Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search Natural Substrates/ Products (Substrates)

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search
Search for synonyms (with exact matching search term)

Search term:

<< < Results 11 - 20 of 20
EC Number Natural Substrates Commentary (Nat. Sub.)
Show all pathways known for 2.7.4.8Display the word mapDisplay the reaction diagram Show all sequences 2.7.4.8dGMP + ATP GMPKs catalyze the reversible phosphorylation of GMP and dGMP to their diphosphate form in the cell using ATP as a preferred phosphate donor.
Show all pathways known for 2.7.4.8Display the word mapDisplay the reaction diagram Show all sequences 2.7.4.8GMP + ATP -
Show all pathways known for 2.7.4.8Display the word mapDisplay the reaction diagram Show all sequences 2.7.4.8GMP + ATP GMPKs catalyze the reversible phosphorylation of GMP and dGMP to their diphosphate form in the cell using ATP as a preferred phosphate donor.
Show all pathways known for 2.7.4.8Display the word mapDisplay the reaction diagram Show all sequences 2.7.4.8more MAGUKs contain three PSD-95/Discs large/Zona occludens 1, i.e. PDZ, domains, an src-homology 3, i.e. SH3, domain and a C-terminal guanylate kinase domain and play a key role in the regulation of the intracellular trafficking and synaptic localization of ionotropic glutamate receptors. In particular, the postsynaptic density-95-like subfamily of MAGUKs, PSD-MAGUKs, organizes ionotropic glutamate receptors and their associated signaling proteins in the postsynaptic density of the excitatory synapse regulating the strength of synaptic activity. Alterations of PSD-MAGUK protein interaction with N-methyl-D-aspartate, NMDA, receptors regulatory subunits are common events in several CNS disorders, overview, NMDA receptors' synaptic localization and binding to PSD-MAGUK protein family play a key role in the control of downstream signals resulting from receptor activation, physiological function, overview
Show all pathways known for 2.7.4.8Display the word mapDisplay the reaction diagram Show all sequences 2.7.4.8more MAGUKs contain three PSD-95/Discs large/Zona occludens 1, i.e. PDZ, domains, an src-homology 3, i.e. SH3, domain and a C-terminal guanylate kinase domain and play a key role in the regulation of the intracellular trafficking and synaptic localization of ionotropic glutamate receptors. In particular, the postsynaptic density-95-like subfamily of MAGUKs, PSD-MAGUKs, organizes ionotropic glutamate receptors and their associated signaling proteins in the postsynaptic density of the excitatory synapse regulating the strength of synaptic activity. Alterations of PSD-MAGUK protein interaction with N-methyl-D-aspartate, NMDA, receptors regulatory subunits are common events in several CNS disorders, overview. NMDA receptors' synaptic localization and binding to PSD-MAGUK protein family play a key role in the control of downstream signals resulting from receptor activation, physiological function, overview. The enzyme plays a role in excitotoxicity and neurodegenerative disorders, e.g. in Parkinson disease and Alzheimer disease. Physiological functions, detailed overview
Show all pathways known for 2.7.4.8Display the word mapDisplay the reaction diagram Show all sequences 2.7.4.8more synaptic scaffolding molecule, S-SCAM, is a synaptic protein, which harbors five or six PSD-95/Discs large/ZO-1, a guanylate kinase, and two WW domains. S-SCAM is associated with beta-DG and neuroligin 2 at inhibitory synapses, and functions as a linker between the dystrophin glycoprotein complex and the neurexin-neuroligin complex, complex formation analysis, overview
Show all pathways known for 2.7.4.8Display the word mapDisplay the reaction diagram Show all sequences 2.7.4.8more the cytosolic isozyme is indispensable for the growth and development of plants, but not for chloroplast development, while the plastid/mitochondrial isozyme is is essential for chloroplast differentiation, overview
Show all pathways known for 2.7.4.8Display the word mapDisplay the reaction diagram Show all sequences 2.7.4.8more the post-synaptic density-95 membrane associated guanylate kinase family of scaffolding proteins, MAGUK, associate with N-methyl-D-aspartate receptor NR2 subunits via their C-terminal glutamate serine, or aspartate/glutamate, valine motifs. N-methyl-D-aspartate receptors are a subclass of ionotropic glutamate receptors that are trafficked and/or clustered at synapses by MAGUK. Receptor binding of PSD variants differin the impact on the stabilisation, turnover and compartmentalisation of N-methyl-D-aspartate receptor subtypes in neurones during development and in the mature brain
Show all pathways known for 2.7.4.8Display the word mapDisplay the reaction diagram Show all sequences 2.7.4.8more the voltage-gated calcium channel beta1b contains a conserved guanylate kinase domain, which is alone recapitulating calcium channel beta-subunit CaVbeta-mediated modulation of channel activation facilitating inactivation of the voltage-gated channel. CaVbeta can switch the inactivation phenotype conferred to CaV2.3 from slow to fast after posttranslational modifications during channel biogenesis, modulation mechanism, overview
Show all pathways known for 2.7.4.8Display the word mapDisplay the reaction diagram Show all sequences 2.7.4.8more the voltage-gated calcium channel beta2a contains a conserved guanylate kinase domain, which is alone recapitulating calcium channel beta-subunit CaVbeta-mediated modulation of channel activation inhibiting inactivation of the voltage-gated channel. CaVbeta can switch the inactivation phenotype conferred to CaV2.3 from slow to fast after posttranslational modifications during channel biogenesis, modulation mechanism, overview
<< < Results 11 - 20 of 20