Information on Organism Sinorhizobium meliloti

TaxTree of Organism Sinorhizobium meliloti
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
transferred to EC 1.7.1.1, nitrate reductase (NADH), EC 1.7.1.2, nitrate reductase [NAD(P)H], EC 1.7.1.3, nitrate reductase (NADPH), EC 1.7.5.1, nitrate reductase (quinone), EC 1.7.7.2, nitrate reductase (ferredoxin) and EC 1.9.6.1, nitrate reductase (cytochrome)
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
transferred to EC 1.13.11.79
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
transferred to EC 5.4.2.11, EC 5.4.2.12. Now recognized as two separate enzymes EC 5.4.2.11, phosphoglycerate mutase (2,3-diphosphoglycerate-dependent) and EC 5.4.2.12, phosphoglycerate mutase (2,3-diphosphoglycerate-independent)
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-propane-1,2-diol degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
acetaldehyde biosynthesis I
-
-
acetylene degradation (anaerobic)
-
-
alpha-Linolenic acid metabolism
-
-
Biosynthesis of secondary metabolites
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
chitin degradation to ethanol
-
-
Chloroalkane and chloroalkene degradation
-
-
Drug metabolism - cytochrome P450
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
Fatty acid degradation
-
-
Glycine, serine and threonine metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
heterolactic fermentation
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
leucine metabolism
-
-
Metabolic pathways
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
methionine metabolism
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Naphthalene degradation
-
-
noradrenaline and adrenaline degradation
-
-
phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
phytol degradation
-
-
propanol degradation
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Retinol metabolism
-
-
salidroside biosynthesis
-
-
serotonin degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
valine metabolism
-
-
Caprolactam degradation
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
ethylene glycol biosynthesis (engineered)
-
-
Glycerolipid metabolism
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
lipid metabolism
-
-
Pentose and glucuronate interconversions
-
-
pyruvate fermentation to butanol I
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
D-glucuronate degradation I
-
-
L-arabinose degradation II
-
-
D-sorbitol degradation I
-
-
degradation of sugar alcohols
-
-
Fructose and mannose metabolism
-
-
Inositol phosphate metabolism
-
-
myo-, chiro- and scyllo-inositol degradation
-
-
myo-inositol biosynthesis
-
-
myo-inositol degradation I
-
-
myo-inositol degradation II
-
-
streptomycin biosynthesis
-
-
Streptomycin biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Ascorbate and aldarate metabolism
-
-
non-pathway related
-
-
teichuronic acid biosynthesis (B. subtilis 168)
-
-
UDP-alpha-D-glucuronate biosynthesis (from UDP-glucose)
-
-
D-xylose degradation IV
-
-
glycolate and glyoxylate degradation
-
-
Glyoxylate and dicarboxylate metabolism
-
-
L-arabinose degradation IV
-
-
Butanoate metabolism
-
-
ketogenesis
-
-
ketolysis
-
-
Synthesis and degradation of ketone bodies
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
4-oxopentanoate degradation
-
-
acetyl-CoA fermentation to butanoate II
-
-
butanoate fermentation
-
-
CO2 fixation in Crenarchaeota
-
-
ethylmalonyl-CoA pathway
-
-
polyhydroxybutanoate biosynthesis
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
alanine metabolism
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
Cysteine and methionine metabolism
-
-
formaldehyde assimilation I (serine pathway)
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
glyoxylate cycle
-
-
incomplete reductive TCA cycle
-
-
malate/L-aspartate shuttle pathway
-
-
Methane metabolism
-
-
methylaspartate cycle
-
-
partial TCA cycle (obligate autotrophs)
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
gluconeogenesis
-
-
L-carnitine degradation III
-
-
L-malate degradation II
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
photosynthesis
-
-
L-glutamine biosynthesis III
-
-
ethylene biosynthesis V (engineered)
-
-
Glutathione metabolism
-
-
NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
D-galactose degradation II
-
-
Galactose metabolism
-
-
Entner-Doudoroff pathway I
-
-
formaldehyde oxidation I
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (oxidative branch) I
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
androgen and estrogen metabolism
