5.6.1.1 ATP + H2O - Gallus gallus ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Drosophila melanogaster ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Chlamydomonas reinhardtii ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Drosophila sp. (in: flies) ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Mus musculus ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Homo sapiens ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Homo sapiens ADP + phosphate - ir 92967 5.6.1.1 ATP + H2O - Rattus norvegicus ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Saccharomyces cerevisiae ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Arabidopsis thaliana ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Xenopus laevis ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Caenorhabditis elegans ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Caenorhabditis elegans ADP + phosphate - ir 92967 5.6.1.1 ATP + H2O - Arabidopsis sp. ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Oryza sativa ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Spisula solidissima ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Strongylocentrotus purpuratus ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Actinocoryne sp. ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Dictyostelium sp. ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Arabidopsis thaliana ADP + phosphate - ir 92967 5.6.1.1 ATP + H2O - Danio rerio ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O - Drosophila melanogaster ADP + phosphate - ir 92967 5.6.1.1 ATP + H2O ATP hydrolysis is accompanied by microtubule disassembly Arabidopsis thaliana ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O recombinant Dm-Kat60 robustly severs taxol-stabilized microtubules in the presence of ATP. This reacton is inhibited when ATP is depleted with hexokinase and glucose or replaced with the non-hydrolysable ATP analogue 5'-adenylyl-beta-gamma-imidotriphosphate AMPPMP Drosophila melanogaster ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O binding of either microtuble or C-terminal domain of adaptor-p80 stimulates the ATPase activity of p60-katanin Mus musculus ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O fragmentation of microtubles Homo sapiens ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O microtuble-stimulated Caenorhabditis elegans ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O microtubule breakage requires ATP hydrolysis Homo sapiens ADP + phosphate - ? 92967 5.6.1.1 ATP + H2O + microtubule - Homo sapiens ADP + phosphate + alpha/beta tubulin heterodimers - ? 444243 5.6.1.1 ATP + H2O + microtubule - Drosophila melanogaster ADP + phosphate + alpha/beta tubulin heterodimers - ? 444243 5.6.1.1 ATP + H2O + microtubule - Caenorhabditis elegans ADP + phosphate + alpha/beta tubulin heterodimers - ? 444243 5.6.1.1 ATP + H2O + microtubule - Xenopus laevis ADP + phosphate + alpha/beta tubulin heterodimers - ? 444243 5.6.1.1 ATP + H2O + microtubule assembly of female meiotic spindles requires MEI-1 and MEI-2, which constitute the microtubule-severing AAA+ ATPase Katanin Caenorhabditis elegans ADP + phosphate + alpha/beta tubulin heterodimers - ? 444243 5.6.1.1 ATP + H2O + microtubule katanin-dependent severing of microtubules is important for proper execution of key cellular activities including cell division, migration, and differentiation Tetrahymena thermophila ADP + phosphate + alpha/beta tubulin heterodimers - ? 444243 5.6.1.1 ATP + H2O + microtubule the enzyme plays important roles in various cellular events including axon regeneration, cytokinesis, and nuclear envelope sealing after mitosis Homo sapiens ADP + phosphate + alpha/beta tubulin heterodimers - ? 444243 5.6.1.1 ATP + H2O + microtubule activity of katanin requires specific domains of both p60 KAT1p catalytic subunit and p80 KAT3p regulatory subunit. In addition to its activating role, p80 can also contribute to the inhibition of p60 KAT1p. Increased levels of tubulin polyglutamylation correlates with a relocalization of p60 KAT1p to glutamylated microtubules, suggesting that binding of katanin subunits to microtubules is regulated differently and that initial binding of katanin p60 KAT1p but not p80 KAT3p is stimulated by glutamylation Tetrahymena thermophila ADP + phosphate + alpha/beta tubulin heterodimers - ? 