Information on Organism Latilactobacillus sakei

TaxTree of Organism Latilactobacillus sakei
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(1,4)-beta-D-xylan degradation
-
-
(R)-cysteate degradation
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
(S)-reticuline biosynthesis
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
2-arachidonoylglycerol biosynthesis
-
-
2-deoxy-alpha-D-ribose 1-phosphate degradation
-
-
3-(4-hydroxyphenyl)pyruvate biosynthesis
-
-
4-aminobutanoate degradation V
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
acetate and ATP formation from acetyl-CoA I
-
-
acetate fermentation
-
-
acetylene degradation (anaerobic)
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
adenosine nucleotides degradation II
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
Aflatoxin biosynthesis
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
alpha-tomatine degradation
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminoacyl-tRNA biosynthesis
-
-
Aminobenzoate degradation
-
-
ammonia oxidation II (anaerobic)
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
arginine metabolism
-
-
Ascorbate and aldarate metabolism
-
-
aspartate and asparagine metabolism
-
-
atromentin biosynthesis
-
-
autoinducer AI-2 biosynthesis I
-
-
autoinducer AI-2 biosynthesis II (Vibrio)
-
-
bacterial bioluminescence
-
-
beta-Alanine metabolism
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
Betalain biosynthesis
-
-
Bifidobacterium shunt
-
-
bile acid biosynthesis, neutral pathway
-
-
bile acids deconjugation
-
-
Biosynthesis of secondary metabolites
-
-
Biosynthesis of unsaturated fatty acids
-
-
bryostatin biosynthesis
-
-
Butanoate metabolism
-
-
C20 prostanoid biosynthesis
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
Calvin-Benson-Bassham cycle
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
chlorpyrifos degradation
-
-
cholesterol biosynthesis
-
-
cholesterol biosynthesis (algae, late side-chain reductase)
-
-
cholesterol biosynthesis (diatoms)
-
-
cholesterol biosynthesis (plants, early side-chain reductase)
-
-
cholesterol biosynthesis I
-
-
cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
-
-
cholesterol biosynthesis III (via desmosterol)
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
CO2 fixation in Crenarchaeota
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
creatine phosphate biosynthesis
-
-
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
D-Amino acid metabolism
-
-
D-mannose degradation I
-
-
d-xylose degradation
-
-
degradation of aromatic, nitrogen containing compounds
-
-
degradation of pentoses
-
-
degradation of sugar acids
-
-
degradation of sugar alcohols
-
-
denitrification
-
-
diethylphosphate degradation
-
-
Drug metabolism - other enzymes
-
-
Entner-Doudoroff pathway I
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis IV (engineered)
-
-
ethene biosynthesis V (engineered)
-
-
Ether lipid metabolism
-
-
Fatty acid biosynthesis
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
fatty acid biosynthesis initiation (plant mitochondria)
-
-
fatty acid biosynthesis initiation (type I)
-
-
fatty acid biosynthesis initiation (type II)
-
-
firefly bioluminescence
-
-
Flavone and flavonol biosynthesis
-
-
Folate biosynthesis
-
-
formaldehyde assimilation I (serine pathway)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
fructan degradation
-
-
Fructose and mannose metabolism
-
-
GABA shunt
-
-
Galactose metabolism
-
-
gallate degradation III (anaerobic)
-
-
ginsenoside metabolism
-
-
gluconeogenesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glucosinolate biosynthesis from dihomomethionine
-
-
glucosinolate biosynthesis from hexahomomethionine
-
-
glucosinolate biosynthesis from homomethionine
-
-
glucosinolate biosynthesis from pentahomomethionine
-
-
glucosinolate biosynthesis from phenylalanine
-
-
glucosinolate biosynthesis from tetrahomomethionine
-
-
glucosinolate biosynthesis from trihomomethionine
-
-
glucosinolate biosynthesis from tryptophan
-
-
glucosinolate biosynthesis from tyrosine
-
-
glutamate and glutamine metabolism
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification II
-
-
glutathione-peroxide redox reactions
-
-
glycerol degradation II
-
-
glycerol degradation to butanol
-
-
Glycerolipid metabolism
-
-
Glycerophospholipid metabolism
-
-
glycine degradation (reductive Stickland reaction)
-
-
glycine metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
glycolysis V (Pyrococcus)
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate cycle
-
-
heterolactic fermentation
-
-
histamine biosynthesis
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
homocysteine and cysteine interconversion
-
-
hydroxycinnamic acid tyramine amides biosynthesis
-
-
incomplete reductive TCA cycle
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis VI (bacteria)
-
-
Inositol phosphate metabolism
-
-
Isoquinoline alkaloid biosynthesis
-
-
jadomycin biosynthesis
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation III
-
-
L-alanine degradation V (oxidative Stickland reaction)
-
-
L-alanine degradation VI (reductive Stickland reaction)
-
-
L-arabinose degradation I
-
-
L-arginine biosynthesis I (via L-ornithine)
-
-
L-arginine biosynthesis II (acetyl cycle)
-
-
L-arginine biosynthesis IV (archaea)
-
-
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway)
-
-
L-arginine degradation V (arginine deiminase pathway)
-
-
L-arginine degradation XIII (reductive Stickland reaction)
-
-
L-arginine degradation XIV (oxidative Stickland reaction)
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-citrulline biosynthesis
-
-
L-citrulline degradation
-
-
L-cysteine biosynthesis VI (reverse transsulfuration)
-
-
L-dopa and L-dopachrome biosynthesis