-
-
Steroid degradation
-
-
Steroid hormone biosynthesis
-
-
testosterone and androsterone degradation to androstendione
-
-
mannitol cycle
-
-
C5-Branched dibasic acid metabolism
-
-
isoleucine metabolism
-
-
Valine, leucine and isoleucine biosynthesis
-
-
L-isoleucine biosynthesis I (from threonine)
-
-
L-isoleucine biosynthesis III
-
-
L-valine biosynthesis
-
-
Pantothenate and CoA biosynthesis
-
-
(5Z)-dodecenoate biosynthesis I
-
-
(5Z)-dodecenoate biosynthesis II
-
-
8-amino-7-oxononanoate biosynthesis I
-
-
arachidonate biosynthesis
-
-
Biotin metabolism
-
-
cis-vaccenate biosynthesis
Fatty acid biosynthesis
-
-
fatty acid elongation -- saturated
-
-
gondoate biosynthesis (anaerobic)
-
-
mycolate biosynthesis
-
-
myristate biosynthesis (mitochondria)
-
-
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast)
-
-
oleate biosynthesis IV (anaerobic)
-
-
palmitate biosynthesis
-
-
palmitate biosynthesis II (bacteria and plant cytoplasm)
-
-
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)
-
-
petroselinate biosynthesis
-
-
stearate biosynthesis II (bacteria and plants)
-
-
superpathway of mycolate biosynthesis
-
-
aminopropanol phosphate biosynthesis II
-
-
L-threonine degradation II
-
-
L-threonine degradation III (to methylglyoxal)
-
-
threonine metabolism
-
-
Entner Doudoroff pathway
-
-
D-sorbitol degradation II
-
-
L-sorbose degradation
-
-
Phenylalanine metabolism
-
-
rosmarinic acid biosynthesis I
-
-
rosmarinic acid biosynthesis II
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
formaldehyde oxidation
-
-
formaldehyde oxidation II (glutathione-dependent)
-
-
protein S-nitrosylation and denitrosylation
-
-
1,5-anhydrofructose degradation
-
-
erythritol degradation I
-
-
glucose and glucose-1-phosphate degradation
-
-
glucose degradation (oxidative)
-
-
glycogen metabolism
-
-
L-ascorbate biosynthesis VI (engineered pathway)
-
-
choline degradation I
-
-
glycine betaine biosynthesis
-
-
glycine betaine biosynthesis I (Gram-negative bacteria)
-
-
alkane oxidation
-
-
Arginine and proline metabolism
-
-
aromatic biogenic amine degradation (bacteria)
-
-
beta-Alanine metabolism
-
-
beta-methyl-branched fatty acid alpha-oxidation
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
ceramide degradation by alpha-oxidation
-
-
dimethylsulfoniopropanoate biosynthesis I (Wollastonia)
-
-
dimethylsulfoniopropanoate biosynthesis II (Spartina)
-
-
dopamine degradation
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
ethanol degradation III
-
-
ethanol degradation IV
-
-
fatty acid alpha-oxidation I (plants)
-
-
histamine degradation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
hypotaurine degradation
-
-
Insect hormone biosynthesis
-
-
Limonene and pinene degradation
-
-
limonene degradation IV (anaerobic)
-
-
Lysine degradation
-
-
NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast)
-
-
octane oxidation
putrescine degradation III
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
Tryptophan metabolism
-
-
Valine, leucine and isoleucine degradation
-
-
tryptophan metabolism
-
-
choline degradation IV
-
-
glycine betaine biosynthesis II (Gram-positive bacteria)
-
-
glycine betaine biosynthesis III (plants)
-
-
D-arabinose degradation III
-
-
D-galactarate degradation II
-
-
D-galacturonate degradation II
-
-
D-glucarate degradation II
-
-
D-glucuronate degradation II
-
-
D-xylose degradation III
-
-
D-xylose degradation V
-
-
degradation of pentoses
-
-
L-arabinose degradation III
-
-
L-lyxonate degradation
-
-
trans-4-hydroxy-L-proline degradation II
-
-
2,4-dinitrotoluene degradation
-
-
L-valine degradation I
-
-
Propanoate metabolism
-
-
acetate fermentation
-
-
acetyl-CoA biosynthesis II (NADP-dependent pyruvate dehydrogenase)
-
-
oxidative decarboxylation of pyruvate
-
-
Alanine, aspartate and glutamate metabolism
-
-
ethylene biosynthesis II (microbes)
-
-
L-arginine degradation I (arginase pathway)
-
-
L-proline degradation
-
-
proline metabolism
-
-
acetyl CoA biosynthesis
-
-
pyruvate decarboxylation to acetyl CoA
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
vitamin B1 metabolism
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
(-)-maackiain biosynthesis
-
-
(-)-medicarpin biosynthesis
-
-
Isoflavonoid biosynthesis
-
-
Porphyrin and chlorophyll metabolism
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
Oxidative phosphorylation
-
-
propionate fermentation
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
3,8-divinyl-chlorophyllide a biosynthesis II (anaerobic)
-
-
heme b biosynthesis II (oxygen-independent)
