Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(n-1)-alkanoate + NADPH + H+ + O2
(omega-1)-hydroxy-n-alkanoate + NADP+ + H2O
1,1-diethylcyclopropane + NADPH + H+ + O2
?
1,7-octadiene + NADH + H+ + O2
1,2-epoxy-7-octene + NAD+ + H2O
-
epoxidation of simple, aliphatic terminal olefins
-
-
?
1-hexadecene + reduced rubredoxin + O2
? + oxidized rubredoxin + H2O
-
-
-
-
?
1-octadecene + reduced rubredoxin + O2
? + oxidized rubredoxin + H2O
-
-
-
-
?
1-octene + reduced rubredoxin + O2
1,2-epoxyoctane + oxidized rubredoxin + H2O
2 1-octyne + 2 NADH + 2 H+ + 2 O2
1-octanoic acid + 7-octynoic acid + 2 NAD+ + 2 H2O
-
-
-
-
?
2,5-dimethylhexane + NADH + H+ + O2
?
-
-
-
-
?
5,8,11-eicosatrienoic acid + NAD(P)H + H+ + O2
? + NAD(P)+ + H2O
-
-
-
-
?
arachidonic acid + NAD(P)H + H+ + O2
(5Z,8Z,11Z,14Z)-20-hydroxyeicosa-5,8,11,14-tetraenoic acid + NAD(P)+ + H2O
arachidonic acid + NAD(P)H + H+ + O2
20-hydroxyicosa-5,8,11,14-tetraenoic acid + NAD(P)+ + H2O
arachidonic acid + NADPH + H+ + O2
20-hydroxyeicosatetraenoic acid + NADP+ + H2O
bicyclohexane + reduced rubredoxin + O2
? + oxidized rubredoxin + H2O
-
i.e. bicyclo[3.1.0]hexane, no distinction between the 2- and 3-positions, reaction via formation of a substrate radical that persists in the active site
-
-
?
butane + NADPH + H+ + O2
1-butanol + NADP+ + H2O
cycloheptane + NAD(P)H + H+ + O2
cycloheptanol + NAD(P)+ + H2O
cyclohexane + NAD(P)H + H+ + O2
cyclohexanol + NAD(P)+ + H2O
cyclohexane + NADH + H+ + O2
cyclohexanol + NAD+ + H2O
-
-
-
-
?
cyclooctane + NAD(P)H + H+ + O2
cyclooctanol + NAD(P)+ + H2O
cyclopentane + NAD(P)H + H+ + O2
cyclopentanol + NAD(P)+ + H2O
-
very poor substrate
-
-
?
decane + reduced rubredoxin + O2
1-decanol + oxidized rubredoxin + H2O
-
-
-
-
?
decane + reduced rubredoxin + O2 + H+
1-decanol + oxidized rubredoxin + H2O
-
-
-
-
r
dicyclopropylketone + NAD(P)H + H+ + O2
? + NAD(P)+ + H2O
-
-
-
?
docosahexaenoic acid + NAD(P)H + H+ + O2
? + NAD(P)+ + H2O
-
-
-
-
?
dodecane + reduced rubredoxin + O2
1-dodecanol + oxidized rubredoxin + H2O
-
-
-
-
?
eicosapentaenoic acid + NAD(P)H + H+ + O2
? + NAD(P)+ + H2O
-
is less omega-hydroxylated than 5,8,11-eicosatrienoic acid and arachidonic acid
-
-
?
ethyl tert-butyl ether + NAD(P)H + H+ + O2
tert-butyl-alcohol + NAD(P)+ + H2O + acetaldehyde
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
heptadecane + reduced rubredoxin + O2
1-heptadecanol + oxidized rubredoxin + H2O
-
-
-
-
?
heptanoate + NADPH + H+ + O2
?
-
59% activity compared to octane
-
-
r
hexadecane + reduced rubredoxin + O2
1-hexadecanol + oxidized rubredoxin + H2O
-
-
-
-
?
hexane + reduced rubredoxin + O2
1-hexanol + oxidized rubredoxin + H2O
-
-
-
-
?
hexane + reduced rubredoxin + O2 + H+
1-hexanol + oxidized rubredoxin + H2O
-
-
-
-
r
hexanoate + NADPH + H+ + O2
?
-
25% activity compared to octane
-
-
r
lauric acid + NAD(P)H + H+ + O2
12-hydroxydodecanoic acid + NAD(P)+ + H2O
lauric acid + [reduced NADPH-hemoprotein reductase] + O2
12-hydroxydodecanoic acid + [oxidized NADPH-hemoprotein reductase] + H2O
-
-
-
-
?
lecithin + NADH + H+ + O2
