Information on Organism Paraburkholderia xenovorans

TaxTree of Organism Paraburkholderia xenovorans
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
1,2-propanediol biosynthesis from lactate (engineered)
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1,5-anhydrofructose degradation
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
2,2'-dihydroxybiphenyl degradation
-
-
2,4-dichlorophenoxyacetate degradation
-
-
2,5-xylenol and 3,5-xylenol degradation
-
-
2-aminoethylphosphonate degradation I
-
-
2-aminophenol degradation
-
-
2-chlorobenzoate degradation
-
-
2-deoxy-alpha-D-ribose 1-phosphate degradation
-
-
2-deoxy-D-ribose degradation I
-
-
2-hydroxybiphenyl degradation
-
-
2-hydroxypenta-2,4-dienoate degradation
-
-
2-nitrotoluene degradation
-
-
3,3'-disulfanediyldipropannoate degradation
-
-
3,3'-thiodipropanoate degradation
-
-
3-hydroxypropanoate cycle
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
3-methylthiopropanoate biosynthesis
-
-
3-phenylpropionate degradation
-
-
4-chloro-2-methylphenoxyacetate degradation
-
-
4-chlorobenzoate degradation
-
-
4-chloronitrobenzene degradation
-
-
4-coumarate degradation (aerobic)
-
-
4-hydroxy-2-nonenal detoxification
-
-
4-hydroxymandelate degradation
4-hydroxyphenylacetate degradation
4-methylcatechol degradation (ortho cleavage)
-
-
4-methylphenol degradation to protocatechuate
-
-
4-nitrotoluene degradation II
-
-
4-sulfocatechol degradation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetylene degradation (anaerobic)
-
-
allopregnanolone biosynthesis
-
-
alpha-tomatine degradation
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminobenzoate degradation
-
-
anaerobic aromatic compound degradation (Thauera aromatica)
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
androgen and estrogen metabolism
-
-
androstenedione degradation I (aerobic)
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
ATP biosynthesis
-
-
backdoor pathway of androgen biosynthesis
-
-
benzoate biosynthesis I (CoA-dependent, beta-oxidative)
-
-
Benzoate degradation
-
-
benzoate degradation II (aerobic and anaerobic)
-
-
benzoyl-CoA degradation I (aerobic)
-
-
beta-Alanine metabolism
-
-
Bifidobacterium shunt
-
-
bile acid biosynthesis, neutral pathway
Biosynthesis of secondary metabolites
-
-
biphenyl degradation
-
-
bisphenol A degradation
-
-
bupropion degradation
-
-
Butanoate metabolism
-
-
C4 and CAM-carbon fixation
-
-
C5-Branched dibasic acid metabolism
-
-
Caffeine metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
camalexin biosynthesis
-
-
carbazole degradation
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
catechol degradation to beta-ketoadipate
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
Chloroalkane and chloroalkene degradation
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
CO2 fixation in Crenarchaeota
-
-
conversion of succinate to propanoate
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
-
-
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
dibenzofuran degradation
-
-
Dioxin degradation
-
-
diphenyl ethers degradation
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
Entner-Doudoroff pathway I
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
ethanol degradation I
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis V (engineered)
-
-
Ethylbenzene degradation
-
-
Fatty acid degradation
-
-
firefly bioluminescence
-
-
Fluorobenzoate degradation
-
-
Folate biosynthesis
-
-
formaldehyde assimilation I (serine pathway)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
Fructose and mannose metabolism
-
-
Galactose metabolism
-
-
gallate degradation
-
-
gentisate degradation I
-
-
gentisate degradation II
-
-
ginsenoside metabolism
-
-
gliotoxin biosynthesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glutamate and glutamine metabolism
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
glycerol degradation to butanol
-
-
Glycine, serine and threonine metabolism
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
glycolysis V (Pyrococcus)
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate assimilation
-
-
heterolactic fermentation
-
-
Histidine metabolism
-
-
homocysteine and cysteine interconversion
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
incomplete reductive TCA cycle
-
-
indole glucosinolate activation (intact plant cell)
-
-
isoleucine metabolism
-
-
itaconate degradation
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
L-cysteine degradation I
-
-
L-glutamate degradation VI (to pyruvate)
-
-
L-isoleucine biosynthesis III
-
-
L-threonine degradation IV
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation I
-
-
lactose degradation II
-
-
linamarin degradation
-
-
Linoleic acid metabolism
-
-
linustatin bioactivation
-
-
lipid metabolism
-
-
lotaustralin degradation
-
-
melatonin degradation I
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
methanogenesis from CO2
-
-
methanogenesis from H2 and CO2
-
-
methanol oxidation to formaldehyde IV
-
-
methyl indole-3-acetate interconversion
-
-
methylaspartate cycle
methylhalides biosynthesis (plants)
-
-
methylsalicylate degradation
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
-
-
Naphthalene degradation
-
-
naphthalene degradation (aerobic)
-
-
neolinustatin bioactivation
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
non-pathway related
-
-
O-antigen building blocks biosynthesis (E. coli)
-
-
O-Antigen nucleotide sugar biosynthesis
-
-
Other glycan degradation
-
-
oxalate degradation II
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
p-cumate degradation to 2-hydroxypentadienoate
-
-
Pantothenate and CoA biosynthesis
-
-
pantothenate biosynthesis
-
-
partial TCA cycle (obligate autotrophs)
-
-
pentachlorophenol degradation
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
phenol degradation
-
-
Phenylalanine metabolism
-
-
Phenylpropanoid biosynthesis
-
-
phosalacine biosynthesis
-
-
phosphinothricin tripeptide biosynthesis
-
-
Phosphonate and phosphinate metabolism
-
-
phosphonoacetate degradation
-
-
phosphopantothenate biosynthesis I
-
-
Photosynthesis
-
-
photosynthesis
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
polybrominated dihydroxylated diphenyl ethers biosynthesis
-
-
Polycyclic aromatic hydrocarbon degradation
-
-
Porphyrin and chlorophyll metabolism
-
-
Propanoate metabolism
-
-
propanol degradation
-
-
propanoyl CoA degradation I
-
-
propionate fermentation
-
-
protocatechuate degradation II (ortho-cleavage pathway)
-
-
Purine metabolism
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
Rubisco shunt
-
-
salicortin biosynthesis
-
-
salicylate degradation IV
-
-
sedoheptulose bisphosphate bypass
-
-
Selenocompound metabolism
-
-
Sphingolipid metabolism
-
-
spongiadioxin C biosynthesis
-
-
Starch and sucrose metabolism
-
-
Steroid degradation
-
-
Steroid hormone biosynthesis
-
-
Styrene degradation
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
sulfoacetaldehyde degradation IV
-
-
superoxide radicals degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of methylsalicylate metabolism
-
-
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
-
-
Taurine and hypotaurine metabolism
-
-
taurine biosynthesis I
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
testosterone and androsterone degradation to androstendione (aerobic)
-
-
tetrahydromethanopterin biosynthesis
-
-
tetrahydroxyxanthone biosynthesis (from benzoate)
-
-
thioredoxin pathway
-
-
threonine metabolism
-
-
Toluene degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
triethylamine degradation
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
UDP-alpha-D-galactofuranose biosynthesis
-
-
Valine, leucine and isoleucine degradation
-
-
vanillin biosynthesis I
-
-
Xylene degradation
-
-
xyloglucan degradation II (exoglucanase)
-
-
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
oxalate enrichment culture
Manually annotated by BRENDA team
soil samples are collected below the Ca-oxalate producing trees Milicia excelsa and Afzelia africana and in a similar soil distant from trees
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Paraburkholderia xenovorans)