-
-
heme metabolism
-
-
4-aminobutanoate degradation V
-
-
Arginine biosynthesis
-
-
ethylene biosynthesis IV (engineered)
-
-
glutamate and glutamine metabolism
-
-
L-alanine degradation II (to D-lactate)
-
-
L-glutamate degradation I
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
Nitrogen metabolism
-
-
Taurine and hypotaurine metabolism
-
-
L-glutamate biosynthesis I
-
-
L-glutamine degradation II
-
-
ammonia assimilation cycle I
-
-
L-glutamate biosynthesis IV
-
-
ammonia assimilation cycle II
-
-
L-glutamate biosynthesis V
-
-
taurine degradation
-
-
taurine degradation II
-
-
D-Arginine and D-ornithine metabolism
-
-
Folate biosynthesis
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
One carbon pool by folate
-
-
tetrahydrofolate biosynthesis
-
-
tetrahydrofolate metabolism
-
-
folate transformations I
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
pyruvate fermentation to opines
-
-
flavin biosynthesis
-
-
Riboflavin metabolism
-
-
L-phenylalanine degradation V
-
-
tetrahydropteridine recycling
-
-
(5R)-carbapenem carboxylate biosynthesis
L-citrulline biosynthesis
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
proline to cytochrome bo oxidase electron transfer
-
-
creatinine degradation
-
-
creatinine degradation I
-
-
creatinine degradation II
-
-
glycine betaine degradation I
-
-
glycine betaine degradation II (mammalian)
-
-
NAD metabolism
-
-
NAD/NADH phosphorylation and dephosphorylation
-
-
Nicotinate and nicotinamide metabolism
-
-
ascorbate recycling (cytosolic)
-
-
nitrate reduction II (assimilatory)
-
-
alkylnitronates degradation
-
-
nitrate reduction V (assimilatory)
-
-
ammonia oxidation II (anaerobic)
-
-
denitrification
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction VII (denitrification)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
nitroethane degradation
-
-
nitrate assimilation
-
-
assimilatory sulfate reduction I
-
-
assimilatory sulfate reduction III
-
-
sulfate reduction
-
-
Sulfur metabolism
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
glycine cleavage
-
-
glycine metabolism
-
-
glutathione metabolism
-
-
glutathione-peroxide redox reactions
-
-
sulfite oxidation I
-
-
sulfide oxidation IV (mitochondria)
-
-
sulfite oxidation IV
-
-
formate to dimethyl sulfoxide electron transfer
-
-
hydrogen to dimethyl sulfoxide electron transfer
-
-
NADH to dimethyl sulfoxide electron transfer
-
-
sulfide oxidation I (to sulfur globules)
-
-
sulfide oxidation III (to sulfite)
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
dissimilatory sulfate reduction II (to thiosulfate)
-
-
sulfite oxidation II
-
-
sulfite oxidation III
-
-
nitrate reduction IV (dissimilatory)
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
Isoquinoline alkaloid biosynthesis
-
-
o-diquinones biosynthesis
-
-
justicidin B biosynthesis
-
-
matairesinol biosynthesis
-
-
sesamin biosynthesis
-
-
methanol oxidation to formaldehyde IV
-
-
reactive oxygen species degradation
-
-
superoxide radicals degradation
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
betanidin degradation
-
-
luteolin triglucuronide degradation
-
-
Phenylpropanoid biosynthesis
-
-
ascorbate metabolism
-
-
L-ascorbate degradation II (bacterial, aerobic)
-
-
L-ascorbate degradation III
-
-
L-ascorbate degradation V
-
-
Drug metabolism - other enzymes
-
-
methane metabolism
-
-
hydrogen production
-
-
hydrogen production III
-
-
hydrogen production VI
-
-
hydrogen production VIII
-
-
L-glutamate degradation VII (to butanoate)
-
-
hydrogen oxidation I (aerobic)
-
-
Nitrotoluene degradation
-
-
2-nitrotoluene degradation
-
-
Benzoate degradation
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
phenol degradation
-
-
Styrene degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
Xylene degradation
-
-
4-hydroxymandelate degradation
-
-
4-sulfocatechol degradation
-
-
gallate degradation
-
-
Polycyclic aromatic hydrocarbon degradation
-
-
protocatechuate degradation II (ortho-cleavage pathway)
-
-
L-tyrosine degradation I
-
-
divinyl ether biosynthesis II
-
-
jasmonic acid biosynthesis
-
-
Linoleic acid metabolism
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
plastoquinol-9 biosynthesis I
-
-
vitamin E biosynthesis (tocopherols)
-
-
5,6-dimethylbenzimidazole biosynthesis I (aerobic)
-
-
vitamin B12 metabolism
-
-
procollagen hydroxylation and glycosylation
-
-
Diterpenoid biosynthesis
-
-
gibberellin biosynthesis III (early C-13 hydroxylation)
-
-
taurine degradation IV
-
-
Benzoxazinoid biosynthesis
-
-
