Information on Organism Helix pomatia

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
(S)-reticuline biosynthesis
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1,5-anhydrofructose degradation
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
2,3-dihydroxybenzoate biosynthesis
-
-
2-arachidonoylglycerol biosynthesis
-
-
2-carboxy-1,4-naphthoquinol biosynthesis
-
-
2-deoxy-D-glucose 6-phosphate degradation
-
-
2-methyl-branched fatty acid beta-oxidation
-
-
2-methylpropene degradation
-
-
3,5-dimethoxytoluene biosynthesis
-
-
3-(4-hydroxyphenyl)pyruvate biosynthesis
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis I
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis II
-
-
3-hydroxypropanoate cycle
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
3-methylbutanol biosynthesis (engineered)
-
-
4-hydroxy-2-nonenal detoxification
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
ABH and Lewis epitopes biosynthesis from type 1 precursor disaccharide
-
-
ABH and Lewis epitopes biosynthesis from type 2 precursor disaccharide
-
-
acetaldehyde biosynthesis I
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetylene degradation (anaerobic)
-
-
acrylonitrile degradation I
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
adenosine nucleotides degradation I
-
-
adenosine nucleotides degradation II
-
-
adipate degradation
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
alpha-Linolenic acid metabolism
-
-
alpha-tomatine degradation
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminobenzoate degradation
-
-
ammonia assimilation cycle I
-
-
ammonia assimilation cycle II
-
-
ammonia assimilation cycle III
-
-
amygdalin and prunasin degradation
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
androgen and estrogen metabolism
-
-
androstenedione degradation I (aerobic)
-
-
androstenedione degradation II (anaerobic)
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
arginine metabolism
-
-
aromatic biogenic amine degradation (bacteria)
-
-
arsenic detoxification (mammals)
-
-
arsenite to oxygen electron transfer
-
-
arsenite to oxygen electron transfer (via azurin)
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate metabolism
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
atromentin biosynthesis
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
baicalein metabolism
-
-
Benzoate degradation
-
-
benzoyl-CoA degradation I (aerobic)
-
-
beta-(1,4)-mannan degradation
-
-
beta-alanine biosynthesis I
-
-
beta-carboline biosynthesis
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
Betalain biosynthesis
-
-
betalamic acid biosynthesis
-
-
betanidin degradation
-
-
betaxanthin biosynthesis
-
-
betaxanthin biosynthesis (via dopamine)
-
-
Bifidobacterium shunt
-
-
bile acid biosynthesis, neutral pathway
-
-
bile acids deconjugation
-
-
biosynthesis of Lewis epitopes (H. pylori)
-
-
Biosynthesis of secondary metabolites
-
-
Biosynthesis of siderophore group nonribosomal peptides
-
-
Bisphenol degradation
-
-
bupropion degradation
-
-
Butanoate metabolism
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
C20 prostanoid biosynthesis
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
C5-Branched dibasic acid metabolism
-
-
Caffeine metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
camalexin biosynthesis
-
-
canavanine degradation
-
-
Caprolactam degradation
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
catecholamine biosynthesis
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Chloroalkane and chloroalkene degradation
-
-
chlorogenic acid degradation
-
-
cholesterol biosynthesis
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
choline biosynthesis III
-
-
chorismate biosynthesis from 3-dehydroquinate
-
-
chorismate metabolism
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
CO2 fixation in Crenarchaeota
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
coenzyme A biosynthesis I (prokaryotic)
-
-
coenzyme A metabolism
-
-
coenzyme B biosynthesis
-
-
complex N-linked glycan biosynthesis (vertebrates)
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
creatine phosphate biosynthesis
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
cyanate degradation
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
cytosolic NADPH production (yeast)
-
-
d-mannose degradation
-
-
degradation of aromatic, nitrogen containing compounds
-
-
degradation of sugar acids
-
-
degradation of sugar alcohols
-
-
diethylphosphate degradation
-
-
dimethyl sulfide biosynthesis from methionine
-
-
divinyl ether biosynthesis II
-
-
dopamine degradation
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
enterobactin biosynthesis
-
-
Entner-Doudoroff pathway I
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
Escherichia coli serotype O:127 O antigen biosynthesis
-
-
Escherichia coli serotype O:86 O antigen biosynthesis
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis V (engineered)
-
-
Ether lipid metabolism
-
-
extended VTC2 cycle
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
Fatty acid degradation
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
Fe(II) oxidation
-
-
FeMo cofactor biosynthesis
-
-
firefly bioluminescence
-
-
Flavone and flavonol biosynthesis
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
Folate biosynthesis
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
formaldehyde oxidation I
-
-
fructan degradation
-
-
Fructose and mannose metabolism
-
-
Galactose metabolism
-
-
gamma-glutamyl cycle
-
-