?
-
-
-
-
?
methane + NADPH + H+ + O2
methanol + NADP+ + H2O
methane sulfonic acid + reduced rubredoxin + O2
? + oxidized rubredoxin + H2O
-
-
-
-
?
methyl tert-butyl ether + NAD(P)H + H+ + O2
tert-butyl-alcohol + NAD(P)+ + H2O
methyl tert-butyl ether + NAD(P)H + H+ + O2
tert-butyl-alcohol + NAD(P)+ + H2O + formaldehyde
methyl tert-butyl ether + NAD(P)H + H+ + O2
tert-butyl-alcohol + NAD(P)+ + H2O + methanol
-
-
-
?
methylcyclohexane + NADH + H+ + O2
?
-
-
-
-
?
methylphenylcyclopropane + reduced rubredoxin + O2
1-phenylbut-3-en-1-ol + oxidized rubredoxin + H2O
-
reaction via formation of a substrate radical that persists in the active site
-
-
?
monoolein + NADH + H+ + O2
18-hydroxyoctadec-9-enoic acid 2,3-dihydroxypropyl ester + NAD+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
n-alkane + NADPH + H+ + O2
n-alkanol + NADP+ + H2O
n-butane + NADPH + H+ + O2
n-butanol + NADP+ + H2O
n-butane + reduced rubredoxin + O2
1-butanol + oxidized rubredoxin + H2O
n-dodecane + 2 reduced rubredoxin + O2 + 2 H+
1-dodecanol + 2 oxidized rubredoxin + H2O
n-hexadecane + NADPH + H+ + O2
n-hexadecanol + NADP+ + H2O
n-octane + NADH + H+ + O2
n-octanol + NAD+ + H2O
n-octane + reduced rubredoxin + O2
n-octanol + oxidized rubredoxin + H2O
n-propane + reduced rubredoxin + O2
1-propanol + oxidized rubredoxin + H2O
nitromethane + reduced rubredoxin + O2
? + oxidized rubredoxin + H2O
-
-
-
-
?
nonanoate + NADPH + H+ + O2
?
-
25% activity compared to octane
-
-
r
norcarane + NADPH + H+ + O2
?
norcarane + reduced rubredoxin + O2
? + oxidized rubredoxin + H2O
-
i.e. bicyclo[4.1.0]heptane, oxidation preferentially occurs at the less sterically hindered 3-position, reaction via formation of a substrate radical that persists in the active site
-
-
?
octadecane + reduced rubredoxin + O2
1-octadecanol + oxidized rubredoxin + H2O
-
-
-
-
?
octane + reduced rubredoxin + O2
1-octanol + oxidized rubredoxin + H2O
palmitic acid + NAD(P)H + H+ + O2
16-hydroxyhexadecanoic acid + NAD(P)+ + H2O
pentadecane + reduced rubredoxin + O2
1-pentadecanol + oxidized rubredoxin + H2O
-
best substrate
-
-
?
pentane + reduced rubredoxin + O2
1-pentanol + oxidized rubredoxin + H2O
-
-
-
-
?
phosphatidylethanolamine + NADH + H+ + O2
?
-
-
-
-
?
phosphatidylserine + NADH + H+ + O2
?
-
-
-
-
?
propane + NADPH + H+ + O2
1-propanol + NADP+ + H2O
propane + NADPH + H+ + O2
propan-1-ol + NADP+ + H2O
Q08KD8; Q08KD7 and Q08KD6; Q08KD5, Q08KE2; Q08KE1 and Q08KE0; Q08KD9 -
-
-
?
propane + NADPH + H+ + O2
propanol + NADP+ + H2O
prostaglandin A1 + [reduced NADPH-hemoprotein reductase] + O2
?
prostaglandin A2 + NADPH + O2
?
-
-
-
-
?
prostaglandin E1 + NADPH + O2
?
-
-
-
-
?
spirooctane + NADPH + H+ + O2
?
stearic acid + NAD(P)H + H+ + O2
? + NAD(P)+ + H2O
-
-
-
-
?
suberin + NADPH + H+ + O2
? + NADP+ + H2O
-
-
-
?
tert-amyl methyl ether + NAD(P)H + H+ + O2
tert-amyl-alcohol + NAD(P)+ + H2O + formaldehyde
tetracosane + reduced rubredoxin + O2
1-tetracosanol + oxidized rubredoxin + H2O
-
-
-
-
?
additional information
?
-
(n-1)-alkanoate + NADPH + H+ + O2