DIMBOA-glucoside biosynthesis
-
-
nitric oxide biosynthesis II (mammals)
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Aminobenzoate degradation
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
bupropion degradation
-
-
Caffeine metabolism
-
-
melatonin degradation I
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
vanillin biosynthesis I
-
-
bacterial bioluminescence
-
-
heme degradation I
-
-
isoflavonoid biosynthesis I
-
-
isoflavonoid biosynthesis II
-
-
ethylene biosynthesis I (plants)
-
-
Betalain biosynthesis
-
-
firefly bioluminescence
-
-
L-dopa and L-dopachrome biosynthesis
-
-
pheomelanin biosynthesis
-
-
Biosynthesis of unsaturated fatty acids
-
-
oleate biosynthesis II (animals and fungi)
-
-
sorgoleone biosynthesis
-
-
Flavonoid biosynthesis
-
-
luteolin biosynthesis
-
-
salvigenin biosynthesis
-
-
tricin biosynthesis
-
-
chrysin biosynthesis
-
-
flavonoid biosynthesis (in equisetum)
-
-
ethylene biosynthesis III (microbes)
-
-
L-lysine biosynthesis I
-
-
L-lysine biosynthesis II
-
-
L-lysine biosynthesis III
-
-
L-lysine biosynthesis VI
-
-
Lysine biosynthesis
-
-
lysine metabolism
-
-
Monobactam biosynthesis
-
-
formate oxidation to CO2
-
-
oxalate degradation III
-
-
oxalate degradation VI
-
-
purine nucleobases degradation I (anaerobic)
-
-
purine nucleobases degradation II (anaerobic)
-
-
reductive acetyl coenzyme A pathway
-
-
caffeine degradation III (bacteria, via demethylation)
-
-
Purine metabolism
-
-
theophylline degradation
-
-
adenosine deoxyribonucleotides de novo biosynthesis
-
-
adenosine deoxyribonucleotides de novo biosynthesis II
-
-
guanosine deoxyribonucleotides de novo biosynthesis I
-
-
guanosine deoxyribonucleotides de novo biosynthesis II
-
-
purine metabolism
-
-
pyrimidine deoxyribonucleotides biosynthesis from CTP
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis I
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis III
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis IV
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)
-
-
formate to nitrite electron transfer
-
-
formate to trimethylamine N-oxide electron transfer
-
-
nitrate reduction III (dissimilatory)
-
-
Photosynthesis
-
-
photosynthesis light reactions
-
-
nitrogen fixation I (ferredoxin)
-
-
nitrogen fixation II (flavodoxin)
-
-
arsenite oxidation II (respiratory)
-
-
L-methionine salvage from L-homocysteine
-
-
S-methyl-L-methionine cycle
-
-
L-methionine biosynthesis I
-
-
L-methionine biosynthesis III
-
-
L-methionine biosynthesis IV (archaea)
-
-
Selenocompound metabolism
-
-
L-methionine biosynthesis II (plants)
-
-
S-adenosyl-L-methionine cycle I
-
-
S-adenosyl-L-methionine cycle II
-
-
seleno-amino acid biosynthesis (plants)
-
-
Glycerophospholipid metabolism
-
-
phosphatidylcholine biosynthesis V
-
-
phosphatidylethanolamine bioynthesis
-
-
pyrimidine deoxyribonucleosides salvage
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis II
-
-
mRNA capping II
-
-
echinatin biosynthesis
-
-
phosphatidylcholine biosynthesis III
-
-
phosphatidylcholine biosynthesis IV
-
-
cyclopropane fatty acid (CFA) biosynthesis
-
-
sterculate biosynthesis
-
-
capsaicin biosynthesis
-
-
chlorogenic acid biosynthesis I
-
-
coumarins biosynthesis (engineered)
-
-
phenylpropanoid biosynthesis
phenylpropanoids methylation (ice plant)
-
-
scopoletin biosynthesis
-
-
Stilbenoid, diarylheptanoid and gingerol biosynthesis
-
-
suberin monomers biosynthesis
caffeine biosynthesis I
-
-
caffeine biosynthesis II (via paraxanthine)
-
-
theobromine biosynthesis I
-
-
Cyanoamino acid metabolism
-
-
folate polyglutamylation
glycine biosynthesis I
-
-
photorespiration
-
-
L-arginine biosynthesis I (via L-ornithine)
-
-
L-arginine biosynthesis II (acetyl cycle)
-
-
L-arginine biosynthesis IV (archaebacteria)
-
-
L-citrulline degradation
-
-
L-proline biosynthesis II (from arginine)
-
-
urea cycle
Bifidobacterium shunt
-
-
Biosynthesis of ansamycins
-
-
Calvin-Benson-Bassham cycle
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
pentose phosphate pathway (non-oxidative branch)
-
-
pentose phosphate pathway (partial)
-
-
Rubisco shunt
-
-
superpathway of glucose and xylose degradation
-
-
acetate and ATP formation from acetyl-CoA I
-
-
gallate degradation III (anaerobic)
-
-
L-lysine fermentation to acetate and butanoate
-
-
methanogenesis from acetate
-
-
pyruvate fermentation to acetate II
-
-
pyruvate fermentation to acetate IV
-
-
sulfoacetaldehyde degradation I
-
-
sulfolactate degradation II
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
