1.1.1.387 2-aminomalonate semialdehyde spontaneous Pyrobaculum calidifontis 2-aminoacetaldehyde + CO2 - ? 460483 1.1.1.387 3-hydroxypropionate + NAD+ - Pyrobaculum calidifontis ? + NADH + H+ - ? 460599 1.1.1.387 D-glycerate + NAD+ - Pseudomonas aeruginosa ? - ? 431759 1.1.1.387 D-serine + NAD+ overall reaction, 5% of the relative activity observed with L-serine Pyrobaculum calidifontis 2-aminoacetaldehyde + CO2 + NADH + H+ - ? 460978 1.1.1.387 DL-3-hydroxyisobutyrate + NAD+ - Pyrobaculum calidifontis ? + NADH + H+ - ? 461015 1.1.1.387 DL-glycerate + NAD+ - Pyrobaculum calidifontis ? + NADH + H+ - ? 461016 1.1.1.387 DL-threonine + NAD+ - Pseudomonas aeruginosa ? - ? 431818 1.1.1.387 L-serine + NAD(P)+ - Pyrobaculum calidifontis 2-aminomalonate semialdehyde + NAD(P)H + H+ - ? 461180 1.1.1.387 L-serine + NAD+ the enzyme might be involved in serine/threonine degradation. Since growth experiments with various nitrogen and carbon sources (including L-serine) reveal no difference between the Pseudomonas aeruginosa wild-type and PA0743 deletion strains, it is suggested hat this organism might contain other (complementing) serine dehydrogenases Pseudomonas aeruginosa ? - ? 188041 1.1.1.387 L-serine + NAD+ the enzyme might be involved in serine/methylserine degradation. Since growth experiments with various nitrogen and carbon sources (including L-serine) reveal no difference between the Pseudomonas aeruginosa wild-type and PA0743 deletion strains, it is suggested hat this organism might contain other (complementing) serine dehydrogenases Pseudomonas aeruginosa ? - ? 188041 1.1.1.387 L-serine + NAD+ overall reaction, NAD+ is the preferred cofactor Pyrobaculum calidifontis 2-aminoacetaldehyde + CO2 + NADH + H+ - ? 461182 1.1.1.387 L-serine + NADP+ overall reaction, low activity with NADP+ Pyrobaculum calidifontis 2-aminoacetaldehyde + CO2 + NADPH + H+ - ? 461183 1.1.1.387 methyl 2,2-dimethyl-3-hydroxypropionate + NAD+ - Pseudomonas aeruginosa ? - ? 432121 1.1.1.387 additional information modeling of the D-serine and 3-hydroxypropionate molecules into the enzyme's active site. No steric hindrance is observed between D-serine and the side chains of the active site residues. D-serine is placed at the position through interactions similar to the L-serine binding model. The C3 hydrogen of D-serine is located at the same position as that of L-serine. This may explain the high reactivity toward D-serine exhibited by Pyrobaculum calidifontis L-SerDH Pyrobaculum calidifontis ? - - 89