2.7.4.8 aciclovir (ACV-MP) - Homo sapiens ? - ? 386206 2.7.4.8 ATP + (R)-3-((2-amino-1,6-dihydro-6-oxo-9H-purin-9-yl)methoxy)-4-hydroxybutylphosphonic acid i.e. R-ganciclovir phosphonate, (S) enantiomer 100fold less efficient, used for racemic resolution Homo sapiens (R)-ganciclovir phosphonate monophosphate - ? 358285 2.7.4.8 ATP + (R)-3-((2-amino-1,6-dihydro-6-oxo-9H-purin-9-yl)methoxy)-4-hydroxybutylphosphonic acid i.e. R-ganciclovir phosphonate, (S) enantiomer 100fold less efficient, used for racemic resolution Sus scrofa (R)-ganciclovir phosphonate monophosphate - ? 358285 2.7.4.8 ATP + (R)-ganciclovir phosphonate - Homo sapiens ? - ? 452359 2.7.4.8 ATP + 6-thioguanosine 5'-monophosphate - Homo sapiens ADP + 8-thioguanosine 5'-diphosphate - ? 358280 2.7.4.8 ATP + 6-thioguanosine 5'-monophosphate - Rattus norvegicus ADP + 8-thioguanosine 5'-diphosphate - ? 358280 2.7.4.8 ATP + 6-thioguanosine 5'-monophosphate - Sus scrofa ADP + 8-thioguanosine 5'-diphosphate - ? 358280 2.7.4.8 ATP + 6-thioguanosine 5'-monophosphate not thiodeoxyguanosine derivative Rattus norvegicus ADP + 8-thioguanosine 5'-diphosphate - ? 358280 2.7.4.8 ATP + 8-azaguanosine 5'-monophosphate - Homo sapiens ADP + 8-azaguanosine 5'-diphosphate - ? 358278 2.7.4.8 ATP + 8-azaguanosine 5'-monophosphate - Rattus norvegicus ADP + 8-azaguanosine 5'-diphosphate - ? 358278 2.7.4.8 ATP + 8-azaguanosine 5'-monophosphate - Sus scrofa ADP + 8-azaguanosine 5'-diphosphate - ? 358278 2.7.4.8 ATP + 8-bromoguanosine 5'-monophosphate poor substrate Rattus norvegicus ADP + 8-bromoguanosine 5'-diphosphate - ? 358279 2.7.4.8 ATP + 9-(1,3-dihydroxy-2-propoxymethyl)guanine 5'-monophosphate no substrate: 9-(5,5-difluoro-5-phosphonopentyl)guanine 5'-monophosphate Sus scrofa ADP + 9-(1,3-dihydroxy-2-propoxymethyl)guanine 5'-diphosphate - ? 358281 2.7.4.8 ATP + 9-(2-hydroxyethoxymethyl)guanine 5'-monophosphate i.e. acyclovir 5'-monophosphate Sus scrofa ADP + 9-(2-hydroxyethoxymethyl)guanine 5'-diphosphate - ? 358282 2.7.4.8 ATP + 9-(5-phosphonopentyl)guanine 9-(5,5'-difluoro-5-phosphonopenthyl)guanine is not a substrate Sus scrofa ? - ? 358284 2.7.4.8 ATP + AMP very low activity with AMP Plasmodium falciparum ADP + ADP - ? 357335 2.7.4.8 ATP + AMP - Pyrococcus furiosus 2 ADP - ? 358188 2.7.4.8 ATP + dGMP - Mus musculus ADP + dGDP - ? 358190 2.7.4.8 ATP + dGMP - Mus musculus ADP + dGDP - r 358190 2.7.4.8 ATP + dGMP - Escherichia coli ADP + dGDP - r 358190 2.7.4.8 ATP + dGMP - Homo sapiens ADP + dGDP - r 358190 2.7.4.8 ATP + dGMP - Rattus norvegicus ADP + dGDP - r 358190 2.7.4.8 ATP + dGMP - Sus scrofa ADP + dGDP - r 358190 2.7.4.8 ATP + dGMP - Saccharomyces cerevisiae ADP + dGDP - r 358190 2.7.4.8 ATP + dGMP - Bos taurus ADP + dGDP - r 358190 2.7.4.8 ATP + dGMP - Oryza sativa ADP + dGDP - ? 358190 2.7.4.8 ATP + dGMP - Brugia malayi ADP + dGDP - r 358190 2.7.4.8 ATP + dGMP phosphorylation at 48% the rate of GMP Bos taurus ADP + dGDP - r 358190 2.7.4.8 ATP + dGMP low activity, dGMP acts also as inhibitor Plasmodium falciparum ADP + dGDP - ? 358190 2.7.4.8 ATP + dGMP dGMP is a poor substrate, the Kcat for dGMP is about 22fold lower than that observed for GMP. The value of kcat/Km for dGMP is at least 70fold lower than that of GMP Plasmodium falciparum ADP + dGDP - ? 358190 2.7.4.8 ATP + dGMP - Escherichia coli JE24F+ ADP + dGDP - r 358190 2.7.4.8 ATP + dGMP - Escherichia coli B / ATCC 11303 ADP + dGDP - r 358190 2.7.4.8 ATP + ganciclovir - Homo sapiens ADP + ganciclovir phosphate - ? 379343 2.7.4.8 ATP + ganciclovir monophosphate - Homo sapiens ? - ? 358286 2.7.4.8 ATP + ganciclovir monophosphate - Mus musculus ADP + ganciclovir-diphosphate - ? 452358 2.7.4.8 ATP + GDP - Bos taurus ADP + GTP - ? 