444243 5.6.1.1 ATP + H2O + microtubule in addition to the AAA domain, the microtubule-binding domain region of spastin is also involved in regulating ATPase activity Homo sapiens ADP + phosphate + alpha/beta tubulin heterodimers - ? 444243 5.6.1.1 ATP + H2O + microtubule the microtubule-interacting and trafficking (MIT) domain and adjacent linker region of the Drosophila katanin catalytic subunit Kat60 cooperate to regulate microtubule severing in two distinct ways. First, the MIT domain and linker region of Kat60 decrease its abundance by enhancing its proteasome-dependent degradation. The Drosophila katanin regulatory subunit Kat80, which is required to stabilize Kat60 in cells, conversely reduces the proteasome-dependent degradation of Kat60. Second, the MIT domain and linker region of Kat60 augment its microtubule-disassembly activity by enhancing its association with microtubules Drosophila melanogaster ADP + phosphate + alpha/beta tubulin heterodimers - ? 444243 5.6.1.1 ATP + H2O + microtubule katanin-dependent severing of microtubules is important for proper execution of key cellular activities including cell division, migration, and differentiation Tetrahymena thermophila CU428.2 ADP + phosphate + alpha/beta tubulin heterodimers - ? 444243 5.6.1.1 ATP + H2O + microtubule activity of katanin requires specific domains of both p60 KAT1p catalytic subunit and p80 KAT3p regulatory subunit. In addition to its activating role, p80 can also contribute to the inhibition of p60 KAT1p. Increased levels of tubulin polyglutamylation correlates with a relocalization of p60 KAT1p to glutamylated microtubules, suggesting that binding of katanin subunits to microtubules is regulated differently and that initial binding of katanin p60 KAT1p but not p80 KAT3p is stimulated by glutamylation Tetrahymena thermophila CU428.2 ADP + phosphate + alpha/beta tubulin heterodimers - ? 444243 5.6.1.1 GTP + H2O - Gallus gallus GDP + phosphate - ? 73741 5.6.1.1 GTP + H2O - Chlamydomonas reinhardtii GDP + phosphate - ? 73741 5.6.1.1 GTP + H2O - Drosophila sp. (in: flies) GDP + phosphate - ? 73741 5.6.1.1 GTP + H2O - Mus musculus GDP + phosphate - ? 73741 5.6.1.1 GTP + H2O - Homo sapiens GDP + phosphate - ? 73741 5.6.1.1 GTP + H2O - Rattus norvegicus GDP + phosphate - ? 73741 5.6.1.1 GTP + H2O - Saccharomyces cerevisiae GDP + phosphate - ? 73741 5.6.1.1 GTP + H2O - Xenopus laevis GDP + phosphate - ? 73741 5.6.1.1 GTP + H2O - Caenorhabditis elegans GDP + phosphate - ? 73741 5.6.1.1 GTP + H2O - Arabidopsis sp. GDP + phosphate - ? 73741 5.6.1.1 GTP + H2O - Spisula solidissima GDP + phosphate - ? 73741 5.6.1.1 GTP + H2O - Strongylocentrotus purpuratus GDP + phosphate - ? 73741 5.6.1.1 GTP + H2O - Actinocoryne sp. GDP + phosphate - ? 73741 5.6.1.1 GTP + H2O - Dictyostelium sp. GDP + phosphate - ? 73741 5.6.1.1 additional information direct role of microtubule severing in translocation of the meiotic spindle to the cortex Caenorhabditis elegans ? - ? 89 5.6.1.1 additional information enzyme activity regulates the number of microtubule end in mitotic spindle, enzyme inhibition slows the rate of spindle microtubule disassembly Homo sapiens ? - ? 89 5.6.1.1 additional information enzyme acts on defects in microtubule lattice, promotes loss of tubulin at the defect site until the two microtubule segments are held together so weakly that mechanically unconstrained microtubules kink at the defect site Echinoidea ? - ? 89 5.6.1.1 additional information katanin p60 destabilizes microtubules at the central spindle and the midbody Rattus norvegicus ? - ? 89 5.6.1.1 additional information the enzyme has multiple effects on microtubules in vitro. Purified MEI-1/MEI-2 complexes preferentially sever at intersections be­tween two microtubules and directly bundle microtubules in vitro. These activities promote parallel/antiparallel microtubule organization in meiotic spindles, MEI-1/MEI-2 complexes bundle microtubules and preferentially sever at intersections between two microtubules in vitro Caenorhabditis elegans ? - ? 89