GDP-L-galactose biosynthesis
-
-
Geraniol degradation
-
-
ginsenoside metabolism
-
-
gliotoxin biosynthesis
-
-
globo-series glycosphingolipids biosynthesis
-
-
glucocorticoid biosynthesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glutamate and glutamine metabolism
-
-
glutaryl-CoA degradation
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
glutathione-peroxide redox reactions
-
-
glycerol degradation to butanol
-
-
Glycerolipid metabolism
-
-
Glycerophospholipid metabolism
-
-
glycine betaine biosynthesis
-
-
Glycine, serine and threonine metabolism
-
-
glycogen biosynthesis
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis II (from UDP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
glycolysis V (Pyrococcus)
-
-
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate
-
-
Glycosaminoglycan biosynthesis - heparan sulfate / heparin
-
-
Glycosaminoglycan degradation
-
-
glycosaminoglycan-protein linkage region biosynthesis
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate assimilation
-
-
glyoxylate cycle
-
-
guaiacol biosynthesis
-
-
guanine and guanosine salvage I
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
guanosine nucleotides degradation III
-
-
heme degradation I
-
-
heparan sulfate degradation
-
-
heparin degradation
-
-
heterolactic fermentation
-
-
histamine degradation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
homocysteine and cysteine interconversion
-
-
hyaluronan degradation
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
hydroxycinnamic acid serotonin amides biosynthesis
-
-
hydroxycinnamic acid tyramine amides biosynthesis
-
-
hypoglycin biosynthesis
-
-
IAA biosynthesis
-
-
Indole alkaloid biosynthesis
-
-
indole glucosinolate activation (intact plant cell)
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
inosine 5'-phosphate degradation
-
-
Inositol phosphate metabolism
-
-
inulin degradation
-
-
Isoquinoline alkaloid biosynthesis
-
-
jasmonic acid biosynthesis
-
-
justicidin B biosynthesis
-
-
ketogenesis
-
-
ketolysis
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation VI (reductive Stickland reaction)
-
-
L-arginine degradation I (arginase pathway)
-
-
L-arginine degradation IX (arginine:pyruvate transaminase pathway)
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-arginine degradation VII (arginase 3 pathway)
-
-
L-arginine degradation VIII (arginine oxidase pathway)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
L-arginine degradation XI
-
-
L-arginine degradation XII
-
-
L-ascorbate biosynthesis I (plants, L-galactose pathway)
-
-
L-ascorbate biosynthesis II (plants, L-gulose pathway)
-
-
L-aspartate degradation II (aerobic)
-
-
L-aspartate degradation III (anaerobic)
-
-
L-citrulline biosynthesis
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
L-dopa and L-dopachrome biosynthesis
-
-
L-dopa degradation I (mammalian)
-
-
L-dopa degradation II (bacterial)
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-glutamate degradation VI (to pyruvate)
-
-
L-glutamine biosynthesis I
-
-
L-histidine degradation I
-
-
L-histidine degradation II
-
-
L-histidine degradation III
-
-
L-histidine degradation V
-
-
L-histidine degradation VI
-
-
L-isoleucine degradation II
-
-
L-lactaldehyde degradation
-
-
L-leucine degradation III
-
-
L-lysine biosynthesis IV
-
-
L-lysine biosynthesis V
-
-
L-methionine degradation III
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
L-phenylalanine degradation III
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-serine biosynthesis I
-
-
L-tryptophan degradation I (via anthranilate)
-
-
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tryptophan degradation VI (via tryptamine)
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine degradation I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation III
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (reductive Stickland reaction)
-
-
L-valine degradation II
-
-
lactate fermentation
-
-
lacto-series glycosphingolipids biosynthesis
-
-
lactose degradation II
-
-
lactose degradation III
-
-
lanosterol biosynthesis
-
-
leucine metabolism
-
-
leukotriene biosynthesis
-
-
linamarin degradation
-
-
Linoleic acid metabolism
-
-
linustatin bioactivation
-
-
lipid A biosynthesis
-
-
lipid A-core biosynthesis (E. coli K-12)
-
-
lipid metabolism
-
-
lotaustralin degradation
-
-
luteolin triglucuronide degradation
-
-
Lysine biosynthesis
-
-
Lysine degradation
-
-
lysine metabolism
-
-
Mannose type O-glycan biosynthesis
-
-
matairesinol biosynthesis
-
-
melatonin degradation I
-
-
melatonin degradation II
-
-
melibiose degradation
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
methanofuran biosynthesis
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methyl indole-3-acetate interconversion
-
-
methyl ketone biosynthesis (engineered)
-
-
methyl tert-butyl ether degradation
-
-
methylaspartate cycle
methylsalicylate degradation
-
-
Microbial metabolism in diverse environments
-
-
mineralocorticoid biosynthesis
-
-
mixed acid fermentation
-
-
mucin core 1 and core 2 O-glycosylation
-
-
Mucin type O-glycan biosynthesis
-
-
myo-inositol biosynthesis
-
-
N-Glycan biosynthesis
-
-
N-methyl-Delta1-pyrrolinium cation biosynthesis
-
-
NAD metabolism
-
-
NAD salvage (plants)
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
NADPH to cytochrome c oxidase via plastocyanin
-
-
Naphthalene degradation
-
-
neolinustatin bioactivation
-
-
Nicotinate and nicotinamide metabolism
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nitric oxide biosynthesis II (mammals)
