BRENDA - Enzyme Database
show all sequences of 2.1.1.228

Evolution of tRNAPhe imG2 methyltransferases involved in the biosynthesis of wyosine derivatives in Archaea

Urbonavicius, J.; Rutkiene, R.; Lopato, A.; Tauraite, D.; Stankeviciute, J.; Aucynaite, A.; Kaliniene, L.; van Tilbeurgh, H.; Meskys, R.; RNA 22, 1871-1883 (2016) View publication on PubMedView publication on EuropePMC

Data extracted from this reference:

Cloned(Commentary)
Cloned (Commentary)
Organism
recombinant expression of His-tagged enzyme
Nanoarchaeum equitans
recombinant expression of His-tagged wild-type and mutant enzymes
Pyrococcus abyssi
Engineering
Protein Variants
Commentary
Organism
E173A
site-directed mutagenesis, the mutant shows 9 and 26% of wild-type activity for imG and imG2 formation, respectively
Pyrococcus abyssi
E213A
site-directed mutagenesis, inactive mutant
Pyrococcus abyssi
F165A
site-directed mutagenesis, inactive mutant
Pyrococcus abyssi
P260N
site-directed mutagenesis, the mutant shows no and 114% of wild-type activity for imG and imG2 formation, respectively
Pyrococcus abyssi
P262A
site-directed mutagenesis, the mutant shows 5 and 8% of wild-type activity for imG and imG2 formation, respectively
Pyrococcus abyssi
R134A
site-directed mutagenesis, the mutant shows 2 and 4% of wild-type activity for imG and imG2 formation, respectively
Pyrococcus abyssi
R174A
site-directed mutagenesis, the mutant shows 8 and 69% of wild-type activity for imG and imG2 formation, respectively
Pyrococcus abyssi
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Mg2+
required
Pyrococcus abyssi
Mg2+
required
Nanoarchaeum equitans
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ID
S-adenosyl-L-methionine + 4-demethylwyosine
Pyrococcus abyssi
-
S-adenosyl-L-homocysteine + isowyosine
-
-
?
S-adenosyl-L-methionine + 4-demethylwyosine
Nanoarchaeum equitans
-
S-adenosyl-L-homocysteine + isowyosine
-
-
?
S-adenosyl-L-methionine + 4-demethylwyosine
Pyrococcus abyssi Orsay
-
S-adenosyl-L-homocysteine + isowyosine
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
Pyrococcus abyssi
-
S-adenosyl-L-homocysteine + wyosine
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
Nanoarchaeum equitans
-
S-adenosyl-L-homocysteine + wyosine
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
Pyrococcus abyssi Orsay
-
S-adenosyl-L-homocysteine + wyosine
-
-
?
S-adenosyl-L-methionine + 7-[(3S)-(3-amino-3-carboxypropyl)]-4-demethylwyosine37 in tRNAPhe
Pyrococcus abyssi
-
S-adenosyl-L-homocysteine + 7-[(3S)-(3-amino-3-carboxypropyl)]wyosine37 in tRNAPhe
-
-
?
S-adenosyl-L-methionine + 7-[(3S)-(3-amino-3-carboxypropyl)]-4-demethylwyosine37 in tRNAPhe
Nanoarchaeum equitans
-
S-adenosyl-L-homocysteine + 7-[(3S)-(3-amino-3-carboxypropyl)]wyosine37 in tRNAPhe
-
-
?
S-adenosyl-L-methionine + guanine37 in tRNA
Pyrococcus abyssi
-
S-adenosyl-L-homocysteine + N1-methylguanine37 in tRNA
-
-
?
S-adenosyl-L-methionine + guanine37 in tRNA
Nanoarchaeum equitans
-
S-adenosyl-L-homocysteine + N1-methylguanine37 in tRNA
-
-
?
S-adenosyl-L-methionine + guanine37 in tRNA
Pyrococcus abyssi Orsay
-
S-adenosyl-L-homocysteine + N1-methylguanine37 in tRNA
-
-
?
Organism
Organism
UniProt
Commentary
Textmining
Nanoarchaeum equitans
Q74NE4
-
-
Pyrococcus abyssi
Q9V2G1
-
-
Pyrococcus abyssi Orsay
Q9V2G1
-
-
Purification (Commentary)
Purification (Commentary)
Organism
recombinant expression of His-tagged enzyme by affinity chromatography and desalting gel filtration
Nanoarchaeum equitans
recombinant expression of His-tagged wild-type and mutant enzymes to near homogeneity by 20 min heat treatment at 70°C and 65°C, respectively, followed by affinity chromatography and desalting gel filtration
Pyrococcus abyssi
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
Substrate Product ID
additional information
Nanoarchaeum equitans NEQ228 protein displays a dual tRNAPhe:m1G/imG2 methyltransferase activity. Two different types of substrates are used: (1) bulk tRNA, isolated from Salmonella enterica trmDELTA27 mutant containing the unmodified G37 nucleotide leading tothe formation of pm1G, and (2) tRNA, which is isolated from the Saccharomes cerevisiae DELTAtyw2 mutant that contains the imG-14 wyosine derivative leading to formation of pimG2pA dinucleotide and to a lesser extent to pm1G, likely resulting from the small amounts of G37-containing tRNAPhe present in the bulk tRNA isolates from the Scetyw2 mutant
758324
Nanoarchaeum equitans
?
-
-
-
-
additional information
Pyrococcus abyssi PAB2272 protein displays a dual tRNAPhe:m1G/imG2 methyltransferase activity. Two different types of substrates are used: (1) bulk tRNA, isolated from Salmonella enterica trmDELTA27 mutant containing the unmodified G37 nucleotide leading to the formation of pm1G, and (2) tRNA, which is isolated from the Saccharomes cerevisiae DELTAtyw2 mutant that contains the imG-14 wyosine derivative leading to formation of pimG2pA dinucleotide and to a lesser extent to pm1G, likely resulting from the small amounts of G37-containing tRNAPhe present in the bulk tRNA isolates from the Scetyw2 mutant
758324
Pyrococcus abyssi
?