-
-
L-glutamate degradation I
-
-
L-glutamate degradation II
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-glutamate degradation XI (reductive Stickland reaction)
-
-
L-histidine degradation V
-
-
L-lactaldehyde degradation
-
-
L-lysine fermentation to acetate and butanoate
-
-
L-malate degradation I
-
-
L-methionine biosynthesis I
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation III
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-phenylalanine degradation VI (reductive Stickland reaction)
-
-
L-threonine degradation I
-
-
L-tryptophan degradation IV (via indole-3-lactate)
-
-
L-tryptophan degradation VIII (to tryptophol)
-
-
L-tryptophan degradation XIII (reductive Stickland reaction)
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine degradation I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation III
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (reductive Stickland reaction)
-
-
lactate fermentation
-
-
lactose degradation II
-
-
linamarin degradation
-
-
Linoleic acid metabolism
-
-
linustatin bioactivation
-
-
lipid metabolism
-
-
lotaustralin degradation
-
-
luteolin triglucuronide degradation
-
-
Lysine degradation
-
-
malate/L-aspartate shuttle pathway
-
-
Metabolic pathways
-
-
metabolism of amino sugars and derivatives
-
-
metabolism of disaccharids
-
-
Methane metabolism
-
-
methanofuran biosynthesis
-
-
methanogenesis from acetate
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methyl indole-3-acetate interconversion
-
-
methyl parathion degradation
-
-
methylaspartate cycle
methylsalicylate degradation
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
mupirocin biosynthesis
-
-
N-acetylneuraminate and N-acetylmannosamine degradation I
-
-
N-acetylneuraminate and N-acetylmannosamine degradation II
-
-
NAD metabolism
-
-
NAD salvage pathway V (PNC V cycle)
-
-
NADPH to cytochrome c oxidase via plastocyanin
-
-
neolinustatin bioactivation
-
-
Nicotinate and nicotinamide metabolism
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction VII (denitrification)
-
-
nitric oxide biosynthesis II (mammals)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
Nitrogen metabolism
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
Novobiocin biosynthesis
-
-
octopamine biosynthesis
-
-
oleate biosynthesis II (animals and fungi)
-
-
ornithine metabolism
-
-
Other glycan degradation
-
-
palmitoleate biosynthesis IV (fungi and animals)
-
-
paraoxon degradation
-
-
parathion degradation
-
-
partial TCA cycle (obligate autotrophs)
-
-
pederin biosynthesis
-
-
Penicillin and cephalosporin biosynthesis
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
phenol degradation
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
pheomelanin biosynthesis
-
-
phosphate acquisition
-
-
phospholipases
-
-
Photosynthesis
-
-
photosynthesis
-
-
photosynthesis light reactions
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
phytate degradation I
-
-
plasmalogen biosynthesis
-
-
plasmalogen degradation
-
-
polyamine pathway
-
-
Polycyclic aromatic hydrocarbon degradation
-
-
Porphyrin and chlorophyll metabolism
-
-
Primary bile acid biosynthesis
-
-
Propanoate metabolism
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
Purine metabolism
-
-
purine metabolism
-
-
purine nucleobases degradation I (anaerobic)
-
-
purine nucleobases degradation II (anaerobic)
-
-
purine ribonucleosides degradation
-
-
putrescine biosynthesis II
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
pyruvate fermentation to (R)-lactate
-
-
pyruvate fermentation to (S)-lactate
-
-
pyruvate fermentation to acetate II
-
-
pyruvate fermentation to acetate IV
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
reductive glycine pathway
-
-
reductive monocarboxylic acid cycle
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
retinoate biosynthesis I
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
ribose phosphorylation
-
-
rosmarinic acid biosynthesis I
-
-
Rubisco shunt
-
-
S-(6-hydroxy-4-methylhexan-4-yl)-L-cysteinylglycine degradation
-
-
S-adenosyl-L-methionine salvage I
-
-
salidroside biosynthesis
-
-
Secondary bile acid biosynthesis
-
-
sedoheptulose bisphosphate bypass
-
-
seleno-amino acid biosynthesis (plants)
-
-
Selenocompound metabolism
-
-
serine metabolism
-
-
sorgoleone biosynthesis
-
-
Sphingolipid metabolism
-
-
Starch and sucrose metabolism
-
-
starch degradation
-
-
starch degradation III
-
-
starch degradation V
-
-
Steroid biosynthesis
-
-
sterol biosynthesis (methylotrophs)
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose biosynthesis II
-
-
sucrose biosynthesis III
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
sulfolactate degradation III
-
-
sulfopterin metabolism
-
-
sulfur volatiles biosynthesis
-
-
superoxide radicals degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of methylsalicylate metabolism
-
-
Taurine and hypotaurine metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
TCA cycle VIII (Chlamydia)
-
-
Thiamine metabolism
-
-
threonine metabolism
-
-
triacylglycerol degradation
-
-
tRNA charging
-
-
tRNA processing
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
UMP biosynthesis I
-
-
UMP biosynthesis II
-
-
UMP biosynthesis III
-
-
urea cycle
vancomycin resistance I
-
-
vitamin B1 metabolism
-
-
xyloglucan degradation II (exoglucanase)
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
additional information
strain LK-145 is isolated from a Japanese sake seller as a high D-amino acid producer, and strain LT-13 is isolated from Moto, a starter of sake, as a low D-amino acid producer, using a medium of amylase digested rice as a carbon source
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
LINKS TO OTHER DATABASES (specific for Latilactobacillus sakei)