Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search Application

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 5 of 5
EC Number Application Commentary Reference
Display the word mapDisplay the reaction diagram Show all sequences 1.14.14.37agriculture simultaneous expression of the two multifunctional sorghum cytochrome P450 enzymes CYP79A1 and CYP71E1 in tobacco and Arabidopsis leads to cyanogenic plants. In transgenic plants expressing CYP79A1 as well as CYP71E1, the activity of CYP79A1 is higher than that of CYP71E1, resulting in the accumulation of several 4-hydroxyphenylacetaldoxime-derived products in the addition to those derived from 4-hydroxymandelonitrile. In transgenic Arabidopsis expressing CYP71E1, this enzyme and the enzymes of the pre-existing glucosinolate pathway compete for the 4-hydroxyphenylacetaldoxime as substrate, resulting in the formation of small amounts of 4-hydroxybenzylglucosinolate 739341
Display the word mapDisplay the reaction diagram Show all sequences 1.14.14.37agriculture transgenic Arabidopsis thaliana plants expressing CYP79A1, CYP71E1, and UGT85B1 from Sorghum bicolor, i.e. the entire biosynthetic pathway for the tyrosine-derived cyanogenic glucoside dhurrin, accumulate 4% dry-weight dhurrin with marginal inadvertent effects on plant morphology, free amino acid pools, transcriptome, and metabolome. Plants expressing only CYP79A1 accumulate 3% dry weight of the tyrosine-derived glucosinolate, 4-hydroxybenzylglucosinolate with no morphological pleitropic effects. Insertion of CYP79A1 plus CYP71E1 results in stunted plants, transcriptome alterations, accumulation of numerous glucosides derived from detoxification of intermediates in the dhurrin pathway, and in loss of the brassicaceae-specific UV protectants sinapoyl glucose and sinapoyl malate and kaempferol glucosides. The accumulation of glucosides in the plants expressing CYP79A1 and CYP71E1 is not accompanied by induction of glycosyltransferases 660383
Display the word mapDisplay the reaction diagram Show all sequences 1.14.14.37analysis direct electrochemical investigation of plant cytochrome P450s by nanodisc technology. Full length CYP79A1, CYP71E1 and NADPH P450 oxidoreductase of the dhurrin pathway are reconstituted individually in nanoscale lipid patches, nanodiscs, and directly immobilized on unmodified gold electrodes. Cyclic voltammograms of CYP79A1 and CYP71E1 reveal reversible redox peaks with average midpoint potentials of 80 mV and 72 mV vs. Ag/AgCl, respectively. NADPH P450 oxidoreductase yields two pairs of redox peaks with midpoint potentials of 90 mV and -300 mV, respectively. The average heterogeneous electron transfer rate constant is calculated to be 1.5 per s 739696
Display the word mapDisplay the reaction diagram Show all sequences 1.14.14.37biotechnology engineering of the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum. The entire pathway can be introduced into the chloroplast by integrating membrane-bound cytochrome P450 enzymes CYP79A1, CYP71E1, and soluble glucosyltransferase UGT85B1 into a neutral site of the Nicotiana tabacum chloroplast genome. The two P450s and the UGT85B1 are functional when expressed in the chloroplasts and convert endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounts to 0.1-0.2% of leaf dry weight compared to 6% in sorghum 736574
Display the word mapDisplay the reaction diagram Show all sequences 1.14.14.37biotechnology in vitro reconstitution of the entire dhurrin biosynthetic pathway from tyrosine is accomplished by the insertion of CYP79 (tyrosine N-hydroxylase), P450ox, and NADPH-P450 oxidoreductase in lipid micelles in the presence of uridine diphosphate glucose glucosyltransferase 739339
Results 1 - 5 of 5