-
-
-
-
additional information
Pyrococcus abyssi PAB2272 protein displays a dual tRNAPhe:m1G/imG2 methyltransferase activity. Two different types of substrates are used: (1) bulk tRNA, isolated from Salmonella enterica trmDELTA27 mutant containing the unmodified G37 nucleotide leading to the formation of pm1G, and (2) tRNA, which is isolated from the Saccharomes cerevisiae DELTAtyw2 mutant that contains the imG-14 wyosine derivative leading to formation of pimG2pA dinucleotide and to a lesser extent to pm1G, likely resulting from the small amounts of G37-containing tRNAPhe present in the bulk tRNA isolates from the Scetyw2 mutant
758324
Pyrococcus abyssi Orsay
?
-
-
-
-
S-adenosyl-L-methionine + 4-demethylwyosine
-
758324
Pyrococcus abyssi
S-adenosyl-L-homocysteine + isowyosine
-
-
-
?
S-adenosyl-L-methionine + 4-demethylwyosine
-
758324
Nanoarchaeum equitans
S-adenosyl-L-homocysteine + isowyosine
-
-
-
?
S-adenosyl-L-methionine + 4-demethylwyosine
i.e. im-G14, activity of EC 2.1.1.282
758324
Pyrococcus abyssi
S-adenosyl-L-homocysteine + isowyosine
-
-
-
?
S-adenosyl-L-methionine + 4-demethylwyosine
i.e. im-G14, activity of EC 2.1.1.282
758324
Nanoarchaeum equitans
S-adenosyl-L-homocysteine + isowyosine
-
-
-
?
S-adenosyl-L-methionine + 4-demethylwyosine
-
758324
Pyrococcus abyssi Orsay
S-adenosyl-L-homocysteine + isowyosine
-
-
-
?
S-adenosyl-L-methionine + 4-demethylwyosine
i.e. im-G14, activity of EC 2.1.1.282
758324
Pyrococcus abyssi Orsay
S-adenosyl-L-homocysteine + isowyosine
-
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
-
758324
Pyrococcus abyssi
S-adenosyl-L-homocysteine + wyosine
-
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
-
758324
Nanoarchaeum equitans
S-adenosyl-L-homocysteine + wyosine
-
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
i.e. yW-86, activity of EC 2.1.1.228
758324
Pyrococcus abyssi
S-adenosyl-L-homocysteine + wyosine
-
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
i.e. yW-86, activity of EC 2.1.1.228
758324
Nanoarchaeum equitans
S-adenosyl-L-homocysteine + wyosine
-
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
-
758324
Pyrococcus abyssi Orsay
S-adenosyl-L-homocysteine + wyosine
-
-
-
?
S-adenosyl-L-methionine + 7-[(3S)-(3-amino-3-carboxypropyl)]-4-demethylwyosine37 in tRNAPhe
-
758324
Pyrococcus abyssi
S-adenosyl-L-homocysteine + 7-[(3S)-(3-amino-3-carboxypropyl)]wyosine37 in tRNAPhe
-
-
-
?
S-adenosyl-L-methionine + 7-[(3S)-(3-amino-3-carboxypropyl)]-4-demethylwyosine37 in tRNAPhe
-
758324
Nanoarchaeum equitans
S-adenosyl-L-homocysteine + 7-[(3S)-(3-amino-3-carboxypropyl)]wyosine37 in tRNAPhe
-
-
-
?
S-adenosyl-L-methionine + guanine37 in tRNA
-
758324
Pyrococcus abyssi
S-adenosyl-L-homocysteine + N1-methylguanine37 in tRNA
-
-
-
?
S-adenosyl-L-methionine + guanine37 in tRNA
-
758324
Nanoarchaeum equitans
S-adenosyl-L-homocysteine + N1-methylguanine37 in tRNA
-
-
-
?
S-adenosyl-L-methionine + guanine37 in tRNA
-
758324
Pyrococcus abyssi Orsay
S-adenosyl-L-homocysteine + N1-methylguanine37 in tRNA
-
-
-
?
Synonyms
Synonyms
Commentary
Organism
aTrm5a methyltransferase
-
Pyrococcus abyssi
aTrm5a methyltransferase
-
Nanoarchaeum equitans
aTrm5a/Taw22-like enzyme
-
Pyrococcus abyssi
More
see also EC 2.1.1.282
Pyrococcus abyssi
More
see also EC 2.1.1.282
Nanoarchaeum equitans
NEQ228
-
Nanoarchaeum equitans
PAB2272
-
Pyrococcus abyssi
TAW22
-
Pyrococcus abyssi
TAW22
-
Nanoarchaeum equitans
Trm5a
-
Pyrococcus abyssi
Trm5a
-
Nanoarchaeum equitans
Trm5a/Taw22-like enzyme
-
Nanoarchaeum equitans
tRNAPhe:imG2 methyltransferase
-
Pyrococcus abyssi
tRNAPhe:imG2 methyltransferase
-
Nanoarchaeum equitans
Temperature Optimum [°C]
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
50
-
assay at
Pyrococcus abyssi
50
-
assay at
Nanoarchaeum equitans
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
8
-
assay at
Pyrococcus abyssi
8
-
assay at
Nanoarchaeum equitans
Cofactor
Cofactor
Commentary
Organism
Structure
S-adenosyl-L-methionine
-
Pyrococcus abyssi
S-adenosyl-L-methionine
-
Nanoarchaeum equitans
Cloned(Commentary) (protein specific)
Commentary
Organism
recombinant expression of His-tagged enzyme
Nanoarchaeum equitans
recombinant expression of His-tagged wild-type and mutant enzymes
Pyrococcus abyssi
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
S-adenosyl-L-methionine
-
Pyrococcus abyssi
S-adenosyl-L-methionine
-
Nanoarchaeum equitans
Engineering (protein specific)
Protein Variants
Commentary
Organism
E173A
site-directed mutagenesis, the mutant shows 9 and 26% of wild-type activity for imG and imG2 formation, respectively
Pyrococcus abyssi
E213A
site-directed mutagenesis, inactive mutant
Pyrococcus abyssi
F165A
site-directed mutagenesis, inactive mutant
Pyrococcus abyssi
P260N
site-directed mutagenesis, the mutant shows no and 114% of wild-type activity for imG and imG2 formation, respectively
Pyrococcus abyssi
P262A
site-directed mutagenesis, the mutant shows 5 and 8% of wild-type activity for imG and imG2 formation, respectively
Pyrococcus abyssi
R134A
site-directed mutagenesis, the mutant shows 2 and 4% of wild-type activity for imG and imG2 formation, respectively
Pyrococcus abyssi
R174A
site-directed mutagenesis, the mutant shows 8 and 69% of wild-type activity for imG and imG2 formation, respectively
Pyrococcus abyssi
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Mg2+
required
Pyrococcus abyssi
Mg2+
required
Nanoarchaeum equitans
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ID
S-adenosyl-L-methionine + 4-demethylwyosine
Pyrococcus abyssi
-
S-adenosyl-L-homocysteine + isowyosine
-
-
?