(omega-1)-hydroxy-n-alkanoate + NADP+ + H2O
-
-
-
-
?
(n-1)-alkanoate + NADPH + H+ + O2
(omega-1)-hydroxy-n-alkanoate + NADP+ + H2O
-
-
-
-
?
(n-1)-alkanoate + NADPH + H+ + O2
(omega-1)-hydroxy-n-alkanoate + NADP+ + H2O
-
-
-
-
?
(n-1)-alkanoate + NADPH + H+ + O2
(omega-1)-hydroxy-n-alkanoate + NADP+ + H2O
-
-
-
-
?
(n-1)-alkanoate + NADPH + H+ + O2
(omega-1)-hydroxy-n-alkanoate + NADP+ + H2O
-
chain length C10-C16
-
-
?
1,1-diethylcyclopropane + NADPH + H+ + O2

?
-
-
-
-
?
1,1-diethylcyclopropane + NADPH + H+ + O2
?
-
-
-
-
?
1-octene + reduced rubredoxin + O2

1,2-epoxyoctane + oxidized rubredoxin + H2O
epoxidation reaction catalysed by AlkB
-
-
?
1-octene + reduced rubredoxin + O2
1,2-epoxyoctane + oxidized rubredoxin + H2O
epoxidation reaction catalysed by AlkB
-
-
?
arachidonic acid + NAD(P)H + H+ + O2

(5Z,8Z,11Z,14Z)-20-hydroxyeicosa-5,8,11,14-tetraenoic acid + NAD(P)+ + H2O
-
-
-
-
?
arachidonic acid + NAD(P)H + H+ + O2
(5Z,8Z,11Z,14Z)-20-hydroxyeicosa-5,8,11,14-tetraenoic acid + NAD(P)+ + H2O
-
product formation relaxes distal human pulmonary arteries
-
-
?
arachidonic acid + NAD(P)H + H+ + O2
(5Z,8Z,11Z,14Z)-20-hydroxyeicosa-5,8,11,14-tetraenoic acid + NAD(P)+ + H2O
-
the rate of metabolism by CYPA11 P450 is 10-100fold less as compared to lauric acid
-
-
?
arachidonic acid + NAD(P)H + H+ + O2
(5Z,8Z,11Z,14Z)-20-hydroxyeicosa-5,8,11,14-tetraenoic acid + NAD(P)+ + H2O
-
-
-
-
?
arachidonic acid + NAD(P)H + H+ + O2
(5Z,8Z,11Z,14Z)-20-hydroxyeicosa-5,8,11,14-tetraenoic acid + NAD(P)+ + H2O
-
-
-
-
?
arachidonic acid + NAD(P)H + H+ + O2

20-hydroxyicosa-5,8,11,14-tetraenoic acid + NAD(P)+ + H2O
-
-
-
-
?
arachidonic acid + NAD(P)H + H+ + O2
20-hydroxyicosa-5,8,11,14-tetraenoic acid + NAD(P)+ + H2O
-
-
-
-
?
arachidonic acid + NAD(P)H + H+ + O2
20-hydroxyicosa-5,8,11,14-tetraenoic acid + NAD(P)+ + H2O
-
-
-
-
?
arachidonic acid + NADPH + H+ + O2

20-hydroxyeicosatetraenoic acid + NADP+ + H2O
-
-
-
-
?
arachidonic acid + NADPH + H+ + O2
20-hydroxyeicosatetraenoic acid + NADP+ + H2O
-
-
-
-
?
arachidonic acid + NADPH + H+ + O2
20-hydroxyeicosatetraenoic acid + NADP+ + H2O
-
-
-
-
?
butane + NADPH + H+ + O2

1-butanol + NADP+ + H2O
-
-
-
-
?
butane + NADPH + H+ + O2
1-butanol + NADP+ + H2O
-
-
-
-
?
cycloheptane + NAD(P)H + H+ + O2

cycloheptanol + NAD(P)+ + H2O
-
-
-
-
?
cycloheptane + NAD(P)H + H+ + O2
cycloheptanol + NAD(P)+ + H2O
-
-
-
-
?
cyclohexane + NAD(P)H + H+ + O2

cyclohexanol + NAD(P)+ + H2O
-
-
-
-
?
cyclohexane + NAD(P)H + H+ + O2
cyclohexanol + NAD(P)+ + H2O
-
-
-
-
?
cyclooctane + NAD(P)H + H+ + O2

cyclooctanol + NAD(P)+ + H2O
-
poor substrate
-
-
?
cyclooctane + NAD(P)H + H+ + O2
cyclooctanol + NAD(P)+ + H2O
-
poor substrate
-
-
?
ethyl tert-butyl ether + NAD(P)H + H+ + O2

tert-butyl-alcohol + NAD(P)+ + H2O + acetaldehyde
-
-
-
-
?
ethyl tert-butyl ether + NAD(P)H + H+ + O2
tert-butyl-alcohol + NAD(P)+ + H2O + acetaldehyde
-
-
-
-
?
fatty acid + NAD(P)H + H+ + O2