2-deoxy-D-ribose degradation II
-
-
2-methylpropene degradation
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
4-ethylphenol degradation (anaerobic)
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
acetoacetate degradation (to acetyl CoA)
-
-
androstenedione degradation
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
Ethylbenzene degradation
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
fermentation to 2-methylbutanoate
-
-
Geraniol degradation
-
-
glutaryl-CoA degradation
-
-
isoprene biosynthesis II (engineered)
-
-
isopropanol biosynthesis (engineered)
-
-
L-isoleucine degradation I
-
-
methyl tert-butyl ether degradation
-
-
mevalonate pathway I
-
-
mevalonate pathway II (archaea)
-
-
mevalonate pathway III (archaea)
-
-
oleate beta-oxidation
-
-
pyruvate fermentation to acetone
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to hexanol (engineered)
-
-
sitosterol degradation to androstenedione
-
-
arginine metabolism
-
-
2-amino-3-hydroxycyclopent-2-enone biosynthesis
-
-
tetrapyrrole biosynthesis II (from glycine)
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
CDP-diacylglycerol biosynthesis
-
-
CDP-diacylglycerol biosynthesis I
-
-
CDP-diacylglycerol biosynthesis II
-
-
CDP-diacylglycerol biosynthesis III
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
oleate biosynthesis III (cyanobacteria)
-
-
palmitoleate biosynthesis III (cyanobacteria)
-
-
palmitoyl ethanolamide biosynthesis
-
-
phosphatidate biosynthesis (yeast)
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
plasmalogen biosynthesis
-
-
stigma estolide biosynthesis
-
-
aromatic polyketides biosynthesis
-
-
flavonoid biosynthesis
-
-
flavonoid di-C-glucosylation
-
-
naringenin biosynthesis (engineered)
-
-
phloridzin biosynthesis
-
-
xanthohumol biosynthesis
-
-
fatty acid biosynthesis initiation (animals and fungi, cytoplasm)
-
-
palmitate biosynthesis (animals and fungi, cytoplasm)
-
-
bile acid biosynthesis, neutral pathway
Primary bile acid biosynthesis
-
-
autoinducer AI-1 biosynthesis
-
-
ornithine lipid biosynthesis
-
-
protein ubiquitination
-
-
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
-
-
glycolate and glyoxylate degradation II
-
-
L-leucine biosynthesis
-
-
Starch and sucrose metabolism
-
-
fructan biosynthesis
-
-
glycogen biosynthesis
-
-
glycogen biosynthesis II (from UDP-D-Glucose)
-
-
cellulose biosynthesis
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose biosynthesis II
-
-
sucrose biosynthesis III
-
-
metabolism of disaccharids
-
-
trehalose biosynthesis I
-
-
lipid A biosynthesis
-
-
lipid A-core biosynthesis (E. coli K-12)
-
-
complex N-linked glycan biosynthesis (vertebrates)
-
-
Glycosaminoglycan biosynthesis - keratan sulfate
-
-
N-Glycan biosynthesis
-
-
Various types of N-glycan biosynthesis
-
-
ABH and Lewis epitopes biosynthesis from type 1 precursor disaccharide
-
-
biosynthesis of Lewis epitopes (H. pylori)
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
lacto-series glycosphingolipids biosynthesis
-
-
Escherichia coli serotype O86 O-antigen biosynthesis
-
-
mucin core 1 and core 2 O-glycosylation
-
-
Mucin type O-glycan biosynthesis
-
-
O-antigen biosynthesis
-
-
Other types of O-glycan biosynthesis
-
-
protein N-glycosylation (Haloferax volcanii)
-
-
2-methyladeninyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP
-
-
5-hydroxybenzimidazolyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP
-
-
5-methoxy-6-methylbenzimidazolyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP
-
-
5-methoxybenzimidazolyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP
-
-
5-methylbenzimidazolyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP
-
-
adeninyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP
-
-
adenosylcobalamin biosynthesis from adenosylcobinamide-GDP I
-
-
benzimidazolyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP
-
-
superpathway of adenosylcobalamin salvage from cobinamide I
-
-
superpathway of adenosylcobalamin salvage from cobinamide II
-
-
4-hydroxy-2-nonenal detoxification
-
-
camalexin biosynthesis
-
-
gliotoxin biosynthesis
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
indole glucosinolate activation (intact plant cell)
-
-
pentachlorophenol degradation
-
-
cysteine metabolism
-
-
L-cysteine biosynthesis I
-
-
3-dehydroquinate biosynthesis I
-
-
chorismate metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
flavin biosynthesis I (bacteria and plants)
-
-
flavin biosynthesis II (archaea)
-
-
flavin biosynthesis III (fungi)
-
-
(R)-cysteate degradation