358287 2.7.4.8 ATP + GDP - Homo sapiens ADP + GTP - ? 358287 2.7.4.8 ATP + GMP - Brugia malayi ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Bacillus subtilis ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Mus musculus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Escherichia coli ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Homo sapiens ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Sus scrofa ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Saccharomyces cerevisiae ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Saccharomyces cerevisiae ADP + GDP - r 358233 2.7.4.8 ATP + GMP - Leishmania donovani ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Helianthus tuberosus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Plasmodium falciparum ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Oryza sativa ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Synechococcus elongatus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Escherichia coli ADP + GDP - r 358233 2.7.4.8 ATP + GMP - Pisum sativum ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Oryza sativa Japonica Group ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Brugia malayi ADP + GDP - r 358233 2.7.4.8 ATP + GMP - Arabidopsis thaliana ADP + GDP - ? 358233 2.7.4.8 ATP + GMP specificity Mus musculus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP specificity Escherichia coli ADP + GDP - ? 358233 2.7.4.8 ATP + GMP specificity Homo sapiens ADP + GDP - ? 358233 2.7.4.8 ATP + GMP specificity Rattus norvegicus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP specificity Sus scrofa ADP + GDP - ? 358233 2.7.4.8 ATP + GMP specificity Bos taurus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP specificity Bos taurus ADP + GDP - r 358233 2.7.4.8 ATP + GMP best substrates Saccharomyces cerevisiae ADP + GDP - ? 358233 2.7.4.8 ATP + GMP best substrates Bos taurus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP nucleoside monophosphate binding site is highly specific for guanine moiety Homo sapiens ADP + GDP - ? 358233 2.7.4.8 ATP + GMP nucleoside monophosphate binding site is highly specific for guanine moiety Rattus norvegicus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP nucleoside monophosphate binding site is highly specific for guanine moiety Sus scrofa ADP + GDP - ? 358233 2.7.4.8 ATP + GMP deoxyguanosine, guanosine are no acceptor substrates Homo sapiens ADP + GDP - ? 358233 2.7.4.8 ATP + GMP deoxyguanosine, guanosine are no acceptor substrates Rattus norvegicus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP deoxyguanosine, guanosine are no acceptor substrates Sus scrofa ADP + GDP - ? 358233 2.7.4.8 ATP + GMP no donor substrates are ITP, dGTP, dCTP or dTTP Bos taurus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP no donor substrates are ITP, dGTP, dCTP or dTTP Bos taurus ADP + GDP - r 358233 2.7.4.8 ATP + GMP TMP is not an acceptor substrate Rattus norvegicus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP dCMP is no acceptor substrate Rattus norvegicus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP dCMP is no acceptor substrate Bos taurus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP dCMP is no acceptor substrate Bos taurus ADP + GDP - r 358233 2.7.4.8 ATP + GMP IMP is no acceptor substrate Rattus norvegicus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP IMP is no acceptor substrate Saccharomyces cerevisiae ADP + GDP - ? 358233 2.7.4.8 ATP + GMP 6-thio-IMP is no acceptor substrate Homo sapiens ADP + GDP - ? 358233 2.7.4.8 ATP + GMP 6-thio-IMP is no acceptor substrate Rattus norvegicus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP 6-thio-IMP is no acceptor substrate Sus scrofa ADP + GDP - ? 