omega-hydroxy fatty acid + NAD(P)+ + H2O
-
-
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
protein from CYP52A3 has a higher affinity for fatty acids than for alkanes
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
high affinity for short chain fatty acids
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
protein from CYP52A3 has a higher affinity for fatty acids than for alkanes
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
-
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
-
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
-
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
NADPH-P-450 reductase and omega-hydrolase are 1 protein
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
-
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
-
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
pig liver NADPH-P450 reductase and cytochrome b5 are part of the system
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
3D-structure analysis, substrate pocket determination
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
medium-chain fatty acids
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
chain length C12-C16, arachidonic acid and oleic acid
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
-
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
-
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
laurate and arachidonic acid
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
chain length C10-C19
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
NADPH-P450 reductase and cytochrome b5 are part of the enzyme system
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
-
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
chain length C6-C14
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
chain length C6-C11, maximal activity with heptanoate
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
-
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
-
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
chain length C12-C16, arachidonic acid and oleic acid
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
-
-
-
?
fatty acid + NAD(P)H + H+ + O2
omega-hydroxy fatty acid + NAD(P)+ + H2O
-
-
-
-
?
lauric acid + NAD(P)H + H+ + O2

12-hydroxydodecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
lauric acid + NAD(P)H + H+ + O2
12-hydroxydodecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
lauric acid + NAD(P)H + H+ + O2
12-hydroxydodecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
lauric acid + NAD(P)H + H+ + O2
12-hydroxydodecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
lauric acid + NAD(P)H + H+ + O2
12-hydroxydodecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
lauric acid + NAD(P)H + H+ + O2
12-hydroxydodecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
lauric acid + NAD(P)H + H+ + O2
12-hydroxydodecanoic acid + NAD(P)+ + H2O
-
CYPA11 P450 efficiently and selectively omega-hydroxylates lauric acid
-
-
?
lauric acid + NAD(P)H + H+ + O2
12-hydroxydodecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
lauric acid + NAD(P)H + H+ + O2
12-hydroxydodecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
lauric acid + NAD(P)H + H+ + O2
12-hydroxydodecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
lauric acid + NAD(P)H + H+ + O2
12-hydroxydodecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
methane + NADPH + H+ + O2

methanol + NADP+ + H2O
-
-
-
-
?
methane + NADPH + H+ + O2
methanol + NADP+ + H2O
-
-
-
-
?
methyl tert-butyl ether + NAD(P)H + H+ + O2

tert-butyl-alcohol + NAD(P)+ + H2O
-
-
-
-
?
methyl tert-butyl ether + NAD(P)H + H+ + O2
tert-butyl-alcohol + NAD(P)+ + H2O
-
-
-
-
?
methyl tert-butyl ether + NAD(P)H + H+ + O2

tert-butyl-alcohol + NAD(P)+ + H2O + formaldehyde
-
-
-
-
?
methyl tert-butyl ether + NAD(P)H + H+ + O2
tert-butyl-alcohol + NAD(P)+ + H2O + formaldehyde
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2

n-alkanol + NAD(P)+ + H2O
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
protein from CYP52A3 has a higher affinity for alkanes than for fatty acids
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
protein from CYP52A3 has a higher affinity for alkanes than for fatty acids
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
acts on C5-C13 alkanes, highest activity with n-hexane
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
acts on C5-C13 alkanes, highest activity with n-hexane
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
oxidizes C10-C16 alkanes
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
oxidizes C10-C16 alkanes
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
alkanes above C6
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
alkanes above C6
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
rubredoxin is electron carrier
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
chain length C6-C14
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
chain length C6-C16, maximal activity with n-octane
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
possible role in compensating low hydrocarbon concentrations
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
native strain oxidizes C6-C13 alkanes
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
oxidizes C5-C12 alkanes
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
possible role in compensating low hydrocarbon concentrations
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
oxidizes C5-C12 alkanes
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
native strain oxidizes C6-C13 alkanes
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
?
n-alkane + NAD(P)H + H+ + O2
n-alkanol + NAD(P)+ + H2O
-
-
-
-
?
n-alkane + NADPH + H+ + O2

n-alkanol + NADP+ + H2O
-
-
-
-
?
n-alkane + NADPH + H+ + O2
n-alkanol + NADP+ + H2O
-
initial activation of alkanes
-
-
?
n-alkane + NADPH + H+ + O2
n-alkanol + NADP+ + H2O
-
-
-
-
?
n-alkane + NADPH + H+ + O2
n-alkanol + NADP+ + H2O
-
-
-
-
?
n-butane + NADPH + H+ + O2

n-butanol + NADP+ + H2O
-
-
-
-
?
n-butane + NADPH + H+ + O2
n-butanol + NADP+ + H2O
-
-
-
-
?
n-butane + NADPH + H+ + O2
n-butanol + NADP+ + H2O
-
-
-
-
?
n-butane + reduced rubredoxin + O2

1-butanol + oxidized rubredoxin + H2O
-
-
-
-
?
n-butane + reduced rubredoxin + O2
1-butanol + oxidized rubredoxin + H2O
-
-
-
-
?
n-dodecane + 2 reduced rubredoxin + O2 + 2 H+