S-adenosyl-L-methionine + 4-demethylwyosine
Nanoarchaeum equitans
-
S-adenosyl-L-homocysteine + isowyosine
-
-
?
S-adenosyl-L-methionine + 4-demethylwyosine
Pyrococcus abyssi Orsay
-
S-adenosyl-L-homocysteine + isowyosine
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
Pyrococcus abyssi
-
S-adenosyl-L-homocysteine + wyosine
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
Nanoarchaeum equitans
-
S-adenosyl-L-homocysteine + wyosine
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
Pyrococcus abyssi Orsay
-
S-adenosyl-L-homocysteine + wyosine
-
-
?
S-adenosyl-L-methionine + 7-[(3S)-(3-amino-3-carboxypropyl)]-4-demethylwyosine37 in tRNAPhe
Pyrococcus abyssi
-
S-adenosyl-L-homocysteine + 7-[(3S)-(3-amino-3-carboxypropyl)]wyosine37 in tRNAPhe
-
-
?
S-adenosyl-L-methionine + 7-[(3S)-(3-amino-3-carboxypropyl)]-4-demethylwyosine37 in tRNAPhe
Nanoarchaeum equitans
-
S-adenosyl-L-homocysteine + 7-[(3S)-(3-amino-3-carboxypropyl)]wyosine37 in tRNAPhe
-
-
?
S-adenosyl-L-methionine + guanine37 in tRNA
Pyrococcus abyssi
-
S-adenosyl-L-homocysteine + N1-methylguanine37 in tRNA
-
-
?
S-adenosyl-L-methionine + guanine37 in tRNA
Nanoarchaeum equitans
-
S-adenosyl-L-homocysteine + N1-methylguanine37 in tRNA
-
-
?
S-adenosyl-L-methionine + guanine37 in tRNA
Pyrococcus abyssi Orsay
-
S-adenosyl-L-homocysteine + N1-methylguanine37 in tRNA
-
-
?
Purification (Commentary) (protein specific)
Commentary
Organism
recombinant expression of His-tagged enzyme by affinity chromatography and desalting gel filtration
Nanoarchaeum equitans
recombinant expression of His-tagged wild-type and mutant enzymes to near homogeneity by 20 min heat treatment at 70°C and 65°C, respectively, followed by affinity chromatography and desalting gel filtration
Pyrococcus abyssi
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ID
additional information
Nanoarchaeum equitans NEQ228 protein displays a dual tRNAPhe:m1G/imG2 methyltransferase activity. Two different types of substrates are used: (1) bulk tRNA, isolated from Salmonella enterica trmDELTA27 mutant containing the unmodified G37 nucleotide leading tothe formation of pm1G, and (2) tRNA, which is isolated from the Saccharomes cerevisiae DELTAtyw2 mutant that contains the imG-14 wyosine derivative leading to formation of pimG2pA dinucleotide and to a lesser extent to pm1G, likely resulting from the small amounts of G37-containing tRNAPhe present in the bulk tRNA isolates from the Scetyw2 mutant
758324
Nanoarchaeum equitans
?
-
-
-
-
additional information
Pyrococcus abyssi PAB2272 protein displays a dual tRNAPhe:m1G/imG2 methyltransferase activity. Two different types of substrates are used: (1) bulk tRNA, isolated from Salmonella enterica trmDELTA27 mutant containing the unmodified G37 nucleotide leading to the formation of pm1G, and (2) tRNA, which is isolated from the Saccharomes cerevisiae DELTAtyw2 mutant that contains the imG-14 wyosine derivative leading to formation of pimG2pA dinucleotide and to a lesser extent to pm1G, likely resulting from the small amounts of G37-containing tRNAPhe present in the bulk tRNA isolates from the Scetyw2 mutant
758324
Pyrococcus abyssi
?
-
-
-
-
additional information
Pyrococcus abyssi PAB2272 protein displays a dual tRNAPhe:m1G/imG2 methyltransferase activity. Two different types of substrates are used: (1) bulk tRNA, isolated from Salmonella enterica trmDELTA27 mutant containing the unmodified G37 nucleotide leading to the formation of pm1G, and (2) tRNA, which is isolated from the Saccharomes cerevisiae DELTAtyw2 mutant that contains the imG-14 wyosine derivative leading to formation of pimG2pA dinucleotide and to a lesser extent to pm1G, likely resulting from the small amounts of G37-containing tRNAPhe present in the bulk tRNA isolates from the Scetyw2 mutant
758324
Pyrococcus abyssi Orsay
?
-
-
-
-
S-adenosyl-L-methionine + 4-demethylwyosine
-
758324
Pyrococcus abyssi
S-adenosyl-L-homocysteine + isowyosine
-
-
-
?
S-adenosyl-L-methionine + 4-demethylwyosine
-
758324
Nanoarchaeum equitans
S-adenosyl-L-homocysteine + isowyosine
-
-
-
?
