Information on Organism Pochonia chlamydosporia

TaxTree of Organism Pochonia chlamydosporia
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-propane-1,2-diol degradation
-
-
1,5-anhydrofructose degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
4-hydroxy-2-nonenal detoxification
-
-
acetaldehyde biosynthesis I
-
-
acetaldehyde biosynthesis II
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetylene degradation (anaerobic)
-
-
alpha-Linolenic acid metabolism
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminobenzoate degradation
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
ATP biosynthesis
-
-
avenanthramide biosynthesis
-
-
beta-Alanine metabolism
-
-
Biosynthesis of 12-, 14- and 16-membered macrolides
-
-
Biosynthesis of secondary metabolites
-
-
bupropion degradation
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
Caffeine metabolism
-
-
camalexin biosynthesis
-
-
capsaicin biosynthesis
-
-
chitin biosynthesis
-
-
chitin deacetylation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Chloroalkane and chloroalkene degradation
-
-
chlorogenic acid biosynthesis I
-
-
coumarins biosynthesis (engineered)
-
-
curcuminoid biosynthesis
-
-
Cyanoamino acid metabolism
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
erythromycin D biosynthesis
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
Fatty acid degradation
-
-
Flavonoid biosynthesis
-
-
gamma-glutamyl cycle
-
-
gliotoxin biosynthesis
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
Glycine, serine and threonine metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
heterolactic fermentation
-
-
hypoglycin biosynthesis
-
-
indole glucosinolate activation (intact plant cell)
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
leucine metabolism
-
-
leukotriene biosynthesis
-
-
Linoleic acid metabolism
-
-
lipid A biosynthesis
-
-
lipid IVA biosynthesis (E. coli)
-
-
lipid IVA biosynthesis (P. putida)
-
-
Lipopolysaccharide biosynthesis
-
-
long chain fatty acid ester synthesis (engineered)
-
-
melatonin degradation I
-
-
Metabolic pathways
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
methionine metabolism
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Naphthalene degradation
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nocardicin A biosynthesis
-
-
noradrenaline and adrenaline degradation
-
-
Other glycan degradation
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
Pantothenate and CoA biosynthesis
-
-
pantothenate biosynthesis
-
-
pentachlorophenol degradation
-
-
phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
phenylpropanoids methylation (ice plant)
-
-
phosphopantothenate biosynthesis I
-
-
Photosynthesis
-
-
phytol degradation
-
-
propanol degradation
-
-
pyrrolnitrin biosynthesis
-
-
pyruvate fermentation to acetate VIII
-
-
pyruvate fermentation to acetoin III
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
rebeccamycin biosynthesis
-
-
Retinol metabolism
-
-
salidroside biosynthesis
-
-
scopoletin biosynthesis
-
-
serotonin degradation
-
-
Starch and sucrose metabolism
-
-
Staurosporine biosynthesis
-
-
Steroid hormone biosynthesis
-
-
Stilbenoid, diarylheptanoid and gingerol biosynthesis
-
-
suberin monomers biosynthesis
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
Taurine and hypotaurine metabolism
-
-
Tryptophan metabolism
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
valine metabolism
-
-
vanillin biosynthesis I
-
-
Various types of N-glycan biosynthesis
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
additional information
in fungi, periplasmic CDAs are generally tightly coupled to a chitin synthase to rapidly deacetylate newly synthesized chitins before their maturation and crystallization. Extracellular CDAs are secreted to alter the physicochemical properties of the cell wall to either protect the cell wall from exogenous chitinases or to initiate autolysis
-
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Pochonia chlamydosporia)