Information on Organism Felis catus

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
preliminary BRENDA-supplied EC number
transferred to EC 1.1.5.3
deleted, the activty is included in EC 1.3.5.1, succinate dehydrogenase (quinone)
transferred to EC 1.3.8.7, medium-chain acyl-CoA dehydrogenase, EC 1.3.8.8, long-chain acyl-CoA dehydrogenase and EC 1.3.8.9, very-long-chain acyl-CoA dehydrogenase
transferred to EC 1.7.1.1, nitrate reductase (NADH), EC 1.7.1.2, nitrate reductase [NAD(P)H], EC 1.7.1.3, nitrate reductase (NADPH), EC 1.7.5.1, nitrate reductase (quinone), EC 1.7.7.2, nitrate reductase (ferredoxin) and EC 1.9.6.1, nitrate reductase (cytochrome)
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
reinstated 2006, had been eliminated in 1972
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
deleted 2008. Now divided into EC 4.3.1.23 (tyrosine ammonia-lyase), EC 4.3.1.24 (phenylalanine ammonia-lyase) and EC 4.3.1.25 (phenylalanine/tyrosine ammonia-lyase)
transferred to EC 5.4.2.11, EC 5.4.2.12. Now recognized as two separate enzymes EC 5.4.2.11, phosphoglycerate mutase (2,3-diphosphoglycerate-dependent) and EC 5.4.2.12, phosphoglycerate mutase (2,3-diphosphoglycerate-independent)
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-propane-1,2-diol degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
acetaldehyde biosynthesis I
-
-
acetylene degradation (anaerobic)
-
-
alpha-Linolenic acid metabolism
-
-
Biosynthesis of secondary metabolites
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
chitin degradation to ethanol
-
-
Chloroalkane and chloroalkene degradation
-
-
Drug metabolism - cytochrome P450
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
Fatty acid degradation
-
-
Glycine, serine and threonine metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
heterolactic fermentation
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
leucine metabolism
-
-
Metabolic pathways
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
methionine metabolism
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Naphthalene degradation
-
-
noradrenaline and adrenaline degradation
-
-
phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
phytol degradation
-
-
propanol degradation
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Retinol metabolism
-
-
salidroside biosynthesis
-
-
serotonin degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
valine metabolism
-
-
Caprolactam degradation
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
ethylene glycol biosynthesis (engineered)
-
-
Glycerolipid metabolism
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
lipid metabolism
-
-
Pentose and glucuronate interconversions
-
-
pyruvate fermentation to butanol I
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
Cysteine and methionine metabolism
-
-
L-homoserine biosynthesis
-
-
Lysine biosynthesis
-
-
threonine metabolism
-
-
(R,R)-butanediol biosynthesis
-
-
(R,R)-butanediol degradation
-
-
acetoin degradation
-
-
Butanoate metabolism
-
-
degradation of sugar alcohols
-
-
glycerol degradation II
-
-
glycerol degradation V
-
-
Propanoate metabolism
-
-
1,3-propanediol biosynthesis (engineered)
-
-
glycerol-3-phosphate shuttle
-
-
Glycerophospholipid metabolism
-
-
phosphatidate biosynthesis (yeast)
-
-
xylitol degradation
-
-
D-sorbitol degradation I
-
-
Fructose and mannose metabolism
-
-
Ascorbate and aldarate metabolism
-
-
D-galactose degradation IV
-
-
Folate biosynthesis
-
-
Galactose metabolism
-
-
L-arabinose degradation II
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
D-xylose degradation IV
-
-
glycolate and glyoxylate degradation
-
-
Glyoxylate and dicarboxylate metabolism
-
-
L-arabinose degradation IV
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
Bifidobacterium shunt
-
-
L-lactaldehyde degradation
-
-
lactate fermentation
-
-
pyruvate fermentation to (S)-lactate
-
-
Pyruvate metabolism
-
-
superpathway of glucose and xylose degradation
-
-
alanine metabolism
-
-
L-alanine degradation II (to D-lactate)
-
-
vancomycin resistance I
-
-
Methane metabolism
-
-
photorespiration
-
-