1-dodecanol + 2 oxidized rubredoxin + H2O
-
-
-
?
n-dodecane + 2 reduced rubredoxin + O2 + 2 H+
1-dodecanol + 2 oxidized rubredoxin + H2O
-
-
-
?
n-hexadecane + NADPH + H+ + O2

n-hexadecanol + NADP+ + H2O
-
-
-
-
?
n-hexadecane + NADPH + H+ + O2
n-hexadecanol + NADP+ + H2O
-
-
-
-
?
n-hexadecane + NADPH + H+ + O2
n-hexadecanol + NADP+ + H2O
-
NADPH-cyt P-450-reductase
-
-
?
n-hexadecane + NADPH + H+ + O2
n-hexadecanol + NADP+ + H2O
-
NADPH-cyt P-450-reductase
-
-
?
n-hexadecane + NADPH + H+ + O2
n-hexadecanol + NADP+ + H2O
-
-
-
-
?
n-hexadecane + NADPH + H+ + O2
n-hexadecanol + NADP+ + H2O
-
-
-
-
?
n-octane + NADH + H+ + O2

n-octanol + NAD+ + H2O
-
cytochrome P450 is electron carrier
-
-
?
n-octane + NADH + H+ + O2
n-octanol + NAD+ + H2O
-
cytochrome P450 is electron carrier
-
-
?
n-octane + NADH + H+ + O2
n-octanol + NAD+ + H2O
-
-
-
-
?
n-octane + reduced rubredoxin + O2

n-octanol + oxidized rubredoxin + H2O
-
-
-
-
?
n-octane + reduced rubredoxin + O2
n-octanol + oxidized rubredoxin + H2O
-
-
-
-
?
n-octane + reduced rubredoxin + O2
n-octanol + oxidized rubredoxin + H2O
-
-
-
-
?
n-propane + reduced rubredoxin + O2

1-propanol + oxidized rubredoxin + H2O
-
-
-
-
?
n-propane + reduced rubredoxin + O2
1-propanol + oxidized rubredoxin + H2O
-
-
-
-
?
norcarane + NADPH + H+ + O2

?
-
-
-
-
?
norcarane + NADPH + H+ + O2
?
-
-
-
-
?
octane + reduced rubredoxin + O2

1-octanol + oxidized rubredoxin + H2O
-
-
-
-
?
octane + reduced rubredoxin + O2
1-octanol + oxidized rubredoxin + H2O
-
-
-
-
?
octane + reduced rubredoxin + O2
1-octanol + oxidized rubredoxin + H2O
-
-
-
-
?
octane + reduced rubredoxin + O2
1-octanol + oxidized rubredoxin + H2O
-
-
-
-
?
palmitic acid + NAD(P)H + H+ + O2

16-hydroxyhexadecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
palmitic acid + NAD(P)H + H+ + O2
16-hydroxyhexadecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
palmitic acid + NAD(P)H + H+ + O2
16-hydroxyhexadecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
palmitic acid + NAD(P)H + H+ + O2
16-hydroxyhexadecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
palmitic acid + NAD(P)H + H+ + O2
16-hydroxyhexadecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
palmitic acid + NAD(P)H + H+ + O2
16-hydroxyhexadecanoic acid + NAD(P)+ + H2O
-
CYPA11 P450 shows less selectivity in the metabolism of palmitic acid where both omega and omega-1 products are produced
-
-
?
palmitic acid + NAD(P)H + H+ + O2
16-hydroxyhexadecanoic acid + NAD(P)+ + H2O
-
-
-
-
?
propane + NADPH + H+ + O2

1-propanol + NADP+ + H2O
-
-
-
-
?
propane + NADPH + H+ + O2
1-propanol + NADP+ + H2O
Q08KD8; Q08KD7 and Q08KD6; Q08KD5, Q08KE2; Q08KE1 and Q08KE0; Q08KD9 -
-
-
?
propane + NADPH + H+ + O2

propanol + NADP+ + H2O
-
-
-
-
?
propane + NADPH + H+ + O2
propanol + NADP+ + H2O
-
-
-
-
?
prostaglandin A1 + [reduced NADPH-hemoprotein reductase] + O2

?
-
-
-
-
?
prostaglandin A1 + [reduced NADPH-hemoprotein reductase] + O2
?
-
-
-
-
?
spirooctane + NADPH + H+ + O2

?
-
-
-
-
?
spirooctane + NADPH + H+ + O2
?
-
-
-
-
?
tert-amyl methyl ether + NAD(P)H + H+ + O2

tert-amyl-alcohol + NAD(P)+ + H2O + formaldehyde
-
-
-
-
?
tert-amyl methyl ether + NAD(P)H + H+ + O2
tert-amyl-alcohol + NAD(P)+ + H2O + formaldehyde
-
-
-
-
?
additional information