358233 2.7.4.8 ATP + GMP XMP is no acceptor substrate Homo sapiens ADP + GDP - ? 358233 2.7.4.8 ATP + GMP XMP is no acceptor substrate Rattus norvegicus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP XMP is no acceptor substrate Sus scrofa ADP + GDP - ? 358233 2.7.4.8 ATP + GMP XMP is no acceptor substrate Saccharomyces cerevisiae ADP + GDP - ? 358233 2.7.4.8 ATP + GMP dTMP is no acceptor substrate Bos taurus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP dTMP is no acceptor substrate Bos taurus ADP + GDP - r 358233 2.7.4.8 ATP + GMP AMP is no acceptor substrate Mus musculus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP AMP is no acceptor substrate Homo sapiens ADP + GDP - ? 358233 2.7.4.8 ATP + GMP AMP is no acceptor substrate Rattus norvegicus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP AMP is no acceptor substrate Sus scrofa ADP + GDP - ? 358233 2.7.4.8 ATP + GMP AMP is no acceptor substrate Saccharomyces cerevisiae ADP + GDP - ? 358233 2.7.4.8 ATP + GMP AMP is no acceptor substrate Bos taurus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP AMP is no acceptor substrate Bos taurus ADP + GDP - r 358233 2.7.4.8 ATP + GMP dAMP is no acceptor substrate Mus musculus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP dAMP is no acceptor substrate Rattus norvegicus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP dAMP is no acceptor substrate Bos taurus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP dAMP is no acceptor substrate Bos taurus ADP + GDP - r 358233 2.7.4.8 ATP + GMP no donor substrates are GTP, CTP, UTP Bos taurus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP no donor substrates are GTP, CTP, UTP Bos taurus ADP + GDP - r 358233 2.7.4.8 ATP + GMP GMP binding induces conformational changes in non-acetylated N-terminus mutants Saccharomyces cerevisiae ADP + GDP - ? 358233 2.7.4.8 ATP + GMP two specific binding sites: ATP- and GMP-binding site Saccharomyces cerevisiae ADP + GDP - ? 358233 2.7.4.8 ATP + GMP CMP, UMP are no acceptor substrates Homo sapiens ADP + GDP - ? 358233 2.7.4.8 ATP + GMP CMP, UMP are no acceptor substrates Rattus norvegicus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP CMP, UMP are no acceptor substrates Sus scrofa ADP + GDP - ? 358233 2.7.4.8 ATP + GMP CMP, UMP are no acceptor substrates Saccharomyces cerevisiae ADP + GDP - ? 358233 2.7.4.8 ATP + GMP CMP, UMP are no acceptor substrates Bos taurus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP CMP, UMP are no acceptor substrates Bos taurus ADP + GDP - r 358233 2.7.4.8 ATP + GMP signal transduction Escherichia coli ADP + GDP - ? 358233 2.7.4.8 ATP + GMP key enzyme of biosynthetic pathway of GTP or dGTP Sus scrofa ADP + GDP - r 358233 2.7.4.8 ATP + GMP first step in 'cGMP-cycle' toward re-synthesis of cGMP Bos taurus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP regulation of cellular adhesion and signal transduction at sites of cell-cell contact Rattus norvegicus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP regulation of cellular adhesion and signal transduction at sites of cell-cell contact Saccharomyces cerevisiae ADP + GDP - ? 358233 2.7.4.8 ATP + GMP CASK construct has no activity Rattus norvegicus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP PSD-95 construct has no activity Rattus norvegicus ADP + GDP - ? 358233 2.7.4.8 ATP + GMP guanylate kinase is an essential enzyme Mycobacterium tuberculosis ADP + GDP - ? 358233 2.7.4.8 ATP + GMP upon substrate binding, the LID and nucleotide-monophosphate-binding domains are brought together and toward the CORE with large concerted movements about the alpha3, helix 3, axis Mycobacterium tuberculosis ADP + GDP - ? 