serine metabolism
-
-
isoprene biosynthesis II (engineered)
-
-
mevalonate metabolism
-
-
mevalonate pathway I
-
-
mevalonate pathway II (archaea)
-
-
mevalonate pathway III (archaea)
-
-
Terpenoid backbone biosynthesis
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
2-methylpropene degradation
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
adipate degradation
-
-
androstenedione degradation
-
-
Benzoate degradation
-
-
benzoyl-CoA degradation I (aerobic)
-
-
Carbon fixation pathways in prokaryotes
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
CO2 fixation in Crenarchaeota
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
Geraniol degradation
-
-
glutaryl-CoA degradation
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
Lysine degradation
-
-
methyl ketone biosynthesis (engineered)
-
-
methyl tert-butyl ether degradation
-
-
oleate beta-oxidation
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to hexanol (engineered)
-
-
Toluene degradation
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
Valine, leucine and isoleucine degradation
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
Carbon fixation in photosynthetic organisms
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
formaldehyde assimilation I (serine pathway)
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
glyoxylate cycle
-
-
incomplete reductive TCA cycle
-
-
malate/L-aspartate shuttle pathway
-
-
methylaspartate cycle
-
-
partial TCA cycle (obligate autotrophs)
-
-
pyruvate fermentation to propanoate I
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
gluconeogenesis
-
-
L-carnitine degradation III
-
-
L-malate degradation II
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
photosynthesis
-
-
L-glutamine biosynthesis III
-
-
ethylene biosynthesis V (engineered)
-
-
Glutathione metabolism
-
-
NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
glucose degradation (oxidative)
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (oxidative branch) I
-
-
Entner-Doudoroff pathway I
-
-
formaldehyde oxidation I
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
Primary bile acid biosynthesis
-
-
Steroid hormone biosynthesis
-
-
testosterone and androsterone degradation to androstendione
-
-
androgen and estrogen metabolism
-
-
Steroid degradation
-
-
estradiol biosynthesis I (via estrone)
-
-
C5-Branched dibasic acid metabolism
-
-
isoleucine metabolism
-
-
Valine, leucine and isoleucine biosynthesis
-
-
L-isoleucine biosynthesis I (from threonine)
-
-
L-isoleucine biosynthesis III
-
-
L-valine biosynthesis
-
-
Pantothenate and CoA biosynthesis
-
-
L-cysteine biosynthesis IX (Trichomonas vaginalis)
-
-
L-serine biosynthesis I
-
-
aminopropanol phosphate biosynthesis II
-
-
L-threonine degradation II
-
-
L-threonine degradation III (to methylglyoxal)
-
-
Entner Doudoroff pathway
-
-
androgen biosynthesis
-
-
progesterone biosynthesis
-
-
sitosterol degradation to androstenedione
-
-
cholesterol biosynthesis
-
-
cholesterol biosynthesis I
-
-
cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
-
-
Steroid biosynthesis
-
-
zymosterol biosynthesis
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
glycerol degradation III
-
-
adenosine nucleotides degradation I
-
-
Drug metabolism - other enzymes
-
-
guanosine ribonucleotides de novo biosynthesis
-
-
inosine 5'-phosphate degradation
-
-
Purine metabolism
-
-
purine metabolism
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
allopregnanolone biosynthesis
-
-
bile acid biosynthesis, neutral pathway
ketogluconate metabolism
Flavonoid biosynthesis
-
-
leucodelphinidin biosynthesis
-
-
leucopelargonidin and leucocyanidin biosynthesis
-
-
mannitol degradation II
-
-
isoprenoid biosynthesis
-
-
methylerythritol phosphate pathway I
-
-
methylerythritol phosphate pathway II
-
-
cholesterol biosynthesis (plants)
-
-
phytosterol biosynthesis (plants)
-
-
sterol biosynthesis (methylotrophs)
-
-
formaldehyde oxidation
-
-
formaldehyde oxidation II (glutathione-dependent)
-
-
protein S-nitrosylation and denitrosylation
-
-
L-galactonate degradation
-
-
nepetalactone biosynthesis
-
-
ascorbate metabolism