?
-
-
substrates are alkanes of chain length C8 to C12
-
-
?
additional information
?
-
-
AbAlkB can catalyze the hydroxylation of a large number of aromatic compounds and linear and cyclic alkanes. It does not catalyze the hydroxylation of alkanes with a chain length longer than 15 carbons, nor does it hydroxylate sterically hindered C-H bonds. GC-MS product analysis, overview. AbAlkB hydroxylates the terminal methyl group of medium chain alkanes, where octane is apparently close to the optimal chain length
-
-
?
additional information
?
-
-
20-hydroxyeicosatetraenoic acid modulates renal transport activities
-
-
?
additional information
?
-
-
CYP4A prefers to metabolize medium chain fatty acids (C10-C16)
-
-
?
additional information
?
-
-
CYP4A prefers to metabolize medium chain fatty acids (C10Ć¢ĀĀC16)
-
-
?
additional information
?
-
-
substrates are alkanes of chain length C10 to C16
-
-
?
additional information
?
-
-
substrates are alkanes of chain length C10 to C16
-
-
?
additional information
?
-
-
substrates are alkanes of chain length C12 to C16
-
-
?
additional information
?
-
-
substrates of one isoform are alkanes of chain length C12 to C16, the second isoform hydroxylates octadecan or eicosan
-
-
?
additional information
?
-
-
the enzyme also catalyzes the oxygenative O-demethylation of ethers, the sulfoxidation of methyl sulfides and the stereoselective epoxidation of terminal olefins
-
-
?
additional information
?
-
-
physiological role of enzyme complex is to initiate the monoterminal oxidation of alkane chains
-
-
?
additional information
?
-
-
does not catalyze the hydroxylation of 1,1-dimethylcyclopropane or 1,1,2,2-tetramethylcyclopropane
-
-
?
additional information
?
-
-
AlkB, a nonheme diiron monooxygenase, performs regioselectibe hydroxylation of gem-difluorinated octanes, synthesis of 2,2-, 3,3- and 4,4-difluorooctan-1-ols from 1-octanal and 2-, 3-, 4-octanones, NMR and GC/MS product analysis, overview. Reactions of AlkB with 3,3- and 4,4-difluorooctanes and 1,1,1-trifluoroctane, synthesis of 2,2-, 3,3- 4,4-difluorooctan-1-ols, and of 8,8-, 7,7-, 6,6- and 5,5-difluorooctan-1-ols, overview
-
-
?
additional information
?
-
-
does not catalyze the hydroxylation of 1,1-dimethylcyclopropane or 1,1,2,2-tetramethylcyclopropane
-
-
?
additional information
?
-
-
AlkB, a nonheme diiron monooxygenase, performs regioselectibe hydroxylation of gem-difluorinated octanes, synthesis of 2,2-, 3,3- and 4,4-difluorooctan-1-ols from 1-octanal and 2-, 3-, 4-octanones, NMR and GC/MS product analysis, overview. Reactions of AlkB with 3,3- and 4,4-difluorooctanes and 1,1,1-trifluoroctane, synthesis of 2,2-, 3,3- 4,4-difluorooctan-1-ols, and of 8,8-, 7,7-, 6,6- and 5,5-difluorooctan-1-ols, overview
-
-
?
additional information
?
-
-
substrate specificity of the alkane hydroxylase large subunit, overview. Poor activity with 1-tetradecanol, no activity with octacosane, benzene, sodium benzoate, toluene, catechol, biphenyl, 1-hexadecanol, 1-stearyl alcohol, isooctane, pristine, and squalane
-
-
?
additional information
?
-
dodecane strongly binds to Cyp153D17 with similar Kd values as C10-C12 fatty acids
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
malfunction

loss-of-function cyp86B1/ralph mutants display a novel suberin monomer composition. Complete knockout of CYP86B1 in ralph1 and ralph2 leads to an almost complete lack of C22 and C24 omega-hydroxyacids and alpha,omega-dicarboxylic fatty acids in the seed coat polyester and is accompanied by a strong increase in C22 and C24 unsubstituted, saturated fatty acids
malfunction
-
mutations in CYP703A2 or CYP704B1 genes result in pollen with remarkably similar zebra phenotypes (impaired pollen walls that lack a normal exine layer and exhibit a characteristic striped surface). Double and triple mutant combinations do not result in the appearance of novel phenotypes or enhancement of single mutant phenotypes
malfunction
-
several diseases are genetically linked to the expression of CYP4 gene polymorphic variants, which may link human susceptibility to diseases of lipid metabolism and the activation and resolution phases of inflammation
malfunction
-
suppression or knockout of sxe1 significantly reduces mating success in males throughout the diurnal cycle
metabolism

