BRENDA - Enzyme Database
show all sequences of 2.1.1.224

Distinction between the Cfr methyltransferase conferring antibiotic resistance and the housekeeping RlmN methyltransferase

Atkinson, G.C.; Hansen, L.H.; Tenson, T.; Rasmussen, A.; Kirpekar, F.; Vester, B.; Antimicrob. Agents Chemother. 57, 4019-4026 (2013)

Data extracted from this reference:

Cloned(Commentary)
Cloned (Commentary)
Organism
gene cfr, sequence comparisons and phylogenetic analysis, primer extension analysis, cloning and expression in Escherichia coli strains TOP10 and AS19
Staphylococcus sciuri
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ID
2 S-adenosyl-L-methionine + adenine2503 in 23S rRNA + 2 reduced [4Fe-4S] ferredoxin
Staphylococcus sciuri
-
S-adenosyl-L-homocysteine + L-methionine + 5'-deoxyadenosine + 8-methyladenine2503 in 23S rRNA + 2 oxidized [4Fe-4S] ferredoxin
-
-
?
Organism
Organism
UniProt
Commentary
Textmining
Staphylococcus sciuri
Q9FBG4
gene cfr
-
Reaction
Reaction
Commentary
Organism
Reaction ID
2 S-adenosyl-L-methionine + adenine2503 in 23S rRNA + 2 reduced [2Fe-2S] ferredoxin = S-adenosyl-L-homocysteine + L-methionine + 5'-deoxyadenosine + 8-methyladenine2503 in 23S rRNA + 2 oxidized [2Fe-2S] ferredoxin
the enzyme uses a mechanism involving radical S-adenosyl methionine to methylate RNA via an intermediate with a methylated cysteine in the enzyme and a transient cross-linking to the RNA
Staphylococcus sciuri
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
Substrate Product ID
2 S-adenosyl-L-methionine + adenine2503 in 23S rRNA + 2 reduced [4Fe-4S] ferredoxin
-
733111
Staphylococcus sciuri
S-adenosyl-L-homocysteine + L-methionine + 5'-deoxyadenosine + 8-methyladenine2503 in 23S rRNA + 2 oxidized [4Fe-4S] ferredoxin
-
-
-
?
Synonyms
Synonyms
Commentary
Organism
Cfr methyltransferase
-
Staphylococcus sciuri
Cofactor
Cofactor
Commentary
Organism
Structure
S-adenosyl-L-methionine
-
Staphylococcus sciuri
Cloned(Commentary) (protein specific)
Commentary
Organism
gene cfr, sequence comparisons and phylogenetic analysis, primer extension analysis, cloning and expression in Escherichia coli strains TOP10 and AS19
Staphylococcus sciuri
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
S-adenosyl-L-methionine
-
Staphylococcus sciuri
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ID
2 S-adenosyl-L-methionine + adenine2503 in 23S rRNA + 2 reduced [4Fe-4S] ferredoxin
Staphylococcus sciuri
-
S-adenosyl-L-homocysteine + L-methionine + 5'-deoxyadenosine + 8-methyladenine2503 in 23S rRNA + 2 oxidized [4Fe-4S] ferredoxin
-
-
?
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ID
2 S-adenosyl-L-methionine + adenine2503 in 23S rRNA + 2 reduced [4Fe-4S] ferredoxin
-
733111
Staphylococcus sciuri
S-adenosyl-L-homocysteine + L-methionine + 5'-deoxyadenosine + 8-methyladenine2503 in 23S rRNA + 2 oxidized [4Fe-4S] ferredoxin
-
-
-
?
General Information
General Information
Commentary
Organism
evolution
the cfr gene can be horizontally transferred to its hosts, as it is always found either on plasmids or together with insertion sequences. The cfr gene with only minor sequence differences are found worldwide in various bacteria isolated from humans and animals. Comparative sequence analysis identifies differentially conserved residues that indicate functional sequence divergence between the two classes of Cfr and RlmN-like sequences. The enzymes are homologous and use the same mechanism involving radical S-adenosyl methionine to methylate RNA via an intermediate involving a methylated cysteine in the enzyme and a transient cross-linking to the RNA, but they differ in which carbon atom in the adenine they methylate. The differentiation between the two classes is supported by experimental evidence from antibiotic resistance, primer extensions, and mass spectrometry. The Cfr- and RlmN-specific conserved sites provide a very good indication of whether a gene is Cfr-like or RlmN-like. Most bacteria have an rlmN-like gene and that all those that have a cfr-like gene also have an rlmN-like gene, evolutionary aspects of the bacterial distribution of Cfr and RlmN-like enzymes, overview
Staphylococcus sciuri
physiological function
the Cfr methyltransferase primarily methylates C-8 in A2503 of 23S rRNA in the peptidyl transferase region of bacterial ribosomes. Enzyme Cfr confers resistance to antibiotics binding to the peptidyl transferase center on the ribosome, defining a PhLOPSa phenotype that reflects resistance to phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A antibiotic classes. Cfr also provides resistance to some large macrolide antibiotics. The cfr gene is thus a health threat when spreading in pathogenic bacteria because many clinically important antibiotics become useless for treatment
Staphylococcus sciuri
General Information (protein specific)
General Information
Commentary
Organism
evolution