-
-
methane metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
glycerol degradation I
-
-
glycerol-3-phosphate to cytochrome bo oxidase electron transfer
-
-
glycerol-3-phosphate to fumarate electron transfer
-
-
glycerol-3-phosphate to hydrogen peroxide electron transport
-
-
glycerophosphodiester degradation
-
-
nitrate reduction IX (dissimilatory)
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
choline degradation I
-
-
glycine betaine biosynthesis
-
-
glycine betaine biosynthesis I (Gram-negative bacteria)
-
-
cellulose degradation
-
-
alkane oxidation
-
-
Arginine and proline metabolism
-
-
aromatic biogenic amine degradation (bacteria)
-
-
beta-Alanine metabolism
-
-
beta-methyl-branched fatty acid alpha-oxidation
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
ceramide degradation by alpha-oxidation
-
-
dimethylsulfoniopropanoate biosynthesis I (Wollastonia)
-
-
dimethylsulfoniopropanoate biosynthesis II (Spartina)
-
-
dopamine degradation
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
ethanol degradation III
-
-
ethanol degradation IV
-
-
fatty acid alpha-oxidation I (plants)
-
-
histamine degradation
-
-
hypotaurine degradation
-
-
Insect hormone biosynthesis
-
-
Limonene and pinene degradation
-
-
limonene degradation IV (anaerobic)
-
-
NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast)
-
-
non-pathway related
-
-
octane oxidation
putrescine degradation III
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
Phenylalanine metabolism
-
-
choline degradation IV
-
-
glycine betaine biosynthesis II (Gram-positive bacteria)
-
-
glycine betaine biosynthesis III (plants)
-
-
3-dehydroquinate biosynthesis II (archaea)
-
-
dipicolinate biosynthesis
-
-
ectoine biosynthesis
-
-
grixazone biosynthesis
-
-
L-lysine biosynthesis I
-
-
L-lysine biosynthesis II
-
-
L-lysine biosynthesis III
-
-
L-lysine biosynthesis VI
-
-
L-methionine biosynthesis IV (archaea)
-
-
Monobactam biosynthesis
-
-
norspermidine biosynthesis
-
-
spermidine biosynthesis II
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
glycerol degradation to butanol
-
-
glycolysis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV (plant cytosol)
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
4-aminobutanoate degradation III
-
-
Alanine, aspartate and glutamate metabolism
-
-
glutamate and glutamine metabolism
-
-
Nicotinate and nicotinamide metabolism
-
-
acetyl CoA biosynthesis
-
-
acrylate degradation
-
-
beta-alanine degradation I
-
-
beta-alanine degradation II
-
-
Inositol phosphate metabolism
-
-
myo-inositol degradation I
-
-
propanoyl-CoA degradation II
-
-
L-lysine degradation XI (mammalian)
-
-
lysine metabolism
-
-
2-amino-3-carboxymuconate semialdehyde degradation to 2-hydroxypentadienoate
-
-
2-amino-3-carboxymuconate semialdehyde degradation to glutaryl-CoA
-
-
2-aminophenol degradation
-
-
2-nitrobenzoate degradation I
-
-
4-chloronitrobenzene degradation
-
-
4-nitrotoluene degradation II
-
-
retinoate biosynthesis I
-
-
arginine metabolism
-
-
Carbapenem biosynthesis
-
-
L-citrulline biosynthesis
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
L-ornithine biosynthesis II
-
-
L-proline biosynthesis I (from L-glutamate)
-
-
proline metabolism
-
-
formaldehyde oxidation IV (thiol-independent)
-
-
methanol oxidation to carbon dioxide
-
-
acetate fermentation
-
-
acetyl-CoA biosynthesis II (NADP-dependent pyruvate dehydrogenase)
-
-
oxidative decarboxylation of pyruvate
-
-
heme metabolism
-
-
Porphyrin and chlorophyll metabolism
-
-
tetrapyrrole biosynthesis I (from glutamate)
-
-
alkane biosynthesis I
-
-
heptadecane biosynthesis
-
-
Cutin, suberine and wax biosynthesis
-
-
plasmalogen biosynthesis
-
-
sporopollenin precursors biosynthesis
-
-
wax esters biosynthesis I
-
-
ethylene biosynthesis II (microbes)
-
-
L-arginine degradation I (arginase pathway)
-
-
L-proline degradation
-
-
juvenile hormone III biosynthesis I
-
-
juvenile hormone III biosynthesis II
-
-
Vitamin B6 metabolism
-
-
oxalate degradation IV
-
-
pyruvate decarboxylation to acetyl CoA
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
