
2-nitrobenzoate degradation I
-
-
3-chlorocatechol degradation III (meta pathway)
-
-
4-amino-3-hydroxybenzoate degradation
-
-
4-chloronitrobenzene degradation
-
-
4-nitrotoluene degradation II
-
-
Dioxin degradation
-
-
orthanilate degradation
-
-
protocatechuate degradation III (para-cleavage pathway)
-
-
methylgallate degradation
-
-
protocatechuate degradation I (meta-cleavage pathway)
-
-
syringate degradation
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
3,6-anhydro-alpha-L-galactopyranose degradation
-
-
4-deoxy-L-threo-hex-4-enopyranuronate degradation
-
-
D-fructuronate degradation
-
-
D-galacturonate degradation I
-
-
D-glucosaminate degradation
-
-
Entner-Doudoroff shunt
-
-
trans-4-hydroxy-L-proline degradation I
-
-
4-hydroxy-2(1H)-quinolone biosynthesis
-
-
acridone alkaloid biosynthesis
-
-
L-tryptophan biosynthesis
-
-
Phenazine biosynthesis
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
d-mannose degradation
-
-
GDP-6-deoxy-D-talose biosynthesis
-
-
GDP-D-perosamine biosynthesis
-
-
GDP-D-rhamnose biosynthesis
-
-
GDP-L-colitose biosynthesis
-
-
GDP-L-fucose biosynthesis I (from GDP-D-mannose)
-
-
GDP-mycosamine biosynthesis
-
-
2-hydroxypenta-2,4-dienoate degradation
-
-
3-phenylpropionate degradation
-
-
Pentose and glucuronate interconversions
-
-
alginate degradation
-
-
serine metabolism
-
-
inosine-5'-phosphate biosynthesis I
-
-
inosine-5'-phosphate biosynthesis II
-
-
inosine-5'-phosphate biosynthesis III
-
-
glucosinolate biosynthesis from dihomomethionine
-
-
glucosinolate biosynthesis from hexahomomethionine
-
-
glucosinolate biosynthesis from homomethionine
-
-
glucosinolate biosynthesis from pentahomomethionine
-
-
glucosinolate biosynthesis from phenylalanine
-
-
glucosinolate biosynthesis from tetrahomomethionine
-
-
glucosinolate biosynthesis from trihomomethionine
-
-
glucosinolate biosynthesis from tryptophan
-
-
glucosinolate biosynthesis from tyrosine
-
-
glutathione-mediated detoxification II
-
-
homocysteine and cysteine interconversion
-
-
heme b biosynthesis I (aerobic)
-
-
heme b biosynthesis II (oxygen-independent)
-
-
superpathway of heme b biosynthesis from uroporphyrinogen-III
-
-
dTDP-4-O-demethyl-beta-L-noviose biosynthesis
-
-
dTDP-L-daunosamine biosynthesis
-
-
dTDP-L-rhamnose biosynthesis
-
-
dTDPLrhamnose biosynthesis
-
-
Polyketide sugar unit biosynthesis
-
-
Streptomycin biosynthesis
-
-
Glycosaminoglycan biosynthesis - heparan sulfate / heparin
-
-
heparan sulfate biosynthesis (late stages)
-
-
1,5-anhydrofructose degradation
-
-
beta-(1,4)-mannan degradation
-
-
beta-1,4-D-mannosyl-N-acetyl-D-glucosamine degradation
-
-
D-mannose degradation
-
-
degradation of pentoses
-
-
GDP-mannose biosynthesis
-
-
L-ascorbate biosynthesis I (L-galactose pathway)
-
-
mannitol biosynthesis
-
-
mannitol degradation II
-
-
chitin biosynthesis
-
-
D-galactose degradation I (Leloir pathway)
-
-
GDP-glucose biosynthesis
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
starch biosynthesis
-
-
starch degradation III
-
-
starch degradation V
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
trehalose degradation V
-
-
UDP-alpha-D-glucose biosynthesis I
-
-
2,3-dihydroxybenzoate biosynthesis
-
-
2-carboxy-1,4-naphthoquinol biosynthesis
-
-
Biosynthesis of siderophore group nonribosomal peptides
-
-
enterobactin biosynthesis
-
-
salicylate biosynthesis I
-
-
vitamin K metabolism
-
-
Aminoacyl-tRNA biosynthesis
-
-
tRNA charging
-
-
ammonia assimilation cycle II
-
-
L-glutamine biosynthesis I
-
-
nitrate reduction V (assimilatory)
-
-
nitrate reduction VI (assimilatory)
-
-
phosphopantothenate biosynthesis I
-
-
3-hydroxypropanoate cycle
-
-
biotin-carboxyl carrier protein assembly
-
-
glyoxylate assimilation
-
-
urea cycle
-
-
L-asparagine biosynthesis I
-
-
anapleurotic synthesis of oxalacetate
-
-
Aflatoxin biosynthesis
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
jadomycin biosynthesis
-
-
Fe(II) oxidation
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
D-lactate to cytochrome bo oxidase electron transfer
-
-
NADH to cytochrome bo oxidase electron transfer II
-
-
proline to cytochrome bo oxidase electron transfer
-
-
pyruvate to cytochrome bo oxidase electron transfer
-
-
NADH to cytochrome bd oxidase electron transfer II
-
-
pyruvate to cytochrome bd oxidase electron transfer
-
-
ammonia oxidation IV (autotrophic ammonia oxidizers)
-
-
arsenite oxidation I (respiratory)
-
-
ATP biosynthesis
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
cell growth is similar in glucose- or sodium acetate-medium, but the enzyme activity is 43fold higher in acetate-grown cells
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
wild-type enzyme is soluble, whereas mutant enzyme with deletion of all three lipoyl domains aggregates
-
Manually annotated by BRENDA team
additional information
-
not established, whether the nitrogenase exists in vivo in a specific particle or whether the nitrogenase proteins are bound nonspecifically to the membranes of some cells
-
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Azotobacter vinelandii)