Information on Organism Rosa chinensis

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(3S)-linalool biosynthesis
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
1,3-propanediol biosynthesis (engineered)
-
-
9-lipoxygenase and 9-allene oxide synthase pathway
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
Alanine, aspartate and glutamate metabolism
-
-
alpha-Linolenic acid metabolism
-
-
Amino sugar and nucleotide sugar metabolism
-
-
ammonia assimilation cycle I
-
-
ammonia assimilation cycle II
-
-
ammonia assimilation cycle III
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
aromatic polyketides biosynthesis
-
-
arsenite to oxygen electron transfer
-
-
arsenite to oxygen electron transfer (via azurin)
-
-
Atrazine degradation
-
-
avenanthramide biosynthesis
-
-
bacterial bioluminescence
-
-
Bifidobacterium shunt
-
-
Biosynthesis of secondary metabolites
-
-
C20 prostanoid biosynthesis
-
-
Calvin-Benson-Bassham cycle
-
-
capsaicin biosynthesis
-
-
Carbon fixation in photosynthetic organisms
-
-
carnitine metabolism
-
-
cellulose and hemicellulose degradation (cellulolosome)
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
chitin biosynthesis
-
-
chlorogenic acid biosynthesis I
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
coumarins biosynthesis (engineered)
-
-
creatine phosphate biosynthesis
-
-
curcuminoid biosynthesis
-
-
Cysteine and methionine metabolism
-
-
Diterpenoid biosynthesis
-
-
Drug metabolism - other enzymes
-
-
Entner-Doudoroff pathway I
-
-
ethanol degradation IV
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis V (engineered)
-
-
eugenol and isoeugenol biosynthesis
-
-
Fe(II) oxidation
-
-
flavonoid biosynthesis
-
-
Flavonoid biosynthesis
-
-
flavonoid biosynthesis (in equisetum)
-
-
flavonoid di-C-glucosylation
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
fructose 2,6-bisphosphate biosynthesis
-
-
Fructose and mannose metabolism
-
-
gibberellin inactivation I (2beta-hydroxylation)
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glucose degradation (oxidative)
-
-
glutamate and glutamine metabolism
-
-
Glutathione metabolism
-
-
glycerol degradation to butanol
-
-
Glycerolipid metabolism
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
glycolysis V (Pyrococcus)
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate cycle
-
-
heterolactic fermentation
-
-
Indole alkaloid biosynthesis
-
-
jasmonic acid biosynthesis
-
-
L-aspartate degradation II (aerobic)
-
-
L-aspartate degradation III (anaerobic)
-
-
L-glutamine biosynthesis I
-
-
L-histidine degradation V
-
-
L-lactaldehyde degradation
-
-
lactate fermentation
-
-
leucodelphinidin biosynthesis
-
-
leucopelargonidin and leucocyanidin biosynthesis
-
-
lipid metabolism
-
-
Lysine degradation
-
-
Metabolic pathways
-
-
Methane metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methyl indole-3-acetate interconversion
-
-
methylaspartate cycle
methylsalicylate degradation
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Monoterpenoid biosynthesis
-
-
NAD metabolism
-
-
NADPH to cytochrome c oxidase via plastocyanin
-
-
naringenin biosynthesis (engineered)
-
-
Nitrogen metabolism
-
-
nitrogen remobilization from senescing leaves
-
-
non-pathway related
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
partial TCA cycle (obligate autotrophs)
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
phenylpropanoid biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
phenylpropanoids methylation (ice plant)
-
-
phloridzin biosynthesis
-
-
photosynthesis
-
-
Propanoate metabolism
-
-
Purine metabolism
-
-
pyruvate fermentation to (S)-lactate
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
retinol biosynthesis
-
-
scopoletin biosynthesis
-
-
secologanin and strictosidine biosynthesis
-
-
sedoheptulose bisphosphate bypass
-
-
Starch and sucrose metabolism
-
-
Stilbenoid, diarylheptanoid and gingerol biosynthesis
-
-
suberin monomers biosynthesis
succinate to chytochrome c oxidase via cytochrome c6
-
-
succinate to cytochrome c oxidase via plastocyanin
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
superoxide radicals degradation
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of methylsalicylate metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
triacylglycerol degradation
-
-
Tryptophan metabolism
-
-
urea cycle
-
-
urea degradation II
-
-
volatile cinnamoic ester biosynthesis
-
-
xanthohumol biosynthesis
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
mainly detected in stamens and petals at the flower opening stage. RcEGS1 is principally localized in the upper and lower epidermal layers, which are the major sites of scent emission in roses
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
LINKS TO OTHER DATABASES (specific for Rosa chinensis)