vitamin B1 metabolism
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
pantothenate biosynthesis
-
-
(5Z)-dodecenoate biosynthesis I
-
-
(5Z)-dodecenoate biosynthesis II
-
-
8-amino-7-oxononanoate biosynthesis I
-
-
arachidonate biosynthesis
-
-
cis-vaccenate biosynthesis
Fatty acid biosynthesis
-
-
fatty acid elongation -- saturated
-
-
gondoate biosynthesis (anaerobic)
-
-
mycolate biosynthesis
-
-
oleate biosynthesis IV (anaerobic)
-
-
palmitate biosynthesis
-
-
palmitate biosynthesis II (bacteria and plant cytoplasm)
-
-
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)
-
-
stearate biosynthesis II (bacteria and plants)
-
-
superpathway of mycolate biosynthesis
-
-
3-dimethylallyl-4-hydroxybenzoate biosynthesis
-
-
L-tyrosine biosynthesis I
-
-
Novobiocin biosynthesis
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
cholesterol biosynthesis III (via desmosterol)
-
-
heme degradation I
-
-
1,4-dichlorobenzene degradation
-
-
2,4,5-trichlorophenoxyacetate degradation
-
-
2,4,6-trichlorophenol degradation
-
-
3,4,6-trichlorocatechol degradation
-
-
3,5-dichlorocatechol degradation
-
-
3-chlorocatechol degradation
-
-
3-chlorocatechol degradation I (ortho)
-
-
3-chlorocatechol degradation II (ortho)
-
-
4,5-dichlorocatechol degradation
-
-
4-aminophenol degradation
-
-
4-chlorocatechol degradation
-
-
4-hydroxyacetophenone degradation
-
-
4-nitrophenol degradation I
-
-
4-nitrophenol degradation II
-
-
4-sulfocatechol degradation
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
chlorosalicylate degradation
-
-
Fluorobenzoate degradation
-
-
gamma-hexachlorocyclohexane degradation
-
-
gamma-resorcylate degradation I
-
-
gamma-resorcylate degradation II
-
-
pentachlorophenol degradation
-
-
resorcinol degradation
jasmonic acid biosynthesis
-
-
(-)-maackiain biosynthesis
-
-
(-)-medicarpin biosynthesis
-
-
Isoflavonoid biosynthesis
-
-
2,3-cis-flavanols biosynthesis
-
-
proanthocyanidins biosynthesis from flavanols
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
6-gingerol analog biosynthesis (engineered)
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
Biosynthesis of unsaturated fatty acids
-
-
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
fatty acid beta-oxidation V (unsaturated, odd number, di-isomerase-dependent)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
oleate beta-oxidation (isomerase-dependent, yeast)
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
Oxidative phosphorylation
-
-
propionate fermentation
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
Carotenoid biosynthesis
-
-
carotenoid biosynthesis
-
-
L-leucine degradation I
-
-
3,8-divinyl-chlorophyllide a biosynthesis II (anaerobic)
-
-
heme b biosynthesis II (oxygen-independent)
-
-
4-aminobutanoate degradation V
-
-
Arginine biosynthesis
-
-
ethylene biosynthesis IV (engineered)
-
-
L-glutamate degradation I
-
-
Nitrogen metabolism
-
-
Taurine and hypotaurine metabolism
-
-
L-glutamate biosynthesis III
-
-
nitrate reduction V (assimilatory)
-
-
nitrate reduction VI (assimilatory)
-
-
L-glutamate biosynthesis I
-
-
L-glutamine degradation II
-
-
ammonia assimilation cycle I
-
-
L-glutamate biosynthesis IV
-
-
D-Arginine and D-ornithine metabolism
-
-
glycine metabolism
-
-
L-lysine degradation V
-
-
Penicillin and cephalosporin biosynthesis
-
-
Isoquinoline alkaloid biosynthesis
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-tryptophan degradation VI (via tryptamine)
-
-
melatonin degradation II
-
-
phenylethylamine degradation I
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
beta-alanine biosynthesis I
-
-
N-methyl-Delta1-pyrrolinium cation biosynthesis
-
-
glycine biosynthesis II
-
-
glycine cleavage
-
-
methylamine degradation I
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-ornithine degradation II (Stickland reaction)
-
-
L-proline biosynthesis II (from arginine)
-
-
L-proline biosynthesis III (from L-ornithine)
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
One carbon pool by folate
-
-
tetrahydrofolate biosynthesis
-
-
tetrahydrofolate metabolism
-
-
pyruvate fermentation to opines
-
-
folate transformations I