-
-
aspartate and asparagine metabolism
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-glutamate degradation II
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation VI (Stickland reaction)
-
-
Novobiocin biosynthesis
-
-
sulfolactate degradation III
-
-
(S)-reticuline biosynthesis I
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
4-hydroxyphenylpyruvate biosynthesis
-
-
atromentin biosynthesis
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (Stickland reaction)
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
CMP-legionaminate biosynthesis I
-
-
UDP-GlcNAc biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis III
-
-
UDP-N-acetyl-D-glucosamine biosynthesis I
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
Glucosinolate biosynthesis
-
-
L-alanine biosynthesis I
-
-
L-isoleucine biosynthesis II
-
-
L-isoleucine biosynthesis IV
-
-
L-isoleucine biosynthesis V
-
-
L-leucine degradation I
-
-
L-leucine degradation IV (Stickland reaction)
-
-
L-phenylalanine biosynthesis III (cytosolic, plants)
-
-
L-phenylalanine biosynthesis II
-
-
L-tyrosine biosynthesis II
-
-
L-tyrosine biosynthesis III
-
-
pyridoxal 5'-phosphate biosynthesis I
-
-
Vitamin B6 metabolism
-
-
vitamin B6 metabolism
-
-
sucrose degradation I (sucrose phosphotransferase)
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
sucrose degradation VII (sucrose 3-dehydrogenase)
-
-
D-galactose degradation I (Leloir pathway)
-
-
D-galactose detoxification
-
-
degradation of hexoses
-
-
stachyose degradation
-
-
CMP-2-keto-3-deoxy-D-glycero-D-galacto-nononate biosynthesis
-
-
d-mannose degradation
-
-
mannitol degradation II
-
-
1,3-propanediol biosynthesis (engineered)
-
-
glycolysis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV (plant cytosol)
-
-
coenzyme A biosynthesis I (prokaryotic)
-
-
coenzyme A biosynthesis II (eukaryotic)
-
-
coenzyme A metabolism
-
-
sulfate activation for sulfonation
-
-
L-threonine biosynthesis
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
glycerol degradation to butanol
-
-
glycolysis V (Pyrococcus)
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
D-galactonate degradation
-
-
degradation of sugar acids
-
-
L-glucose degradation
-
-
phosphatidate metabolism, as a signaling molecule
-
-
type I lipoteichoic acid biosynthesis (S. aureus)
-
-
3-phosphoinositide biosynthesis
-
-
glycine degradation (Stickland reaction)
-
-
L-threonine degradation I
-
-
creatine-phosphate biosynthesis
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
Thiamine metabolism
-
-
CMP phosphorylation
-
-
guanosine ribonucleotides de novo biosynthesis
-
-
ppGpp metabolism
-
-
purine deoxyribonucleosides salvage
-
-
pyrimidine deoxyribonucleotide phosphorylation
-
-
UTP and CTP de novo biosynthesis
-
-
ppGpp biosynthesis
-
-
assimilatory sulfate reduction II
-
-
selenate reduction
-
-
UDP-alpha-D-glucose biosynthesis I
-
-
CMP-3-deoxy-D-manno-octulosonate biosynthesis
-
-
CMP-KDO biosynthesis
-
-
Lipopolysaccharide biosynthesis
-
-
citrate lyase activation
-
-
cardiolipin biosynthesis
-
-
cardiolipin biosynthesis I
-
-
cardiolipin biosynthesis II
-
-
cardiolipin biosynthesis III
-
-
phosphatidylglycerol biosynthesis I (plastidic)
-
-
phosphatidylglycerol biosynthesis II (non-plastidic)
-
-
phosphatidylserine and phosphatidylethanolamine biosynthesis I
-
-
superpathway of phospholipid biosynthesis II (plants)
-
-
phosphatidylcholine biosynthesis VI
-
-
thiosulfate disproportionation IV (rhodanese)
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
chondroitin sulfate biosynthesis (late stages)
-
-
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate
-
-
1,2-propanediol biosynthesis from lactate (engineered)
-
-
pyruvate fermentation to propanoate II (acrylate pathway)
-
-
succinate fermentation to butanoate
-
-
3-oxoadipate degradation
-
-
4-methylcatechol degradation (ortho cleavage)
-
-
methyl indole-3-acetate interconversion
-
-
methylsalicylate degradation
-
-
retinol biosynthesis
-
-
superpathway of methylsalicylate metabolism
-
-
Bisphenol degradation
-
-
triacylglycerol degradation
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
sophorosyloxydocosanoate deacetylation
-
-
Steroid biosynthesis
-
-
sterol:steryl ester interconversion (yeast)
-
-
L-ascorbate biosynthesis IV
-
-
sorbitol biosynthesis II
-
-
catechol degradation to beta-ketoadipate
-
-
beta-alanine biosynthesis II
-
-
propanoyl-CoA degradation II
-
-
methylglyoxal degradation
-
-
methylglyoxal degradation I
-
-
diethylphosphate degradation
-
-
sulfopterin metabolism