-
CYP4A functions in liver fatty acid metabolism
metabolism
-
CYP4A functions in liver fatty acid metabolism. Increased expression of the CYP4A omega hydroxylase during steatohepatitis and their induction in animals fed a high fat diet suggest they may play a pivotal role in preventing lipotoxicity, and may be responsible for induction of oxidative stress and progression to steatohepatitis. Omega-hydroxylation of the CYP2C arachidonic acid metabolite epoxyeicosatrienonic acid to omega-hydroxylated eicosatrienoic acid can induce peroxisome proliferation in rodents
metabolism
-
CYP4A11 is the least efficient CYP450 omega-hydroxylase in PUFA metabolism. PUFA hydroxylation by CYP4A11 is low and only slightly regiospecific
metabolism
-
the metabolomic profile of wild-type and sxe1 mutant males reveals that sxe1 likely functions as a fatty acid omega-hydroxylase, suggesting that male courtship and mating success is mediated by small compounds generated by this enzyme
metabolism
-
multiple alkane hydroxylase systems ensure the utilization of substrates of a broad chain length range
metabolism
-
multiple alkane hydroxylase systems ensure the utilization of substrates of a broad chain length range
-
physiological function

-
CYP omega-hydroxylase inhibition exerts significant anti-apoptosis effects, at least in part, by activation of ERK1/2 in ischemia/reperfusion heart. Inhibition reduces the infarct size of heart, decreases DNA fragmentation, reduces TUNEL-positive cells, attenuates caspase-3 activation, and modulates genes associated with apoptosis in rats rendered ischemia followed by reperfusion
physiological function
-
CYP703A2 and CYP704B1 together with the fatty acyl reductase MALE STERILITY2 are required to provide an indispensable subset of fatty acid-derived components within the sporopollenin biosynthesis framework
physiological function
CYP86B1 is involved in polyester monomer biosynthesis during the course of plant development, has a role in suberin biogenesis
physiological function
is a key enzyme for aliphatic root suberin biosynthesis. In contrast to wild-type, no CYP86A1 transcript in total RNA from horst-1 seedlings (carries the T-DNA insertion in the first exon of CYP86A1) and horst-2 seedlings (T-DNA insertion is located in the second exon). Complemented CYP86A1-transformed horst-1 plants reveal a quantitative and qualitative aliphatic suberin composition similar to the wild-type
physiological function
-
simultaneous operation of receptor and mechanical stimulations may synergistically amplify transmembrane Ca2+ mobilization through the activation of the non-voltage-gated Ca2+ entry/depolarization channel TRPC6, thereby enhancing the vascular tone via phospholipase C/diacylglycerol and phospholipase A(2)/omega-hydroxylase/20-hydroxyeicosatetraenoic acid pathways
physiological function
-
simultaneous operation of receptor and mechanical stimulations may synergistically amplify transmembrane Ca2+ mobilization through the activation of the non-voltage-gated Ca2+ entry/depolarization channel TRPC6, thereby enhancing the vascular tone via phospholipase C/diacylglycerol and phospholipase A(2)/omega-hydroxylase/20-hydroxyeicosatetraenoic acid pathways. Activation of the cytosolic phospholipase A(2)/omega-hydroxylase cascade and consequent production of 20-hydroxyeicosatetraenoic acid is essential for the mechanical enhancement of receptor-activated TRPC6 current/channel activity
physiological function
-
SXE1 is necessary for efficient male mating. Male-specific transcriptional regulator DSX(M) and the clock genes are necessary for cycling of sxe1 mRNA during the diurnal cycle
physiological function
-
the alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. The alkane hydroxylase system of Pseudomonas putida GPo1 comprises three protein components: AlkB, soluble NADH-rubredoxin reductase, and soluble electron transfer protein rubredoxin. AlkB transfers one oxygen atom from O2 to the alkane molecule, while the other oxygen is reduced to H2O using the electrons provided by NADH-rubredoxin reductase via rubredoxin
physiological function
Q08KD8; Q08KD7 and Q08KD6; Q08KD5, Q08KE2; Q08KE1 and Q08KE0; Q08KD9 Mycobacterium sp. TY-6 has two distinct gene clusters for multicomponent monooxygenases involved in alkane oxidation. Propane is oxidized to 1-propanol through terminal oxidation in Mycobacterium sp. TY-6
physiological function
Q08KD8; Q08KD7 and Q08KD6; Q08KD5, Q08KE2; Q08KE1 and Q08KE0; Q08KD9 propane is oxidized to 1-propanol and 2-propanol through both terminal and subterminal oxidations in Pseudonocardia sp. TY-7
physiological function
Q08KD8; Q08KD7 and Q08KD6; Q08KD5, Q08KE2; Q08KE1 and Q08KE0; Q08KD9 Pseudonocardia sp. TY-7 has two distinct gene clusters for multicomponent monooxygenases involved in alkane oxidation. Propane is oxidized to 1-propanol through terminal oxidation in Mycobacterium sp. TY-6
physiological function
an AlkW1 gene knockout strain is able to grow with C28 n-alkane as the sole carbon source, presence of two further long-chain alkane hydroxylase genes G1 and G2 whose expression in induced upon growth on C28 n-alkane
physiological function