-
-
L-phenylalanine degradation V
-
-
tetrahydropteridine recycling
-
-
creatinine degradation
-
-
creatinine degradation I
-
-
creatinine degradation II
-
-
glycine betaine degradation I
-
-
polyamine pathway
-
-
spermine and spermidine degradation I
-
-
beta-alanine biosynthesis IV
-
-
spermine and spermidine degradation III
-
-
oxidative phosphorylation
-
-
(5R)-carbapenem carboxylate biosynthesis
proline to cytochrome bo oxidase electron transfer
-
-
NAD metabolism
-
-
NAD/NADH phosphorylation and dephosphorylation
-
-
Amino sugar and nucleotide sugar metabolism
-
-
superpathway of photosynthetic hydrogen production
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
vitamin K-epoxide cycle
-
-
ascorbate recycling (cytosolic)
-
-
Aminobenzoate degradation
-
-
nitrate reduction II (assimilatory)
-
-
ammonia oxidation II (anaerobic)
-
-
denitrification
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction VII (denitrification)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
formate to nitrite electron transfer
-
-
nitrate reduction IV (dissimilatory)
-
-
nitroethane degradation
-
-
allantoin degradation
-
-
Caffeine metabolism
-
-
urate conversion to allantoin I
-
-
nitrate assimilation
-
-
glutathione metabolism
-
-
glutathione-peroxide redox reactions
-
-
Selenocompound metabolism
-
-
thioredoxin pathway
-
-
sulfate reduction
-
-
sulfide oxidation IV (mitochondria)
-
-
sulfite oxidation IV
-
-
Sulfur metabolism
-
-
gliotoxin biosynthesis
-
-
ascorbate glutathione cycle
-
-
sulfide oxidation I (to sulfur globules)
-
-
sulfide oxidation III (to sulfite)
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
dissimilatory sulfate reduction II (to thiosulfate)
-
-
sulfite oxidation II
-
-
sulfite oxidation III
-
-
o-diquinones biosynthesis
-
-
justicidin B biosynthesis
-
-
matairesinol biosynthesis
-
-
sesamin biosynthesis
-
-
photosynthesis light reactions
-
-
reactive oxygen species degradation
-
-
superoxide radicals degradation
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
betanidin degradation
-
-
luteolin triglucuronide degradation
-
-
Phenylpropanoid biosynthesis
-
-
thyroid hormone biosynthesis
-
-
L-ascorbate degradation II (bacterial, aerobic)
-
-
L-ascorbate degradation III
-
-
L-ascorbate degradation V
-
-
manganese oxidation I
-
-
cutin biosynthesis
-
-
vernolate biosynthesis III
-
-
hydrogen production
-
-
hydrogen production III
-
-
hydrogen production VI
-
-
hydrogen production VIII
-
-
L-glutamate degradation VII (to butanoate)
-
-
catechol degradation to beta-ketoadipate
-
-
phenol degradation
-
-
2-nitrotoluene degradation
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
Styrene degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
Xylene degradation
-
-
4-hydroxymandelate degradation
-
-
gallate degradation
-
-
Polycyclic aromatic hydrocarbon degradation
-
-
protocatechuate degradation II (ortho-cleavage pathway)
-
-
L-tyrosine degradation I
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis I
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis II
-
-
L-tryptophan degradation I (via anthranilate)
-
-
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
divinyl ether biosynthesis II
-
-
Linoleic acid metabolism
-
-
cysteine metabolism
-
-
L-cysteine degradation I
-
-
taurine biosynthesis I
-
-
rutin degradation
-
-
plastoquinol-9 biosynthesis I
-
-
vitamin E biosynthesis (tocopherols)
-
-
anandamide lipoxygenation
-
-
15-epi-lipoxin biosynthesis
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
leukotriene biosynthesis
-
-
lipoxin biosynthesis
-
-
resolvin D biosynthesis
-
-
2-hydroxybiphenyl degradation
-
-
biphenyl degradation
-
-
carbazole degradation
-
-
Dioxin degradation
-
-
diphenyl ethers degradation
-
-
abscisic acid biosynthesis
-
-
retinol biosynthesis
-
-
procollagen hydroxylation and glycosylation
-
-
flavonoid biosynthesis
-
-
flavonoid biosynthesis (in equisetum)
-
-
pinobanksin biosynthesis
-
-
benzoate degradation I (aerobic)
-
-
methylsalicylate degradation
-
-
salicylate degradation I
-
-
chlorinated phenols degradation
-
-
phenol degradation I (aerobic)
-
-