S-adenosyl-L-methionine + 4-demethylwyosine
i.e. im-G14, activity of EC 2.1.1.282
758324
Pyrococcus abyssi
S-adenosyl-L-homocysteine + isowyosine
-
-
-
?
S-adenosyl-L-methionine + 4-demethylwyosine
i.e. im-G14, activity of EC 2.1.1.282
758324
Nanoarchaeum equitans
S-adenosyl-L-homocysteine + isowyosine
-
-
-
?
S-adenosyl-L-methionine + 4-demethylwyosine
-
758324
Pyrococcus abyssi Orsay
S-adenosyl-L-homocysteine + isowyosine
-
-
-
?
S-adenosyl-L-methionine + 4-demethylwyosine
i.e. im-G14, activity of EC 2.1.1.282
758324
Pyrococcus abyssi Orsay
S-adenosyl-L-homocysteine + isowyosine
-
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
-
758324
Pyrococcus abyssi
S-adenosyl-L-homocysteine + wyosine
-
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
-
758324
Nanoarchaeum equitans
S-adenosyl-L-homocysteine + wyosine
-
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
i.e. yW-86, activity of EC 2.1.1.228
758324
Pyrococcus abyssi
S-adenosyl-L-homocysteine + wyosine
-
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
i.e. yW-86, activity of EC 2.1.1.228
758324
Nanoarchaeum equitans
S-adenosyl-L-homocysteine + wyosine
-
-
-
?
S-adenosyl-L-methionine + 7-aminocarboxypropyl-demethylwyosine
-
758324
Pyrococcus abyssi Orsay
S-adenosyl-L-homocysteine + wyosine
-
-
-
?
S-adenosyl-L-methionine + 7-[(3S)-(3-amino-3-carboxypropyl)]-4-demethylwyosine37 in tRNAPhe
-
758324
Pyrococcus abyssi
S-adenosyl-L-homocysteine + 7-[(3S)-(3-amino-3-carboxypropyl)]wyosine37 in tRNAPhe
-
-
-
?
S-adenosyl-L-methionine + 7-[(3S)-(3-amino-3-carboxypropyl)]-4-demethylwyosine37 in tRNAPhe
-
758324
Nanoarchaeum equitans
S-adenosyl-L-homocysteine + 7-[(3S)-(3-amino-3-carboxypropyl)]wyosine37 in tRNAPhe
-
-
-
?
S-adenosyl-L-methionine + guanine37 in tRNA
-
758324
Pyrococcus abyssi
S-adenosyl-L-homocysteine + N1-methylguanine37 in tRNA
-
-
-
?
S-adenosyl-L-methionine + guanine37 in tRNA
-
758324
Nanoarchaeum equitans
S-adenosyl-L-homocysteine + N1-methylguanine37 in tRNA
-
-
-
?
S-adenosyl-L-methionine + guanine37 in tRNA
-
758324
Pyrococcus abyssi Orsay
S-adenosyl-L-homocysteine + N1-methylguanine37 in tRNA
-
-
-
?
Temperature Optimum [°C] (protein specific)
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
50
-
assay at
Pyrococcus abyssi
50
-
assay at
Nanoarchaeum equitans
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
8
-
assay at
Pyrococcus abyssi
8
-
assay at
Nanoarchaeum equitans
General Information
General Information
Commentary
Organism
evolution
archaeal Trm5a, a member of the archaeal Trm5a/b/c family of enzymes involved in the biosynthesis of the wyosine derivatives, division of the family aTrm5 into three subfamilies aTrm5a (further divided into Taw21 and Taw22 which are monofunctional and bifunctional aTrm5a), aTrm5b, and aTrm5c. While the enzymes belonging to these subfamilies do not significantly differ in their AdoMet-binding site, small differences have been observed within the NPPY motif, which, in certain amino-methyltransferases, is involved in the positioning of the target nitrogen atom. In contrast, the N-terminal sequences of the aforementioned enzymes differ substantially, e.g. a small conservative domain called D1 is present in aTrm5b and aTrm5c but absent in most of the aTrm5a proteins. Evolution of tRNAPhe:imG2 methyltransferases involved in the biosynthesis of wyosine derivatives in Archaea. Amino acid sequence alignment of Trm5a/b/c family of proteins. Monofunctional and bifunctional aTrm5a enzymes, overview
Nanoarchaeum equitans
evolution
archaeal Trm5a, a member of the archaeal Trm5a/b/c family of enzymes involved in the biosynthesis of the wyosine derivatives, division of the family aTrm5 into three subfamilies aTrm5a (further divided into Taw21 and Taw22 which are monofunctional and bifunctional aTrm5a), aTrm5b, and aTrm5c. While the enzymes belonging to these subfamilies do not significantly differ in their AdoMet-binding site, small differences have been observed within the NPPY motif, which, in certain amino-methyltransferases, is involved in the positioning of the target nitrogen atom. In contrast, the N-terminal sequences of the aforementioned enzymes differ substantially, e.g. a small conservative domain called D1 is present in aTrm5b and aTrm5c but absent in most of the aTrm5a proteins. Evolution of tRNAPhe:imG2 methyltransferases involved in the biosynthesis of wyosine derivatives in Archaea. Amino acid sequence alignment of Trm5a/b/c/ family of proteins. Monofunctional and bifunctional aTrm5a enzymes, overview
Pyrococcus abyssi
malfunction
substitutions of individual conservative amino acids of Pyrococcus abyssi Taw22 (P260N, E173A, and R174A) have a differential effect on the formation of m1G/imG2, while replacement of R134, F165, E213, and P262 with alanine abolishes the formation of both derivatives of G37
Pyrococcus abyssi
malfunction
substitutions of individual conservative amino acids of Pyrococcus abyssi Taw22 (P260N, E173A, and R174A) have a differential effect on the formation of m1G/imG2, while replacement of R134, F165, E213, and P262 with alanine abolishes the formation of both derivatives of G37
Nanoarchaeum equitans
metabolism
putative enzymatic pathway leading to the formation of wyosine derivatives in Archaea
Pyrococcus abyssi
metabolism
putative enzymatic pathway leading to the formation of wyosine derivatives in Archaea
