Information on Organism Azotobacter chroococcum

TaxTree of Organism Azotobacter chroococcum
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
2,5-xylenol and 3,5-xylenol degradation
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
3-chlorocatechol degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
3-phenylpropionate degradation
-
-
4-aminobutanoate degradation V
-
-
4-chlorobenzoate degradation
-
-
4-coumarate degradation (aerobic)
-
-
4-hydroxymandelate degradation
4-methylphenol degradation to protocatechuate
-
-
4-sulfocatechol degradation
-
-
ABH and Lewis epitopes biosynthesis from type 1 precursor disaccharide
-
-
ABH and Lewis epitopes biosynthesis from type 2 precursor disaccharide
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
alginate degradation
-
-
alkylnitronates degradation
-
-
alpha-tomatine degradation
-
-
ammonia assimilation cycle I
-
-
ammonia assimilation cycle II
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
Arginine biosynthesis
-
-
arsenite oxidation I (respiratory)
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate metabolism
-
-
Atrazine degradation
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
benzoate biosynthesis II (CoA-independent, non-beta-oxidative)
-
-
Benzoate degradation
-
-
Betalain biosynthesis
-
-
betanidin degradation
-
-
Biosynthesis of secondary metabolites
-
-
Biosynthesis of various secondary metabolites - part 3
-
-
bisphenol A degradation
-
-
Butanoate metabolism
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
C5-Branched dibasic acid metabolism
-
-
Carbon fixation in photosynthetic organisms
-
-
catechol degradation to beta-ketoadipate
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
Chloroalkane and chloroalkene degradation
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
cinnamoyl-CoA biosynthesis
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
Cutin, suberine and wax biosynthesis
-
-
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
D-cycloserine biosynthesis
-
-
denitrification
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
diethylphosphate degradation
-
-
ephedrine biosynthesis
-
-
ethanol degradation IV
-
-
ethylene biosynthesis III (microbes)
-
-
ethylene biosynthesis IV (engineered)
-
-
ethylene biosynthesis V (engineered)
-
-
Fe(II) oxidation
-
-
firefly bioluminescence
-
-
Fluorobenzoate degradation
-
-
Folate biosynthesis
-
-
fructan degradation
-
-
Fructose and mannose metabolism
-
-
Galactose metabolism
-
-
gallate degradation
-
-
gentisate degradation I
-
-
gentisate degradation II
-
-
ginsenoside metabolism
-
-
glutamate and glutamine metabolism
-
-
Glutathione metabolism
-
-
Glycerolipid metabolism
-
-
Glycine, serine and threonine metabolism
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate cycle
-
-
hydrogen oxidation I (aerobic)
-
-
hydrogen oxidation II (aerobic, NAD)
-
-
hydrogen production
-
-
hydrogen production II
-
-
hydrogen production III
-
-
hydrogen production VI
-
-
hydrogen production VIII
-
-
Isoquinoline alkaloid biosynthesis
-
-
justicidin B biosynthesis
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation III
-
-
L-ascorbate degradation II (bacterial, aerobic)
-
-
L-ascorbate degradation III
-
-
L-ascorbate degradation V
-
-
L-cysteine biosynthesis I
-
-
L-cysteine biosynthesis VII (from S-sulfo-L-cysteine)
-
-
L-dopa and L-dopachrome biosynthesis
-
-
L-glutamate degradation I
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-glutamate degradation VI (to pyruvate)
-
-
L-glutamate degradation VII (to butanoate)
-
-
L-glutamine biosynthesis I
-
-
L-glutamine biosynthesis III
-
-
L-leucine biosynthesis
-
-
L-threonine degradation V
-
-
lactose degradation II
-
-
leucine metabolism
-
-
linamarin degradation
-
-
linustatin bioactivation
-
-
lotaustralin degradation
-
-
luteolin triglucuronide degradation
-
-
Lysine degradation
-
-
matairesinol biosynthesis
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
methanol oxidation to formaldehyde IV
-
-
methylaspartate cycle
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
N-3-oxalyl-L-2,3-diaminopropanoate biosynthesis
-
-
NAD metabolism
-
-
NAD/NADH phosphorylation and dephosphorylation
-
-
neolinustatin bioactivation
-
-
Nicotinate and nicotinamide metabolism
-
-
nitrate assimilation
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction III (dissimilatory)
-
-
nitrate reduction IV (dissimilatory)
-
-
nitrate reduction IX (dissimilatory)
-
-
nitrate reduction V (assimilatory)
-
-
nitrate reduction VI (assimilatory)
-
-
nitrate reduction VII (denitrification)
-
-
nitrate reduction VIII (dissimilatory)
-
-
nitrate reduction VIIIb (dissimilatory)
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
nitrifier denitrification
-
-
nitrogen fixation I (ferredoxin)
-
-
nitrogen fixation II (flavodoxin)
-
-
Nitrogen metabolism
-
-
Nitrotoluene degradation
-
-
non-pathway related
-
-
o-diquinones biosynthesis
-
-
Other glycan degradation
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
partial TCA cycle (obligate autotrophs)
-
-
phenol degradation
-
-
Phenylalanine metabolism
-
-
phenylmercury acetate degradation
Phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis, initial reactions
-
-
pheomelanin biosynthesis
-
-
Photosynthesis
-
-
photosynthesis light reactions
-
-
polybrominated dihydroxylated diphenyl ethers biosynthesis
-
-
Polycyclic aromatic hydrocarbon degradation
-
-
protocatechuate degradation II (ortho-cleavage pathway)
-
-
Purine metabolism
-
-
purine metabolism
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
rosmarinic acid biosynthesis I
-
-
salicylate degradation IV
-
-
seleno-amino acid biosynthesis (plants)
-
-
serine metabolism
-
-
sesamin biosynthesis
-
-
Sphingolipid metabolism
-
-
spongiadioxin C biosynthesis
-
-
Starch and sucrose metabolism
-
-
Steroid hormone biosynthesis
-
-
suberin monomers biosynthesis
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
sulfopterin metabolism
-
-
Sulfur metabolism
-
-
superoxide radicals degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
Taurine and hypotaurine metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
Thiamine metabolism
-
-
threonine metabolism
-
-
Toluene degradation
-
-
Tryptophan metabolism
-
-
Tyrosine metabolism
-
-
urea cycle
-
-
urea degradation II
-
-
Valine, leucine and isoleucine biosynthesis
-
-
vitamin B1 metabolism
-
-
xyloglucan degradation II (exoglucanase)
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
additional information
-
not established, whether the nitrogenase exists in vivo in a specific particle or whether the nitrogenase proteins are bound nonspecifically to the membranes of some cells
-
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Azotobacter chroococcum)