Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search Substrates and Products (Substrate)

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 9 of 9
EC Number Substrates Commentary Substrates Organism Products Commentary (Products) Reversibility
Display the reaction diagram Show all sequences 1.3.1.107chelerythrine + NAD(P)H + H+ - Eschscholzia californica dihydrochelerythrine + NAD(P)+ - ?
Display the reaction diagram Show all sequences 1.3.1.107dihydrochelirubine + NAD(P)+ key reaction of benzophenanthridine detoxification. Detoxifying the phytoalexin sanguinarine produced by Eschscholzia californica (California poppy) itself, when it binds to the cell wall of the poppy cell Eschscholzia californica chelirubine + NAD(P)H + H+ - ir
Display the reaction diagram Show all sequences 1.3.1.107dihydrochelirubine + NADP+ dihydrochelirubine i.e. 5-methoxy-13-methyl-13,14-dihydro-2H,10H-[1,3]dioxolo[4,5-i][1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridinium. At alkaloid concentration below 0.1 mM, the reaction velocity is about threefold higher with NADPH than with NADH. Higher alkaloid concentrations cause the NADPH-dependent reduction to slow down, but not the NADH-driven reduction Eschscholzia californica chelirubine + NADPH + H+ chelirubine i.e. 5-methoxy-13-methyl-2H,10H-[1,3]dioxolo[4,5-i][1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridinium ir
Display the reaction diagram Show all sequences 1.3.1.107dihydrosanguinarine + NAD(P)+ key reaction of benzophenanthridine detoxification. Detoxifying the phytoalexin sanguinarine produced by Eschscholzia californica (California poppy) itself, when it binds to the cell wall of the poppy cell Eschscholzia californica sanguinarine + NAD(P)H + H+ - ir
Display the reaction diagram Show all sequences 1.3.1.107dihydrosanguinarine + NAD+ dihydrosanguinarine i.e. 13-methyl-13,14-dihydro-2H,10H-[1,3]dioxolo[4,5-i][1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridine. At alkaloid concentration below 0.1 mM, the reaction velocity is about threefold higher with NADPH than with NADH. Higher alkaloid concentrations cause the NADPH-dependent reduction to slow down, but not the NADH-driven reduction Eschscholzia californica sanguinarine + NADH + H+ sanguinarine i.e. 13-methyl-2H,10H-[1,3]dioxolo[4,5-i][1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridinium ir
Display the reaction diagram Show all sequences 1.3.1.107dihydrosanguinarine + NADP+ dihydrosanguinarine i.e. 13-methyl-13,14-dihydro-2H,10H-[1,3]dioxolo[4,5-i][1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridine. At alkaloid concentration below 0.1 mM, the reaction velocity is about threefold higher with NADPH than with NADH. Higher alkaloid concentrations cause the NADPH-dependent reduction to slow down, but not the NADH-driven reduction Eschscholzia californica sanguinarine + NADPH + H+ sanguinarine i.e. 13-methyl-2H,10H-[1,3]dioxolo[4,5-i][1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridinium ir
Display the reaction diagram Show all sequences 1.3.1.107more catalytic mechanism is as follows: the alkanolamine form of sanguinarine is fixed in a binding pocket, mainly consisting of hydrophobic amino acids, by the conserved residue Ser153. Both dioxolane rings of the alkaloid are bound by a triad of H-bonds originating from Cys157 connected to Asp158 and His161 and by the side chain of Lys175. Electron transfer is initiated by attacking the C6 of sanguinarine with the hydride ion of NADPH and the OH group at C6 with a proton originating from Ser153. The anionic form of Ser is then stabilized by the NH3+ group of Lys175. Removal of OH- followed by water formation completes the reduction process Eschscholzia californica ? - ?
Display the reaction diagram Show all sequences 1.3.1.107sanguinarine + NADH + H+ sanguinarine is converted 1.3times faster than chelerythrine. The reduction cannot be reversed by increasing the product concentrations, i.e. even a hundredfold excess of NAD(P)+ does not cause a detectable oxidation of added dihydrosanguinarine Eschscholzia californica dihydrosanguinarine + NAD+ - ir
Display the reaction diagram Show all sequences 1.3.1.107sanguinarine + NADPH + H+ - Eschscholzia californica dihydrosanguinarine + NADP+ - ?
Results 1 - 9 of 9