358233 2.7.4.8 ATP + GMP GMP and ATP served as the most effective phosphate acceptor and donor, respectively Brugia malayi ADP + GDP - r 358233 2.7.4.8 ATP + GMP - Escherichia coli JE24F+ ADP + GDP - ? 358233 2.7.4.8 ATP + GMP signal transduction Escherichia coli TS202A ADP + GDP - ? 358233 2.7.4.8 ATP + GMP specificity Escherichia coli B / ATCC 11303 ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Oryza sativa Japonica Group Nipponbare ADP + GDP - ? 358233 2.7.4.8 ATP + GMP guanylate kinase is an essential enzyme Mycobacterium tuberculosis H37Rv ADP + GDP - ? 358233 2.7.4.8 ATP + GMP upon substrate binding, the LID and nucleotide-monophosphate-binding domains are brought together and toward the CORE with large concerted movements about the alpha3, helix 3, axis Mycobacterium tuberculosis H37Rv ADP + GDP - ? 358233 2.7.4.8 ATP + GMP - Synechococcus elongatus PCC 7942 ADP + GDP - ? 358233 2.7.4.8 ATP + IMP very poor substrate Homo sapiens ADP + IDP - ? 358277 2.7.4.8 dATP + dGMP - Escherichia coli dADP + dGDP - ? 358193 2.7.4.8 dATP + dGMP - Homo sapiens dADP + dGDP - ? 358193 2.7.4.8 dATP + dGMP - Rattus norvegicus dADP + dGDP - ? 358193 2.7.4.8 dATP + dGMP - Sus scrofa dADP + dGDP - ? 358193 2.7.4.8 dATP + dGMP - Saccharomyces cerevisiae dADP + dGDP - ? 358193 2.7.4.8 dATP + dGMP - Helianthus tuberosus dADP + dGDP - ? 358193 2.7.4.8 dATP + dGMP as good as ATP Bos taurus dADP + dGDP - ? 358193 2.7.4.8 dATP + dGMP phosphorylation at 22% the rate of ATP Bos taurus dADP + dGDP - ? 358193 2.7.4.8 dATP + dGMP - Escherichia coli B / ATCC 11303 dADP + dGDP - ? 358193 2.7.4.8 dATP + GMP - Escherichia coli dADP + GDP - ? 358275 2.7.4.8 dATP + GMP - Homo sapiens dADP + GDP - ? 358275 2.7.4.8 dATP + GMP - Rattus norvegicus dADP + GDP - ? 358275 2.7.4.8 dATP + GMP - Sus scrofa dADP + GDP - ? 358275 2.7.4.8 dATP + GMP - Saccharomyces cerevisiae dADP + GDP - ? 358275 2.7.4.8 dATP + GMP - Brugia malayi dADP + GDP - r 358275 2.7.4.8 dATP + GMP as good as ATP Bos taurus dADP + GDP - ? 358275 2.7.4.8 dATP + GMP phosphorylation at 81% the rate of ATP Bos taurus dADP + GDP - ? 358275 2.7.4.8 dATP + GMP - Escherichia coli B / ATCC 11303 dADP + GDP - ? 358275 2.7.4.8 dGMP + ATP - Mus musculus dGDP + ADP - ? 386442 2.7.4.8 dGMP + ATP - Homo sapiens dGDP + ADP - ? 386442 2.7.4.8 dGMP + ATP GMPKs catalyze the reversible phosphorylation of GMP and dGMP to their diphosphate form in the cell using ATP as a preferred phosphate donor. Escherichia coli dGDP + ADP - r 386442 2.7.4.8 dGMP + ATP Catalyses reversible phosphoryl transfer from a nucleotide donor to a nucleotide acceptor. Phosphorylation of (d)GMP to (d)GDP using ATP as phosphoryl donor. Guanylate monophosphate kinases are involved in the synthesis of nucleotide precursors, they indirectly modulate the synthesis of DNA and RNA. Staphylococcus aureus dGDP + ADP - r 386442 2.7.4.8 GDP + GDP - Homo sapiens GTP + GMP - ? 358288 2.7.4.8 GMP + ATP - Mus musculus GDP + ADP - ? 386494 2.7.4.8 GMP + ATP - Homo sapiens GDP + ADP - ? 386494 2.7.4.8 GMP + ATP GMPKs catalyze the reversible phosphorylation of GMP and dGMP to their diphosphate form in the cell using ATP as a preferred phosphate donor. Escherichia coli GDP + ADP - r 386494 2.7.4.8 GMP + ATP Catalyses reversible phosphoryl transfer from a nucleotide donor to a nucleotide acceptor. Phosphorylation of (d)GMP to (d)GDP using ATP as phosphoryl donor. Guanylate monophosphate kinases are involved in the synthesis of nucleotide precursors, they indirectly modulate the synthesis of DNA and RNA. Staphylococcus aureus GDP + ADP - r 386494 2.7.4.8 GMP + MgATP2- - Saccharomyces cerevisiae MgADP- + GDP - ? 358283 2.7.4.8 GMP + MgATP2- - Helianthus tuberosus MgADP- + GDP - ? 