Nanoarchaeum equitans
physiological function
tricyclic wyosine derivatives are found at position 37 of eukaryotic and archaeal tRNAPhe. In Archaea, the intermediate imG-14 is targeted by three different enzymes that catalyze the formation of yW-86, imG, and imG2. Methyltransferase aTrm5a/Taw22 likely catalyzes two distinct reactions: N1-methylation of guanosine to yield m1G (EC 2.1.1.228), and C7-methylation of imG-14 to yield imG2 (EC 2.1.1.282)
Pyrococcus abyssi
physiological function
tricyclic wyosine derivatives are found at position 37 of eukaryotic and archaeal tRNAPhe. In Archaea, the intermediate imG-14 is targeted by three different enzymes that catalyze the formation of yW-86, imG, and imG2. Methyltransferase aTrm5a/Taw22 likely catalyzes two distinct reactions: N1-methylation of guanosine to yield m1G (EC 2.1.1.228), and C7-methylation of imG-14 to yield imG2 (EC 2.1.1.282)
Nanoarchaeum equitans
General Information (protein specific)
General Information
Commentary
Organism
evolution
archaeal Trm5a, a member of the archaeal Trm5a/b/c family of enzymes involved in the biosynthesis of the wyosine derivatives, division of the family aTrm5 into three subfamilies aTrm5a (further divided into Taw21 and Taw22 which are monofunctional and bifunctional aTrm5a), aTrm5b, and aTrm5c. While the enzymes belonging to these subfamilies do not significantly differ in their AdoMet-binding site, small differences have been observed within the NPPY motif, which, in certain amino-methyltransferases, is involved in the positioning of the target nitrogen atom. In contrast, the N-terminal sequences of the aforementioned enzymes differ substantially, e.g. a small conservative domain called D1 is present in aTrm5b and aTrm5c but absent in most of the aTrm5a proteins. Evolution of tRNAPhe:imG2 methyltransferases involved in the biosynthesis of wyosine derivatives in Archaea. Amino acid sequence alignment of Trm5a/b/c family of proteins. Monofunctional and bifunctional aTrm5a enzymes, overview
Nanoarchaeum equitans
evolution
archaeal Trm5a, a member of the archaeal Trm5a/b/c family of enzymes involved in the biosynthesis of the wyosine derivatives, division of the family aTrm5 into three subfamilies aTrm5a (further divided into Taw21 and Taw22 which are monofunctional and bifunctional aTrm5a), aTrm5b, and aTrm5c. While the enzymes belonging to these subfamilies do not significantly differ in their AdoMet-binding site, small differences have been observed within the NPPY motif, which, in certain amino-methyltransferases, is involved in the positioning of the target nitrogen atom. In contrast, the N-terminal sequences of the aforementioned enzymes differ substantially, e.g. a small conservative domain called D1 is present in aTrm5b and aTrm5c but absent in most of the aTrm5a proteins. Evolution of tRNAPhe:imG2 methyltransferases involved in the biosynthesis of wyosine derivatives in Archaea. Amino acid sequence alignment of Trm5a/b/c/ family of proteins. Monofunctional and bifunctional aTrm5a enzymes, overview
Pyrococcus abyssi
malfunction
substitutions of individual conservative amino acids of Pyrococcus abyssi Taw22 (P260N, E173A, and R174A) have a differential effect on the formation of m1G/imG2, while replacement of R134, F165, E213, and P262 with alanine abolishes the formation of both derivatives of G37
Pyrococcus abyssi
malfunction
substitutions of individual conservative amino acids of Pyrococcus abyssi Taw22 (P260N, E173A, and R174A) have a differential effect on the formation of m1G/imG2, while replacement of R134, F165, E213, and P262 with alanine abolishes the formation of both derivatives of G37
Nanoarchaeum equitans
metabolism
putative enzymatic pathway leading to the formation of wyosine derivatives in Archaea
Pyrococcus abyssi
metabolism
putative enzymatic pathway leading to the formation of wyosine derivatives in Archaea
Nanoarchaeum equitans
physiological function
tricyclic wyosine derivatives are found at position 37 of eukaryotic and archaeal tRNAPhe. In Archaea, the intermediate imG-14 is targeted by three different enzymes that catalyze the formation of yW-86, imG, and imG2. Methyltransferase aTrm5a/Taw22 likely catalyzes two distinct reactions: N1-methylation of guanosine to yield m1G (EC 2.1.1.228), and C7-methylation of imG-14 to yield imG2 (EC 2.1.1.282)
Pyrococcus abyssi
physiological function
tricyclic wyosine derivatives are found at position 37 of eukaryotic and archaeal tRNAPhe. In Archaea, the intermediate imG-14 is targeted by three different enzymes that catalyze the formation of yW-86, imG, and imG2. Methyltransferase aTrm5a/Taw22 likely catalyzes two distinct reactions: N1-methylation of guanosine to yield m1G (EC 2.1.1.228), and C7-methylation of imG-14 to yield imG2 (EC 2.1.1.282)
Nanoarchaeum equitans
Other publictions for EC 2.1.1.228
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Synonyms
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
755697
Zhong
Targeting the bacterial epitr ...
Pseudomonas aeruginosa, Pseudomonas aeruginosa UCBPP-PA14
ACS Infect. Dis.
5
326-335
2019
-
1
1
-
-
-
63
2
-
-
-
2
-
8
-
-
-
-
-
-
-
-
6
-
3
-
-
1
2
-
-
-
1
-
-
63
-
1
1
1
-
-
-
63
63
-
2
-
-
-
2
-
-
-
-
-
-
-
-
6
-
-
-
1
2
-
-
-
-
-
1
1
-
2
2
756152
Li
Backbone resonance assignment ...