-
-
phosphate acquisition
-
-
adenosine nucleotides degradation I
-
-
adenosine nucleotides degradation II
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
guanosine nucleotides degradation III
-
-
inosine 5'-phosphate degradation
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
pyridine nucleotide cycling (plants)
-
-
tunicamycin biosynthesis
-
-
UTP and CTP dephosphorylation I
-
-
phytate degradation I
-
-
degradation of aromatic, nitrogen containing compounds
-
-
ginkgotoxin biosynthesis
-
-
pyridoxal 5'-phosphate salvage II (plants)
-
-
phosphatidylcholine resynthesis via glycerophosphocholine
-
-
2-arachidonoylglycerol biosynthesis
-
-
Ether lipid metabolism
-
-
phospholipases
-
-
plasmalogen degradation
-
-
choline biosynthesis III
-
-
D-myo-inositol (1,4,5)-trisphosphate biosynthesis
-
-
D-myo-inositol-5-phosphate metabolism
-
-
Sphingolipid metabolism
-
-
choline-O-sulfate degradation
-
-
chlorpyrifos degradation
-
-
methyl parathion degradation
-
-
paraoxon degradation
-
-
parathion degradation
-
-
tRNA processing
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
glycogen degradation I
-
-
starch degradation
-
-
starch degradation I
-
-
alpha-tomatine degradation
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
ginsenoside metabolism
-
-
linamarin degradation
-
-
linustatin bioactivation
-
-
lotaustralin degradation
-
-
neolinustatin bioactivation
-
-
melibiose degradation
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
lactose degradation II
-
-
Other glycan degradation
-
-
xyloglucan degradation II (exoglucanase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
Flavone and flavonol biosynthesis
-
-
pectin degradation II
-
-
fructan degradation
-
-
amygdalin and prunasin degradation
-
-
cyanophycin metabolism
-
-
nocardicin A biosynthesis
-
-
L-asparagine degradation I
-
-
superpathway of L-aspartate and L-asparagine biosynthesis
-
-
D-Glutamine and D-glutamate metabolism
-
-
glutaminyl-tRNAgln biosynthesis via transamidation
-
-
L-asparagine biosynthesis III (tRNA-dependent)
-
-
L-glutamine degradation I
-
-
acrylonitrile degradation I
-
-
IAA biosynthesis
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
Atrazine degradation
-
-
urea degradation II
-
-
Penicillin and cephalosporin biosynthesis
-
-
L-arginine biosynthesis III (via N-acetyl-L-citrulline)
-
-
L-ornithine biosynthesis I
-
-
cyanide detoxification II
-
-
chitobiose degradation
-
-
lipid IVA biosynthesis (E. coli)
-
-
lipid IVA biosynthesis (P. putida)
-
-
thymine degradation
-
-
uracil degradation I (reductive)
-
-
formaldehyde oxidation VII (THF pathway)
-
-
formate assimilation into 5,10-methylenetetrahydrofolate
-
-
L-histidine degradation III
-
-
tetrahydrofolate salvage from 5,10-methenyltetrahydrofolate
-
-
6-hydroxymethyl-dihydropterin diphosphate biosynthesis III (Chlamydia)
-
-
toxoflavin biosynthesis
-
-
indole glucosinolate activation (herbivore attack)
-
-
indole-3-acetate biosynthesis V (bacteria and fungi)
-
-
UTP and CTP dephosphorylation II
-
-
pyrimidine deoxyribonucleotides dephosphorylation
-
-
1,2-dichloroethane degradation
-
-
butachlor degradation
-
-
fluoroacetate degradation
-
-
Phosphonate and phosphinate metabolism
-
-
phosphonoacetate degradation
-
-
acetaldehyde biosynthesis II
-
-
long chain fatty acid ester synthesis (engineered)
-
-
pyruvate fermentation to acetate VIII
-
-
pyruvate fermentation to acetoin III
-
-
polyamine pathway
-
-
putrescine biosynthesis III
-
-
superpathway of ornithine degradation
-
-
arginine dependent acid resistance
-
-
L-arginine degradation III (arginine decarboxylase/agmatinase pathway)
-
-
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway)
-
-
putrescine biosynthesis I
-
-
putrescine biosynthesis II
-
-
spermidine biosynthesis III
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
nucleoside and nucleotide degradation (archaea)
-
-
3,6-anhydro-alpha-L-galactopyranose degradation
-
-
4-deoxy-L-threo-hex-4-enopyranuronate degradation
-
-
D-fructuronate degradation
-
-
D-galacturonate degradation I
-
-
D-glucosaminate degradation
-
-
Entner-Doudoroff shunt
-
-
D-galactosamine and N-acetyl-D-galactosamine degradation
-
-
galactitol degradation
-
-
lactose and galactose degradation I
-
-
N-acetyl-D-galactosamine degradation
-
-
metabolism of amino sugars and derivatives
-
-
N-acetylneuraminate and N-acetylmannosamine degradation I
-
-
N-acetylneuraminate and N-acetylmannosamine degradation II
-
-
4-hydroxy-2(1H)-quinolone biosynthesis
-
-
acridone alkaloid biosynthesis
-
-
L-tryptophan biosynthesis