nicotine degradation IV
-
-
cyclohexanol degradation
nitric oxide biosynthesis II (mammals)
-
-
Tetracycline biosynthesis
-
-
tetracycline resistance
-
-
1,5-anhydrofructose degradation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
Amaryllidacea alkaloids biosynthesis
-
-
bupropion degradation
-
-
melatonin degradation I
-
-
nicotine degradation V
-
-
vanillin biosynthesis I
-
-
bacterial bioluminescence
-
-
glucocorticoid biosynthesis
-
-
vitamin D3 biosynthesis
-
-
vitamin D3 metabolism
-
-
Cyanoamino acid metabolism
-
-
sophorolipid biosynthesis
-
-
suberin monomers biosynthesis
-
-
ergosterol biosynthesis II
-
-
mineralocorticoid biosynthesis
-
-
astaxanthin biosynthesis (bacteria, fungi, algae)
-
-
flexixanthin biosynthesis
-
-
L-phenylalanine degradation I (aerobic)
-
-
L-tyrosine biosynthesis IV
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
betalamic acid biosynthesis
-
-
catecholamine biosynthesis
rosmarinic acid biosynthesis II
-
-
serotonin and melatonin biosynthesis
-
-
Betalain biosynthesis
-
-
firefly bioluminescence
-
-
L-dopa and L-dopachrome biosynthesis
-
-
pheomelanin biosynthesis
-
-
CMP-N-glycoloylneuraminate biosynthesis
-
-
oleate biosynthesis II (animals and fungi)
-
-
sorgoleone biosynthesis
-
-
gamma-linolenate biosynthesis II (animals)
-
-
icosapentaenoate biosynthesis II (6-desaturase, mammals)
-
-
pyrrolnitrin biosynthesis
-
-
rebeccamycin biosynthesis
-
-
Staurosporine biosynthesis
-
-
(5Z)-icosenoate biosynthesis
-
-
arachidonate biosynthesis I (6-desaturase, lower eukaryotes)
-
-
arachidonate biosynthesis IV (8-detaturase, lower eukaryotes)
-
-
icosapentaenoate biosynthesis I (lower eukaryotes)
-
-
icosapentaenoate biosynthesis V (8-desaturase, lower eukaryotes)
-
-
arachidonate biosynthesis III (6-desaturase, mammals)
-
-
arachidonate biosynthesis V (8-detaturase, mammals)
-
-
icosapentaenoate biosynthesis III (8-desaturase, mammals)
-
-
berberine biosynthesis
-
-
chelerythrine biosynthesis
-
-
noscapine biosynthesis
-
-
anthocyanin biosynthesis
-
-
anthocyanin biosynthesis (pelargonidin 3-O-glucoside)
-
-
flavonol biosynthesis
-
-
rutin biosynthesis
-
-
syringetin biosynthesis
-
-
C20 prostanoid biosynthesis
-
-
ethylene biosynthesis III (microbes)
-
-
phenylmercury acetate degradation
2,3-trans-flavanols biosynthesis
-
-
adenosine nucleotides degradation II
-
-
caffeine degradation III (bacteria, via demethylation)
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
guanosine nucleotides degradation III
-
-
purine nucleobases degradation I (anaerobic)
-
-
purine nucleobases degradation II (anaerobic)
-
-
theophylline degradation
-
-
formate oxidation to CO2
-
-
oxalate degradation III
-
-
oxalate degradation VI
-
-
reductive acetyl coenzyme A pathway
-
-
Pyrimidine metabolism
-
-
Photosynthesis
-
-
nitrogen fixation I (ferredoxin)
-
-
arsenate detoxification I (mammalian)
-
-
arsenate detoxification II (glutaredoxin)
-
-
arsenate detoxification III (thioredoxin)
-
-
thyroid hormone metabolism I (via deiodination)
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
creatine biosynthesis
-
-
3,5-dimethoxytoluene biosynthesis
-
-
betaxanthin biosynthesis
-
-
guaiacol biosynthesis
-
-
L-dopa degradation
-
-
glutathione-mediated detoxification II
-
-
sulfur volatiles biosynthesis
-
-
L-methionine biosynthesis I
-
-
L-methionine biosynthesis III
-
-
L-methionine salvage from L-homocysteine
-
-
phosphatidylcholine biosynthesis V
-
-
phosphatidylethanolamine bioynthesis
-
-
glycine betaine biosynthesis IV (from glycine)
-
-
glycine betaine biosynthesis V (from glycine)
-
-
pyrimidine deoxyribonucleosides salvage
-
-
pyrimidine deoxyribonucleotides biosynthesis from CTP
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis I
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis II
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis IV
-
-
pyrimidine metabolism
-
-
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)
-
-
pinitol biosynthesis I
-
-
caffeine biosynthesis I
-
-
caffeine biosynthesis II (via paraxanthine)
-
-
theobromine biosynthesis I
-
-
carnitine metabolism
-
-
folate polyglutamylation