Pseudomonas aeruginosa, Pseudomonas aeruginosa UCBPP-PA14
Biomol. NMR Assign.
13
327-332
2019
-
1
1
-
-
-
1
-
-
-
-
2
-
7
-
-
1
-
-
1
-
-
2
2
2
-
-
-
-
1
-
-
1
-
-
-
-
1
1
1
-
-
-
-
1
-
-
-
-
-
2
-
-
-
1
-
1
-
-
2
2
-
-
-
-
1
-
-
-
-
2
2
-
-
-
756153
Li
Backbone resonance assignment ...
Pseudomonas aeruginosa, Pseudomonas aeruginosa UCBPP-PA14
Biomol. NMR Assign.
13
49-53
2019
-
-
1
-
-
-
2
-
-
-
-
2
-
6
-
-
1
-
-
-
-
-
2
-
2
-
-
1
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
2
-
-
-
-
-
2
-
-
-
1
-
-
-
-
2
-
-
-
1
-
-
-
-
-
-
1
1
-
-
-
756774
Hou
Codon-specific translation by ...
Escherichia coli, Salmonella enterica subsp. enterica serovar Typhimurium, Saccharomyces cerevisiae, Salmonella enterica subsp. enterica serovar Typhimurium SGSC1412, Salmonella enterica subsp. enterica serovar Typhimurium ATCC 700720, Saccharomyces cerevisiae ATCC 204508
Front. Genet.
10
713
2019
-
-
-
-
1
-
-
-
-
2
-
7
-
8
-
-
-
-
-
-
-
-
7
-
4
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
-
1
-
-
-
-
-
-
2
-
7
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
-
1
8
8
1
-
-
757408
Whitehouse
Development of inhibitors aga ...
Mycobacteroides abscessus
J. Med. Chem.
62
7210-7232
2019
-
1
1
1
-
-
50
-
-
-
-
1
-
6
-
-
1
-
-
-
-
-
1
1
2
-
-
-
-
-
-
-
1
-
-
-
-
1
1
1
1
-
-
-
50
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
757409
Zhong
Thienopyrimidinone derivative ...
Staphylococcus aureus, Mycobacterium tuberculosis, Pseudomonas aeruginosa
J. Med. Chem.
62
7788-7805
2019
-
-
3
2
-
3
42
3
-
2
-
3
-
5
-
-
-
-
-
-
-
-
3
-
12
1
-
-
-
1
-
-
3
-
-
26
-
-
3
3
2
-
3
26
42
-
3
-
2
-
3
-
-
-
-
-
-
-
-
3
-
1
-
-
-
1
-
-
-
-
3
3
-
-
-
757863
Jin
AtTrm5a catalyses 1-methylgua ...
Arabidopsis thaliana
Nucleic Acids Res.
47
883-898
2019
-
-
1
-
1
-
-
-
1
1
-
2
-
8
-
-
1
-
-
2
-
-
2
-
3
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
1
1
-
2
-
-
-
1
-
2
-
-
2
-
1
-
-
-
1
-
-
-
-
2
2
-
-
-
758329
Jaroensuk
Crystal structure and catalyt ...
Pseudomonas aeruginosa, Pseudomonas aeruginosa UCBPP-PA14
RNA
25
1481-1496
2019
-
1
1
1
1
-
1
3
-
2
-
2
-
10
-
-
1
-
-
-
-
-
14
2
5
1
-
-
2
1
-
-
1
3
-
-
-
1
1
1
1
1
-
-
1
3
3
-
2
-
2
-
-
-
1
-
-
-
-
14
2
1
-
-
2
1
-
-
-
-
2
2
-
2
2
757201
Zhou
A hypertension-associated mit ...
Methanocaldococcus jannaschii, Methanocaldococcus jannaschii NBRC 100440, Methanocaldococcus jannaschii DSM 2661, Methanocaldococcus jannaschii ATCC 43067, Methanocaldococcus jannaschii JAL-1, Methanocaldococcus jannaschii JCM 10045
J. Biol. Chem.
293
1425-1438
2018
-
-
-
-
1
-
-
-
-
-
-
6
-
17
-
-
-
-
-
-
-
-
12
-
5
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
12
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
755960
Wu
The crystal structure of the ...
Pyrococcus abyssi
Biochem. Biophys. Res. Commun.
493
240-245
2017
-
-
1
1
1
-
-
-
-
-
-
1
-
9
-
-
1
-
-
-
-
-
2
1
4
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
1
1
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
2
1
1
-
-
-
1
-
-
-
-
4
4
-
-
-
756161
Goto-Ito
Trm5 and TrmD two enzymes fr ...
Escherichia coli, Haemophilus influenzae, Methanocaldococcus jannaschii, Pyrococcus abyssi, Pyrococcus abyssi Orsay, Methanocaldococcus jannaschii NBRC 100440, Haemophilus influenzae RD, Methanocaldococcus jannaschii DSM 2661, Methanocaldococcus jannaschii ATCC 43067, Methanocaldococcus jannaschii JAL-1, Haemophilus influenzae DSM 11121, Haemophilus influenzae KW20, Haemophilus influenzae ATCC 51907, Methanocaldococcus jannaschii JCM 10045
Biomolecules
7
32
2017
-
-
-
1
-
-
-
4
-
-
-
16
-
36
-
-
-
-
-
-
-
-
30
4
10
-
-
-
-
-
-
-
4
-
-
-
-
-
-
4
1
-
-
-
-
-
4
-
-
-
16
-
-
-
-
-
-
-
-
30
4
-
-
-
-
-
-
-
-
-
14
14
-
-
-
756163
Hori
Transfer RNA methyltransferas ...
Haemophilus influenzae, Aquifex aeolicus, Escherichia coli
Biomolecules
7
E23
2017
-
-
-
-
-
-
-
-
-
-
-
3
-
3
-
-
-
-
-
-
-
-
6
3
3
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
6
3
-
-
-
-
-
-
-
-
-
7
7
-
-
-
756631
Hou
TrmD A methyl transferase fo ...