an isoform AlkB1 mutant demonstrates a markedly lower degradative rate for C21 to C32 n-alkanes compared to wild-type. An isoform AlkB1/AlkB2 a double mutant shows a trend towards recovery when C20-C24 are used as sole carbon source
physiological function
degradation of n-alkanes in Rhodococcus opacus R7 with consumption rates of 88% for n-dodecane, 69% for n-hexadecane, 51% for n-eicosane and 78% for n-tetracosane. Expression of the AlkB gene in Rhodococcus erythropolis leads to increased biodegradation of n-dodecane
physiological function
-
for the medium-chain n-alkanes (C12-C16), single-knockout mutants of isoforms AlkB1 and AlkB2 show an obvious delay as compared to the wild type SJTD-1, and double-knockout mutants cannot utilize the n-alkanes at all. The loss of AlkB2 show a more pronounced effect on the cell growth than the loss of AlkB1. The poor viability of the double mutant recovers to a normal state when C18-C24 alkanes are used as the sole source of carbon
physiological function
isoform AlkB2 acts in the early growth phase and plays a major role in the utilization of C12-C18. An isoform AlkB1/AlkB2 a double mutant shows a trend towards recovery when C20-C24 are used as sole carbon source
physiological function
-
one rubredoxin AlkG with two Fe-4S electron transfer centres can bind with two membrane-bound AlkB to form an AlkG:2AlkB adduct, facilitating an efficient conversion of n-octane to 1-octanol. the specific activity among all chain length linear alkanes tested varies, there is no particular relationship between the specific activity and the chain length of alkanes
physiological function
the expression of isoforms MAH1-1 and MAH1-2 is barely detected in stem and leaf of a wax deficient cultivar
physiological function
-
degradation of n-alkanes in Rhodococcus opacus R7 with consumption rates of 88% for n-dodecane, 69% for n-hexadecane, 51% for n-eicosane and 78% for n-tetracosane. Expression of the AlkB gene in Rhodococcus erythropolis leads to increased biodegradation of n-dodecane
-
physiological function
-
the alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. The alkane hydroxylase system of Pseudomonas putida GPo1 comprises three protein components: AlkB, soluble NADH-rubredoxin reductase, and soluble electron transfer protein rubredoxin. AlkB transfers one oxygen atom from O2 to the alkane molecule, while the other oxygen is reduced to H2O using the electrons provided by NADH-rubredoxin reductase via rubredoxin
-
physiological function
-
isoform AlkB2 acts in the early growth phase and plays a major role in the utilization of C12-C18. An isoform AlkB1/AlkB2 a double mutant shows a trend towards recovery when C20-C24 are used as sole carbon source
-
physiological function
-
an isoform AlkB1 mutant demonstrates a markedly lower degradative rate for C21 to C32 n-alkanes compared to wild-type. An isoform AlkB1/AlkB2 a double mutant shows a trend towards recovery when C20-C24 are used as sole carbon source
-
physiological function
-
one rubredoxin AlkG with two Fe-4S electron transfer centres can bind with two membrane-bound AlkB to form an AlkG:2AlkB adduct, facilitating an efficient conversion of n-octane to 1-octanol. the specific activity among all chain length linear alkanes tested varies, there is no particular relationship between the specific activity and the chain length of alkanes
-
physiological function
-
for the medium-chain n-alkanes (C12-C16), single-knockout mutants of isoforms AlkB1 and AlkB2 show an obvious delay as compared to the wild type SJTD-1, and double-knockout mutants cannot utilize the n-alkanes at all. The loss of AlkB2 show a more pronounced effect on the cell growth than the loss of AlkB1. The poor viability of the double mutant recovers to a normal state when C18-C24 alkanes are used as the sole source of carbon
-
additional information

-
AlkB contains a nonheme diiron center as a catalytic site
additional information
both AlkW1 and AlkW2 have an integral-membrane alkane monooxygenase, AlkB, conserved domain and a rubredoxin conserved domain which are fused together
additional information
both AlkW1 and AlkW2 have an integral-membrane alkane monooxygenase, AlkB, conserved domain and a rubredoxin conserved domain which are fused together
additional information
-
reconstitution of enzyme activity with the purified protein in an assay with purified rubredoxin, purified maize ferredoxin reductase, NADPH, and selected substrates. i.e. bicyclo[4.1.0]heptane (norcarane), bicyclo[3.1.0]hexane (bicyclohexane), methylphenylcyclopropane and deuterated and non-deuterated cyclohexane. Purified AbAlkB hydroxylates substrates by forming a substrate radical, the rate-determining step has a significant C-H bond breaking character
additional information
-
the alkane hydroxylase system consists of the alkane hydroxylase large subunit, the alkane hydroxylase small subunit, the NADH-dependent reductase subunit, and the ferredoxin subunit. Analysis of the interaction between large and small subunits of the monooxygenase, overview
additional information
-
AlkB contains a nonheme diiron center as a catalytic site
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.