-
-
Nitrogen metabolism
-
-
nitrogen remobilization from senescing leaves
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
Novobiocin biosynthesis
-
-
nucleoside and nucleotide degradation (archaea)
-
-
O-antigen biosynthesis
-
-
o-diquinones biosynthesis
-
-
octopamine biosynthesis
-
-
oleandomycin activation/inactivation
-
-
oleate beta-oxidation
-
-
Other glycan degradation
-
-
Other types of O-glycan biosynthesis
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
Pantothenate and CoA biosynthesis
-
-
partial TCA cycle (obligate autotrophs)
-
-
pectin degradation II
-
-
pentachlorophenol degradation
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
pentose phosphate pathway (oxidative branch) I
-
-
phenol degradation
-
-
phenolic malonylglucosides biosynthesis
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
phenylethylamine degradation I
-
-
Phenylpropanoid biosynthesis
-
-
pheomelanin biosynthesis
-
-
phosphate acquisition
-
-
phosphatidate metabolism, as a signaling molecule
-
-
phosphatidylcholine acyl editing
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
photosynthesis
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
phytate degradation I
-
-
phytol degradation
-
-
plasmalogen biosynthesis
-
-
plasmalogen degradation
-
-
platensimycin biosynthesis
-
-
Porphyrin and chlorophyll metabolism
-
-
Primary bile acid biosynthesis
-
-
Propanoate metabolism
-
-
propanol degradation
-
-
propionate fermentation
-
-
psilocybin biosynthesis
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
Purine metabolism
-
-
purine metabolism
-
-
purine ribonucleosides degradation
-
-
putrescine biosynthesis III
-
-
putrescine degradation III
-
-
Pyrimidine metabolism
-
-
pyruvate fermentation to (R)-lactate
-
-
pyruvate fermentation to (S)-lactate
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol I
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to hexanol (engineered)
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
resolvin D biosynthesis
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
rosmarinic acid biosynthesis I
-
-
rosmarinic acid biosynthesis II
-
-
Rubisco shunt
-
-
salicylate biosynthesis I
-
-
salidroside biosynthesis
-
-
salinosporamide A biosynthesis
-
-
Salmonella enterica serotype O:13 O antigen biosynthesis
-
-
saponin biosynthesis II
-
-
secologanin and strictosidine biosynthesis
-
-
Secondary bile acid biosynthesis
-
-
sedoheptulose bisphosphate bypass
-
-
seleno-amino acid detoxification and volatilization I
-
-
seleno-amino acid detoxification and volatilization III
-
-
Selenocompound metabolism
-
-
serine metabolism
-
-
serotonin and melatonin biosynthesis
-
-
serotonin degradation
-
-
serotonin metabolism
-
-
sesamin biosynthesis
-
-
Sphingolipid metabolism
-
-
stachyose degradation
-
-
Starch and sucrose metabolism
-
-
starch biosynthesis
-
-
starch degradation
-
-
Steroid biosynthesis
-
-
Steroid degradation
-
-
Steroid hormone biosynthesis
-
-
Styrene degradation
-
-
succinate to chytochrome c oxidase via cytochrome c6
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
succinate to cytochrome c oxidase via plastocyanin
-
-
succinate to plastoquinol oxidase
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
sulfopterin metabolism
-
-
superoxide radicals degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of methylsalicylate metabolism
-
-
superpathway of photosynthetic hydrogen production
-
-
Taurine and hypotaurine metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
TCA cycle VIII (Chlamydia)
-
-
tea aroma glycosidic precursor bioactivation
-
-
testosterone and androsterone degradation to androstendione (aerobic)
-
-
Thiamine metabolism
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
Toluene degradation
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
triacylglycerol degradation
-
-
tRNA processing
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
tunicamycin biosynthesis
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
urea cycle
UTP and CTP dephosphorylation I
-
-
valine metabolism
-
-
Valine, leucine and isoleucine degradation
-
-
valproate beta-oxidation
-
-
vancomycin resistance I
-
-
vanillin biosynthesis I
-
-
Various types of N-glycan biosynthesis
-
-
vitamin B1 metabolism
-
-
vitamin K metabolism
-
-
vitamin K-epoxide cycle
VTC2 cycle
-
-
wogonin metabolism
-
-
xanthine and xanthosine salvage
-
-
xanthommatin biosynthesis
-
-
xyloglucan degradation II (exoglucanase)
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
of central ganglia
Manually annotated by BRENDA team
additional information
-
not in skin
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
NADPH-diaphorase reactive/NO synthase -immunoreactive materials are localized on the nuclear envelope and membrane segments of the rough and smooth endoplasmic reticulum, as well as the cell membrane and axolemma of positive perikarya
-
Manually annotated by BRENDA team
-
digestive juice, composition of the digestive juice containing enzyme and phytoestrogen compounds, overview
-
Manually annotated by BRENDA team
-
NADPH-diaphorase reactive/NO synthase-immunoreactive materials are localized on the nuclear envelope and membrane segments of the rough and smooth endoplasmic reticulum, as well as the cell membrane and axolemma of positive perikarya
-
Manually annotated by BRENDA team
additional information
-
no evidence for the postsynaptic location is found
-
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Helix pomatia)