the cfr gene can be horizontally transferred to its hosts, as it is always found either on plasmids or together with insertion sequences. The cfr gene with only minor sequence differences are found worldwide in various bacteria isolated from humans and animals. Comparative sequence analysis identifies differentially conserved residues that indicate functional sequence divergence between the two classes of Cfr and RlmN-like sequences. The enzymes are homologous and use the same mechanism involving radical S-adenosyl methionine to methylate RNA via an intermediate involving a methylated cysteine in the enzyme and a transient cross-linking to the RNA, but they differ in which carbon atom in the adenine they methylate. The differentiation between the two classes is supported by experimental evidence from antibiotic resistance, primer extensions, and mass spectrometry. The Cfr- and RlmN-specific conserved sites provide a very good indication of whether a gene is Cfr-like or RlmN-like. Most bacteria have an rlmN-like gene and that all those that have a cfr-like gene also have an rlmN-like gene, evolutionary aspects of the bacterial distribution of Cfr and RlmN-like enzymes, overview
Staphylococcus sciuri
physiological function
the Cfr methyltransferase primarily methylates C-8 in A2503 of 23S rRNA in the peptidyl transferase region of bacterial ribosomes. Enzyme Cfr confers resistance to antibiotics binding to the peptidyl transferase center on the ribosome, defining a PhLOPSa phenotype that reflects resistance to phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A antibiotic classes. Cfr also provides resistance to some large macrolide antibiotics. The cfr gene is thus a health threat when spreading in pathogenic bacteria because many clinically important antibiotics become useless for treatment
Staphylococcus sciuri
Other publictions for EC 2.1.1.224
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Synonyms
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
735450
Hansen
A cfr-like gene from Clostridi ...
Clostridioides difficile
Antimicrob. Agents Chemother.
59
5841-5843
2015
-
-
1
-
-
-
-
-
-
-
-
1
-
4
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
733111
Atkinson
Distinction between the Cfr me ...
Staphylococcus sciuri
Antimicrob. Agents Chemother.
57
4019-4026
2013
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
1
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
735095
Challand
Cysteine methylation controls ...
Staphylococcus aureus, Staphylococcus sciuri
PLoS ONE
8
e67979
2013
-
-
2
-
2
-
-
-
-
-
2
3
-
2
-
-
-
1
-
-
-
-
4
1
3
-
-
-
-
-
-
-
3
-
-
-
-
-
2
3
-
2
-
-
-
-
-
-
-
2
3
-
-
-
-
-
-
-
-
4
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
736280
Wang
-
Quantum chemistry studies of a ...
Staphylococcus aureus
Int. J. Quantum Chem.
113
1409-1415
2013
-
-
-
-
-
-
-
1
-
-
-
2
-
1
-
-
-
1
-
-
-
-
3
-
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
1
-
-
-
2
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
718598
Locke
Genetic environment and stabil ...
Staphylococcus aureus, Staphylococcus aureus CM05
Antimicrob. Agents Chemother.
56
332-340
2012
-
-
1
-
1
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
718601
Hansen
The order Bacillales hosts fun ...
Bacillus amyloliquefaciens, Bacillus amyloliquefaciens FZB42, Bacillus clausii, Brevibacillus brevis, Brevibacillus brevis NBRC 100599
Antimicrob. Agents Chemother.
56
3563-3567
2012
-
-
3
-
-
-
-
-
-
-
-
5
-
10
-
-
-
-
-
-
-
-
10
-
3
-
-
-
-
-
-
-
3
-
-
-
-
-
3
3
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
10
-
-
-
-
-
-
-
-
-
-
6
6
-
-
-
716783
Yan
RNA methylation by radical SAM ...
Escherichia coli
Proc. Natl. Acad. Sci. USA
108
3930-3934
2011
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
716926
Boal
Structural basis for methyl tr ...
Escherichia coli
Science
332
1089-1092
2011
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
716927
Grove
A radically different mechanis ...
Escherichia coli
Science
332
604-607
2011
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
718587
LaMarre
Low fitness cost of the multid ...
Staphylococcus aureus, Staphylococcus aureus RN4220
Antimicrob. Agents Chemother.
55
3714-3719
2011
-
-
1
-
1
-
-
-
-
1
-
2
-
21
-
-
-
-
-
1
-
-
2
-
1
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
1
-
-
2
-
1
-
-
-
1
-
-
-
-
2
2
-
-
-
704203
Yan
RlmN and Cfr are radical SAM e ...
Escherichia coli
J. Am. Chem. Soc.
132
3953-3964
2010
-
-
1
-
3
-
-
-
-
1
1
1
-
1
-
-
1
1
-
-
-
-
3
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
3
-
-
-
-
-
-
1
1
1
-
-
-
1
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
720968
Booth
High-level expression and reco ...
Azotobacter vinelandii
Protein Expr. Purif.
74
204-210
2010
1
-
1
-
-
-
-
-
-
1
-
1
-
3
-
-
1
-
-
-
-
-
2
1
4
1
-
-
-
1
-
-
1
-
-
-
1
-
1
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
2
1
1
-
-
-
1
-
-
-
-
1
1
-
-
-
705983
Kaminska
Insights into the structure, f ...
Escherichia coli
Nucleic Acids Res.
38
1652-1663
2009
-
-
1
-
13
-
-
-
-
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
13
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
706726
Giessing
Identification of 8-methyladen ...
Escherichia coli K-12
RNA
15
327-336
2009
-
-
-
-
4
-
-
-
-
-
-
1
-
3
-
-
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
701724
Long
The Cfr rRNA methyltransferase ...
Escherichia coli
Antimicrob. Agents Chemother.
50
2500-2505
2006
-
-
-
-
-
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
705766
Kehrenberg
A new mechanism for chloramphe ...
Escherichia coli
Mol. Microbiol.
57
1064-1073
2005
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-