Haemophilus influenzae, Aquifex aeolicus, Escherichia coli, Salmonella enterica subsp. enterica serovar Typhimurium, Salmonella enterica subsp. enterica serovar Typhimurium SGSC1412, Salmonella enterica subsp. enterica serovar Typhimurium ATCC 700720
Enzymes
41
89-115
2017
-
4
4
-
-
-
-
-
-
16
-
12
-
8
-
-
-
-
-
-
-
-
12
8
6
-
-
-
-
-
-
-
4
-
-
-
-
4
4
4
-
-
-
-
-
-
-
-
16
-
12
-
-
-
-
-
-
-
-
12
8
-
-
-
-
-
-
-
-
-
16
16
-
-
-
758348
Wang
Structural insight into the m ...
Methanocaldococcus jannaschii, Pyrococcus abyssi, Methanocaldococcus jannaschii DSM 2661
Sci. Adv.
3
e1700195
2017
-
-
1
2
7
-
-
-
-
2
-
4
-
6
-
-
1
-
-
-
-
-
7
1
6
2
-
-
-
2
-
-
2
-
-
-
-
-
1
2
2
7
-
-
-
-
-
-
2
-
4
-
-
-
1
-
-
-
-
7
1
2
-
-
-
2
-
-
-
-
4
4
-
-
-
757790
Christian
Methyl transfer by substrate ...
Haemophilus influenzae
Nat. Struct. Mol. Biol.
23
941-948
2016
-
1
-
-
-
-
1
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
2
1
2
-
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
4
4
-
-
-
758324
Urbonavicius
Evolution of tRNAPhe imG2 met ...
Nanoarchaeum equitans, Pyrococcus abyssi, Pyrococcus abyssi Orsay
RNA
22
1871-1883
2016
-
-
2
-
7
-
-
-
-
2
-
11
-
4
-
-
2
-
-
-
-
-
19
-
14
2
-
-
-
2
-
-
2
-
-
-
-
-
2
2
-
7
-
-
-
-
-
-
2
-
11
-
-
-
2
-
-
-
-
19
-
2
-
-
-
2
-
-
-
-
8
8
-
-
-
758376
Wang
Crystal structures of the bif ...
Pyrococcus abyssi
Sci. Rep.
6
33553
2016
-
-
1
1
2
-
-
-
-
1
-
2
-
9
-
-
1
-
-
-
-
-
3
2
5
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
1
2
-
-
-
-
-
-
1
-
2
-
-
-
1
-
-
-
-
3
2
-
-
-
-
-
-
-
-
-
4
4
-
-
-
735421
Powell
TRMT5 mutations cause a defect ...
Homo sapiens
Am. J. Hum. Genet.
97
319-328
2015
-
-
1
-
3
-
-
-
1
-
-
1
-
7
-
-
-
-
-
-
-
-
1
1
2
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
3
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
4
4
-
-
-
737174
Ito
Structural basis for methyl-do ...
Haemophilus influenzae, Thermotoga maritima, Haemophilus influenzae DSM 11121
Proc. Natl. Acad. Sci. USA
112
E4197-E4205
2015
-
-
-
2
-
-
-
12
-
-
-
3
-
4
-
-
-
2
-
-
-
-
17
2
2
-
-
-
10
1
-
-
2
-
-
-
-
-
-
2
2
-
-
-
-
-
12
-
-
-
3
-
-
-
-
-
-
-
-
17
2
-
-
-
10
1
-
-
-
-
4
4
-
10
10
757582
Hou
Kinetic analysis of tRNA meth ...
Escherichia coli, Haemophilus influenzae, Homo sapiens, Methanocaldococcus jannaschii, Methanocaldococcus jannaschii NBRC 100440, Haemophilus influenzae RD, Methanocaldococcus jannaschii DSM 2661, Methanocaldococcus jannaschii ATCC 43067, Methanocaldococcus jannaschii JAL-1, Haemophilus influenzae DSM 11121, Haemophilus influenzae KW20, Haemophilus influenzae ATCC 51907, Methanocaldococcus jannaschii JCM 10045
Methods Enzymol.
560
91-116
2015
-
-
-
-
-
-
-
4
-
4
-
13
-
28
-
-
-
-
-
-
-
-
26
-
13
4
-
-
-
4
-
-
4
-
-
-
-
-
-
4
-
-
-
-
-
-
4
-
4
-
13
-
-
-
-
-
-
-
-
26
-
4
-
-
-
4
-
-
-
-
12
12
-
-
-
729858
Kawamura
Transfer RNA methyltransferase ...
Thermoplasma acidophilum, Thermoplasma acidophilum HO-62
Int. J. Mol. Sci.
16
91-113
2014
-
-
1
-
-
-
-
-
-
-
-
-
-
9
-
-
1
-
-
-
-
-
1
-
2
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
735927
Sakaguchi
A divalent metal ion-dependent ...
Escherichia coli
Chem. Biol.
21
1351-1360
2014
-
1
-
-
-
-
-
1
-
4
-
1
-
1
-
-
-
1
-
-
-
-
2
1
1
-
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
-
-
-
1
-
4
-
1
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
736428
Masuda
The temperature sensitivity of ...
Escherichia coli
J. Biol. Chem.
288
28987-28996
2013
-
-
1
-
1
-
-
7
-
1
-
1
-
3
-
-
1
-
-
-
-
-
3
1
2
1
-
-
6
1
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
7
-
1
-
1
-
-
-
1
-
-
-
-
3
1
1
-
-
6
1
-
-
-
-
2
2
-
6
6
737226
Christian
Conservation of structure and ...
Homo sapiens
RNA
19
1192-1199
2013
-
-
1
-
9
-
-
3
-
-
-
1
-
12
-
-
1
1
-
-
-
-
2
-
1
1
-
-
1
1
1
-
1
-
-
-
-
-
1
1
-
9
-
-
-
-
3
-
-
-
1
-
-
-
1
-
-
-
-
2
-
1
-
-
1
1
1
-
-
-
2
2
-
1
1
737228
Paris
The T. brucei TRM5 methyltrans ...