358283 2.7.4.8 GTP + dAMP - Brugia malayi GDP + dADP - r 437589 2.7.4.8 GTP + GDP - Homo sapiens GMP + guanosine 5'-tetraphosphate - ? 358289 2.7.4.8 guanosine monophosphate + adenosine triphosphate Guanylate kinase (GK) is an essential enzyme that catalyzes the transfer of a phosphate from adenosine triphosphate (ATP) to guanosine monophosphate (GMP). Mycobacterium tuberculosis guanosine diphosphate + adenosine diphosphate - ? 388861 2.7.4.8 guanosine monophosphate + adenosine triphosphate in the presence of Mg2+ Rickettsia conorii guanosine diphosphate + adenosine diphosphate - r 388861 2.7.4.8 additional information MAGUKs contain three PSD-95/Discs large/Zona occludens 1, i.e. PDZ, domains, an src-homology 3, i.e. SH3, domain and a C-terminal guanylate kinase domain and play a key role in the regulation of the intracellular trafficking and synaptic localization of ionotropic glutamate receptors. In particular, the postsynaptic density-95-like subfamily of MAGUKs, PSD-MAGUKs, organizes ionotropic glutamate receptors and their associated signaling proteins in the postsynaptic density of the excitatory synapse regulating the strength of synaptic activity. Alterations of PSD-MAGUK protein interaction with N-methyl-D-aspartate, NMDA, receptors regulatory subunits are common events in several CNS disorders, overview, NMDA receptors' synaptic localization and binding to PSD-MAGUK protein family play a key role in the control of downstream signals resulting from receptor activation, physiological function, overview Mus musculus ? - ? 89 2.7.4.8 additional information MAGUKs contain three PSD-95/Discs large/Zona occludens 1, i.e. PDZ, domains, an src-homology 3, i.e. SH3, domain and a C-terminal guanylate kinase domain and play a key role in the regulation of the intracellular trafficking and synaptic localization of ionotropic glutamate receptors. In particular, the postsynaptic density-95-like subfamily of MAGUKs, PSD-MAGUKs, organizes ionotropic glutamate receptors and their associated signaling proteins in the postsynaptic density of the excitatory synapse regulating the strength of synaptic activity. Alterations of PSD-MAGUK protein interaction with N-methyl-D-aspartate, NMDA, receptors regulatory subunits are common events in several CNS disorders, overview, NMDA receptors' synaptic localization and binding to PSD-MAGUK protein family play a key role in the control of downstream signals resulting from receptor activation, physiological function, overview Rattus norvegicus ? - ? 89 2.7.4.8 additional information MAGUKs contain three PSD-95/Discs large/Zona occludens 1, i.e. PDZ, domains, an src-homology 3, i.e. SH3, domain and a C-terminal guanylate kinase domain and play a key role in the regulation of the intracellular trafficking and synaptic localization of ionotropic glutamate receptors. In particular, the postsynaptic density-95-like subfamily of MAGUKs, PSD-MAGUKs, organizes ionotropic glutamate receptors and their associated signaling proteins in the postsynaptic density of the excitatory synapse regulating the strength of synaptic activity. Alterations of PSD-MAGUK protein interaction with N-methyl-D-aspartate, NMDA, receptors regulatory subunits are common events in several CNS disorders, overview. NMDA receptors' synaptic localization and binding to PSD-MAGUK protein family play a key role in the control of downstream signals resulting from receptor activation, physiological function, overview. The enzyme plays a role in excitotoxicity and neurodegenerative disorders, e.g. in Parkinson disease and Alzheimer disease. Physiological functions, detailed overview Homo sapiens ? - ? 