-
-
Phenazine biosynthesis
-
-
3-hydroxypropanoate cycle
-
-
cyanate degradation
glyoxylate assimilation
-
-
adipate degradation
-
-
benzoyl-CoA degradation I (aerobic)
-
-
fatty acid beta-oxidation IV (unsaturated, even number)
-
-
methyl ketone biosynthesis (engineered)
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
aldoxime degradation
-
-
Fluorobenzoate degradation
-
-
L-histidine degradation I
-
-
L-histidine degradation II
-
-
L-histidine degradation VI
-
-
L-arginine degradation VII (arginase 3 pathway)
-
-
L-ornithine degradation I (L-proline biosynthesis)
-
-
benzoate biosynthesis II (CoA-independent, non-beta-oxidative)
-
-
cinnamoyl-CoA biosynthesis
-
-
ephedrine biosynthesis
-
-
phenylpropanoid biosynthesis, initial reactions
-
-
canavanine biosynthesis
-
-
dipicolinate biosynthesis
-
-
autoinducer AI-2 biosynthesis I
-
-
autoinducer AI-2 biosynthesis II (Vibrio)
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
serine metabolism
-
-
colanic acid building blocks biosynthesis
-
-
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
-
-
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
-
-
UDP-alpha-D-galactose biosynthesis
-
-
UDP-beta-L-arabinose biosynthesis I (from UDP-alpha-D-xylose)
-
-
d-xylose degradation
-
-
D-xylose degradation I
-
-
beta-(1,4)-mannan degradation
-
-
beta-1,4-D-mannosyl-N-acetyl-D-glucosamine degradation
-
-
D-mannose degradation
-
-
GDP-mannose biosynthesis
-
-
L-ascorbate biosynthesis I (L-galactose pathway)
-
-
mannitol biosynthesis
-
-
chitin biosynthesis
-
-
D-sorbitol biosynthesis I
-
-
starch biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
GDP-glucose biosynthesis
-
-
glucosylglycerol biosynthesis
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
glycogen degradation II
-
-
starch degradation III
-
-
starch degradation V
-
-
trehalose degradation V
-
-
conversion of succinate to propanoate
-
-
propanoyl CoA degradation I
-
-
bacilysin biosynthesis
-
-
salinosporamide A biosynthesis
-
-
cholesterol biosynthesis
-
-
lanosterol biosynthesis
-
-
O-antigen building blocks biosynthesis (E. coli)
-
-
UDP-alpha-D-galactofuranose biosynthesis
-
-
pinobanksin biosynthesis
-
-
Aminoacyl-tRNA biosynthesis
-
-
tRNA charging
-
-
tetrapyrrole biosynthesis I (from glutamate)
-
-
acetate conversion to acetyl-CoA
-
-
adlupulone and adhumulone biosynthesis
-
-
cis-genanyl-CoA degradation
-
-
colupulone and cohumulone biosynthesis
-
-
lupulone and humulone biosynthesis
-
-
6-gingerol analog biosynthesis (engineered)
-
-
alkane biosynthesis II
-
-
ceramide biosynthesis
-
-
cutin biosynthesis
-
-
gamma-linolenate biosynthesis II (animals)
-
-
icosapentaenoate biosynthesis II (6-desaturase, mammals)
-
-
icosapentaenoate biosynthesis III (8-desaturase, mammals)
-
-
linoleate biosynthesis II (animals)
-
-
long-chain fatty acid activation
-
-
oleate biosynthesis I (plants)
-
-
phosphatidylcholine acyl editing
-
-
sporopollenin precursors biosynthesis
-
-
stearate biosynthesis I (animals)
-
-
wax esters biosynthesis II
-
-
itaconate degradation
-
-
alkane biosynthesis I
-
-
heptadecane biosynthesis
-
-
lipoate biosynthesis
-
-
L-asparagine biosynthesis II
-
-
L-glutamine biosynthesis I
-
-
nitrate reduction VI (assimilatory)
-
-
NAD de novo biosynthesis I (from aspartate)
-
-
pantothenate biosynthesis
-
-
phosphopantothenate biosynthesis I
-
-
glutathione biosynthesis
-
-
ophthalmate biosynthesis
-
-
D-Alanine metabolism
-
-
Peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate containing)
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-containing)
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis III (meso-diaminopimelate containing)
-
-
anapleurotic synthesis of oxalacetate
-
-
Fe(II) oxidation
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
oxidative phosphorylation
-
-
arsenite oxidation I (respiratory)
-
-
ATP biosynthesis
-
-
oleandomycin activation/inactivation
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
N2 fixing root nodules, transcription of katA from OxyR-dependent promoter
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
additional information
in fungi, periplasmic CDAs are generally tightly coupled to a chitin synthase to rapidly deacetylate newly synthesized chitins before their maturation and crystallization. Extracellular CDAs are secreted to alter the physicochemical properties of the cell wall to either protect the cell wall from exogenous chitinases or to initiate autolysis
-
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Sinorhizobium meliloti)