Trypanosoma brucei brucei, Trametes pubescens 927 / 4 GUTat10.1 / TREU927
RNA
19
649-658
2013
-
-
1
-
1
-
-
-
2
-
-
2
-
5
-
-
1
-
-
-
-
-
12
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
2
-
-
2
-
-
-
1
-
-
-
-
12
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
721035
Sakaguchi
Recognition of guanosine by di ...
Escherichia coli, Methanocaldococcus jannaschii
RNA
18
1687-1701
2012
-
-
-
-
-
-
-
2
-
-
-
2
-
2
-
-
-
2
-
-
-
-
10
-
2
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
2
-
-
-
-
-
-
-
-
10
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
721029
Lahoud
Differentiating analogous tRNA ...
Escherichia coli, Methanocaldococcus jannaschii
RNA
17
1236-1246
2011
-
-
-
-
-
-
24
2
-
-
-
2
-
2
-
-
-
-
-
-
-
-
2
-
2
2
-
-
-
-
-
-
2
24
-
-
-
-
-
2
-
-
-
-
24
24
2
-
-
-
2
-
-
-
-
-
-
-
-
2
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
720240
Christian
Control of catalytic cycle by ...
Escherichia coli, Methanocaldococcus jannaschii
J. Mol. Biol.
400
204-217
2010
-
-
-
-
-
-
-
2
-
-
-
4
-
2
-
-
-
-
-
-
-
-
6
2
2
-
-
-
3
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
4
-
-
-
-
-
-
-
-
6
2
-
-
-
3
-
-
-
-
-
-
-
-
-
-
721026
Christian
Mechanism of N-methylation by ...
Methanocaldococcus jannaschii
RNA
16
2484-2492
2010
-
-
-
1
18
-
-
1
-
-
-
1
-
1
-
-
-
1
-
1
-
-
3
-
2
1
-
-
-
-
1
-
1
-
-
-
-
-
-
1
1
18
-
-
-
-
1
-
-
-
1
-
-
-
-
-
1
-
-
3
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
701123
Goto-Ito
Crystal structure of archaeal ...
Methanocaldococcus jannaschii
Proteins
72
1274-1289
2008
-
-
-
1
-
-
1
1
-
-
-
-
-
11
-
-
-
-
-
-
-
-
1
-
2
1
-
-
1
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
1
1
-
-
-
-
-
-
-
1
1
712103
Toyooka
Stabilization of tRNA (mG37) m ...
Aquifex aeolicus
Genes Cells
13
807-816
2008
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
687609
Lee
Yeast mitochondrial initiator ...
Saccharomyces cerevisiae
J. Biol. Chem.
282
27744-27753
2007
-
-
1
-
-
-
-
-
2
-
-
1
-
2
-
-
1
-
-
-
-
-
2
-
1
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
1
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
2
2
-
-
-
712739
Christian
Distinct determinants of tRNA ...
Escherichia coli, Methanocaldococcus jannaschii
J. Mol. Biol.
373
623-632
2007
-
-
-
-
-
-
-
5
-
-
-
2
-
2
-
-
-
-
-
-
-
-
5
-
2
2
-
-
5
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
2
-
-
-
-
-
-
-
-
5
-
2
-
-
5
2
-
-
-
-
2
2
-
5
5
673850
Takeda
The substrate specificity of t ...
Aquifex aeolicus
Genes Cells
11
1353-1365
2006
-
-
1
-
-
-
-
13
-
-
-
1
-
6
-
-
1
-
-
-
-
-
15
-
3
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
13
-
-
-
1
-
-
-
1
-
-
-
-
15
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
711197
Christian
Catalysis by the second class ...
Methanocaldococcus jannaschii
Biochemistry
45
7463-7473
2006
-
-
-
-
9
-
-
11
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
2
1
-
-
11
1
-
-
-
-
-
-
-
-
-
-
-
9
-
-
-
-
11
-
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
11
1
-
-
-
-
1
1
-
11
11
661154
Brule
Isolation and characterization ...
Escherichia coli, Homo sapiens
Biochemistry
43
9243-9255
2004
1
-
2
-
-
-
5
13
-
3
2
2
-
9
-
-
2
-
-
-
-
-
20
2
4
2
-
-
-
4
2
-
-
-
-
-
1
-
2
-
-
-
-
-
5
-
13
-
3
2
2
-
-
-
2
-
-
-
-
20
2
2
-
-
-
4
2
-
-
-
-
-
-
-
-
662010
O'Dwyer
Characterization of Streptococ ...
Streptococcus pneumoniae
J. Bacteriol.
186
2346-2354
2004
-
-
1
-
-
-
-
2
-
4
3
1
-
5
-
-
1
-
-
-
-
-
3
1
1
1
-
-
2
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
2
-
4
3
1
-
-
-
1
-
-
-
-
3
1
1
-
-
2
2
1
-
-
-
-
-
-
2
2
662622
Christian
Distinct origins of tRNA(m1G37 ...
Methanocaldococcus jannaschii
J. Mol. Biol.
339
707-719
2004
-
1
1
-
5
-
-
-
-
-
1
-
-
6
-
-
1
-
-
-
-
-
7
1
3
1
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
5
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
7
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
661585
Ahn
Crystal structure of tRNA(m1G3 ...
Haemophilus influenzae
EMBO J.
22
2593-2603
2003
-
-
-
1
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
712737
Elkins
Insights into catalysis by a k ...
Escherichia coli
J. Mol. Biol.
333
931-949
2003
-
-
1
1
44
-
-
-
-
-
2
-
-
3
-
-
1
-
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
44
-
-
-
-
-
-
-
2
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
713482
Liu
Crystal structure of tRNA (m1G ...
Aquifex aeolicus
Proteins
53
326-328
2003
-
-
-
1
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
710708
Kim
Crystallization and preliminar ...
Haemophilus influenzae
Acta Crystallogr. Sect. D
59
183-184
2002
-
-
1
1
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-