89 2.7.4.8 additional information synaptic scaffolding molecule, S-SCAM, is a synaptic protein, which harbors five or six PSD-95/Discs large/ZO-1, a guanylate kinase, and two WW domains. S-SCAM is associated with beta-DG and neuroligin 2 at inhibitory synapses, and functions as a linker between the dystrophin glycoprotein complex and the neurexin-neuroligin complex, complex formation analysis, overview Rattus norvegicus ? - ? 89 2.7.4.8 additional information the cytosolic isozyme is indispensable for the growth and development of plants, but not for chloroplast development, while the plastid/mitochondrial isozyme is is essential for chloroplast differentiation, overview Oryza sativa ? - ? 89 2.7.4.8 additional information the post-synaptic density-95 membrane associated guanylate kinase family of scaffolding proteins, MAGUK, associate with N-methyl-D-aspartate receptor NR2 subunits via their C-terminal glutamate serine, or aspartate/glutamate, valine motifs. N-methyl-D-aspartate receptors are a subclass of ionotropic glutamate receptors that are trafficked and/or clustered at synapses by MAGUK. Receptor binding of PSD variants differin the impact on the stabilisation, turnover and compartmentalisation of N-methyl-D-aspartate receptor subtypes in neurones during development and in the mature brain Homo sapiens ? - ? 89 2.7.4.8 additional information the voltage-gated calcium channel beta1b contains a conserved guanylate kinase domain, which is alone recapitulating calcium channel beta-subunit CaVbeta-mediated modulation of channel activation facilitating inactivation of the voltage-gated channel. CaVbeta can switch the inactivation phenotype conferred to CaV2.3 from slow to fast after posttranslational modifications during channel biogenesis, modulation mechanism, overview Rattus norvegicus ? - ? 89 2.7.4.8 additional information the voltage-gated calcium channel beta2a contains a conserved guanylate kinase domain, which is alone recapitulating calcium channel beta-subunit CaVbeta-mediated modulation of channel activation inhibiting inactivation of the voltage-gated channel. CaVbeta can switch the inactivation phenotype conferred to CaV2.3 from slow to fast after posttranslational modifications during channel biogenesis, modulation mechanism, overview Rattus norvegicus ? - ? 89 2.7.4.8 additional information binding of N-methyl-D-aspartate receptors NR2B and NR2A, wild-type and mutant proteins, by PSD variants, overview Homo sapiens ? - ? 89 2.7.4.8 additional information guanylate kinase binds a fragment of microtubule-associated protein-1a, i.e. MAP1a, in the GMP-binding site, the minimal GK binding site comprised by residues 1862-1878. MAP1a, which helps remodel the microtubule cytoskeleton in an activity-dependent manner, a is a common binding partner of PSD-95 GK and binds GK in an extended conformation, PSD-95 GK ligand consensus is not strongly constrained, binding via binding intermediate, structure, molecular dynamics simulation, overview Rattus norvegicus ? - ? 89 2.7.4.8 additional information no activity with CMP, dTMP, dAMP, dCMP, and UMP Plasmodium falciparum ? - ? 89 2.7.4.8 additional information the enzyme forms complexes with DNA Mycobacterium tuberculosis ? - ? 89 2.7.4.8 additional information functionally, the guanylate kinase domain is able to interact with a variety of phospho-peptide ligands with high affinity but its binding ability to GMP is low Saccharomyces cerevisiae ? - ? 89 2.7.4.8 additional information recombinant enzyme BmGK utilizes both GMP and dGMP as substrates. No activity with dTMP, UMP, CMP, dCMP, IMP, XMP, CTP, UTP, and TTP Brugia malayi ? - ? 89 2.7.4.8 additional information the enzyme forms complexes with DNA Mycobacterium tuberculosis H37Rv ? - ? 89