glycine betaine degradation II (mammalian)
-
-
glycine biosynthesis I
-
-
L-histidine degradation III
-
-
UMP biosynthesis I
-
-
UMP biosynthesis II
-
-
UMP biosynthesis III
-
-
L-arginine biosynthesis I (via L-ornithine)
-
-
L-arginine biosynthesis II (acetyl cycle)
-
-
L-arginine biosynthesis IV (archaebacteria)
-
-
L-citrulline degradation
-
-
urea cycle
Biosynthesis of ansamycins
-
-
Calvin-Benson-Bassham cycle
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
pentose phosphate pathway (non-oxidative branch)
-
-
pentose phosphate pathway (partial)
-
-
Rubisco shunt
-
-
L-isoleucine biosynthesis II
-
-
L-isoleucine biosynthesis IV
-
-
pyruvate fermentation to (R)-acetoin I
-
-
pyruvate fermentation to (R)-acetoin II
-
-
pyruvate fermentation to (S)-acetoin
-
-
chorismate metabolism
-
-
L-arginine biosynthesis III (via N-acetyl-L-citrulline)
-
-
L-ornithine biosynthesis I
-
-
Nitrotoluene degradation
-
-
acetate and ATP formation from acetyl-CoA I
-
-
gallate degradation III (anaerobic)
-
-
L-lysine fermentation to acetate and butanoate
-
-
methanogenesis from acetate
-
-
pyruvate fermentation to acetate II
-
-
pyruvate fermentation to acetate IV
-
-
sulfoacetaldehyde degradation I
-
-
sulfolactate degradation II
-
-
2-deoxy-D-ribose degradation II
-
-
acetoacetate degradation (to acetyl CoA)
-
-
acetyl-CoA fermentation to butanoate II
-
-
butanoate fermentation
-
-
ethylmalonyl-CoA pathway
-
-
isopropanol biosynthesis (engineered)
-
-
ketogenesis
-
-
ketolysis
-
-
polyhydroxybutanoate biosynthesis
-
-
pyruvate fermentation to acetone
-
-
Synthesis and degradation of ketone bodies
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
CDP-diacylglycerol biosynthesis
-
-
CDP-diacylglycerol biosynthesis I
-
-
CDP-diacylglycerol biosynthesis II
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
oleate biosynthesis III (cyanobacteria)
-
-
palmitoyl ethanolamide biosynthesis
-
-
stigma estolide biosynthesis
-
-
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast)
-
-
4-ethylphenol degradation (anaerobic)
-
-
4-oxopentanoate degradation
-
-
Ethylbenzene degradation
-
-
fermentation to 2-methylbutanoate
-
-
L-isoleucine degradation I
-
-
mitochondrial L-carnitine shuttle
-
-
monoacylglycerol metabolism (yeast)
-
-
dimorphecolate biosynthesis
-
-
docosahexaenoate biosynthesis I (lower eukaryotes)
-
-
hydroxylated fatty acid biosynthesis (plants)
-
-
linoleate biosynthesis I (plants)
-
-
phosphatidylcholine acyl editing
-
-
phosphatidylcholine biosynthesis VII
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
ricinoleate biosynthesis
-
-
ceramide biosynthesis
-
-
ceramide de novo biosynthesis
-
-
sphingolipid biosynthesis (plants)
-
-
Sphingolipid metabolism
-
-
sterol:steryl ester interconversion (yeast)
-
-
2-amino-3-hydroxycyclopent-2-enone biosynthesis
-
-
tetrapyrrole biosynthesis II (from glycine)
-
-
aromatic polyketides biosynthesis
-
-
flavonoid di-C-glucosylation
-
-
naringenin biosynthesis (engineered)
-
-
phloridzin biosynthesis
-
-
xanthohumol biosynthesis
-
-
fatty acid biosynthesis initiation (animals and fungi, cytoplasm)
-
-
palmitate biosynthesis (animals and fungi, cytoplasm)
-
-
Biosynthesis of 12-, 14- and 16-membered macrolides
-
-
erythromycin D biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
Stilbenoid, diarylheptanoid and gingerol biosynthesis
-
-
hydroxycinnamic acid tyramine amides biosynthesis
-
-
suberin monomers biosynthesis
-
-
Biosynthesis of enediyne antibiotics
-
-
patulin biosynthesis
-
-
Anthocyanin biosynthesis
-
-
salvianin biosynthesis
-
-
shisonin biosynthesis
-
-
superpathway of anthocyanin biosynthesis (from cyanidin and cyanidin 3-O-glucoside)
-
-
(9Z)-tricosene biosynthesis
-
-
juniperonate biosynthesis
-
-
sciadonate biosynthesis
-
-
stearate biosynthesis I (animals)
-
-
ultra-long-chain fatty acid biosynthesis
-
-
very long chain fatty acid biosynthesis I
-
-
very long chain fatty acid biosynthesis II
-
-
dimycocerosyl phthiocerol biosynthesis
-
-
dimycocerosyl triglycosyl phenolphthiocerol biosynthesis
-
-
NAD salvage pathway V (PNC V cycle)
-
-
sphingolipid biosynthesis (yeast)
-
-
D-Glutamine and D-glutamate metabolism
-
-
gamma-glutamyl cycle
-
-
hypoglycin biosynthesis
-
-
phytochelatins biosynthesis
-
-
protein ubiquitination
-
-
acetyl-CoA biosynthesis III (from citrate)
-
-
glycolate and glyoxylate degradation II
-
-
ferrichrome A biosynthesis
-
-
L-leucine biosynthesis
-
-
coenzyme B biosynthesis
-
-
FeMo cofactor biosynthesis
-
-
L-lysine biosynthesis IV
-
-
L-lysine biosynthesis V
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
Starch and sucrose metabolism
-
-
starch degradation III
-
-
starch degradation V
-
-
sucrose biosynthesis II
-
-
fructan biosynthesis
-
-
glycogen biosynthesis
-
-
glycogen biosynthesis II (from UDP-D-Glucose)
-
-
cellulose biosynthesis
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose biosynthesis III
-
-
chitin biosynthesis
-
-
saponin biosynthesis II
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
starch biosynthesis
-
-
starch degradation
-
-
starch degradation II
-
-
1,3-beta-D-glucan biosynthesis
-
-
mucin core 1 and core 2 O-glycosylation
-
-
mucin core 3 and core 4 O-glycosylation
-
-
Mucin type O-glycan biosynthesis
-
-
Other types of O-glycan biosynthesis
-
-
lipid A biosynthesis
-
-
lipid A-core biosynthesis (E. coli K-12)
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
terminal O-glycans residues modification (via type 2 precursor disaccharide)
-
-
complex N-linked glycan biosynthesis (plants)
-
-
complex N-linked glycan biosynthesis (vertebrates)
-
-
N-Glycan biosynthesis
-
-
Various types of N-glycan biosynthesis
-
-
Mannose type O-glycan biosynthesis
-
-
protein O-mannosylation I (yeast)
-
-
protein O-mannosylation II (mammals, core M1 and core M2)
-
-
protein O-mannosylation III (mammals, core M3)
-
-
Escherichia coli serotype O86 O-antigen biosynthesis
-
-
O-antigen biosynthesis
-
-
Peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis II (staphylococci)
-
-
peptidoglycan biosynthesis III (mycobacteria)
-
-
peptidoglycan biosynthesis IV (Enterococcus faecium)
-
-
peptidoglycan biosynthesis V (beta-lactam resistance)
-
-
peptidoglycan maturation (meso-diaminopimelate containing)
-
-
dolichyl-diphosphooligosaccharide biosynthesis
-
-
protein N-glycosylation initial phase (eukaryotic)
-
-
i antigen and I antigen biosynthesis
-
-
chondroitin biosynthesis
-
-
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate
-
-
globo-series glycosphingolipids biosynthesis
-
-
baicalein metabolism
-
-
wogonin metabolism
-
-
beta-(1,4)-mannan degradation
-
-
tylosin biosynthesis
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
guanine and guanosine salvage
-
-
nucleoside and nucleotide degradation (archaea)
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
purine ribonucleosides degradation
-
-
salinosporamide A biosynthesis
-
-
xanthine and xanthosine salvage
-
-
pyrimidine deoxyribonucleosides degradation
-
-
pyrimidine ribonucleosides degradation
-
-
(aminomethyl)phosphonate degradation
-
-
adenine and adenosine salvage II
-
-
adenine salvage
-
-
glyphosate degradation III
-
-
guanine and guanosine salvage II
-
-
NAD biosynthesis III (from nicotinamide)
-
-
ganglio-series glycosphingolipids biosynthesis
-
-
lacto-series glycosphingolipids biosynthesis
-
-
neolacto-series glycosphingolipids biosynthesis
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
2'-deoxymugineic acid phytosiderophore biosynthesis
-
-
ethylene biosynthesis I (plants)
-
-
L-methionine degradation I (to L-homocysteine)
-
-
S-adenosyl-L-methionine biosynthesis
-
-
S-adenosyl-L-methionine cycle II
-
-
flavin biosynthesis
-
-
flavin biosynthesis I (bacteria and plants)
-
-
flavin biosynthesis II (archaea)
-
-
flavin biosynthesis III (fungi)
-
-
Riboflavin metabolism
-
-
all-trans-farnesol biosynthesis
-
-
bisabolene biosynthesis (engineered)
-
-
methyl phomopsenoate biosynthesis
-
-
stellatic acid biosynthesis
-
-
trans, trans-farnesyl diphosphate biosynthesis
-
-
spermidine biosynthesis I
-
-
4-hydroxy-2-nonenal detoxification
-
-
camalexin biosynthesis
-
-
glutathione-mediated detoxification I
-
-
indole glucosinolate activation (intact plant cell)
-
-
chorismate biosynthesis from 3-dehydroquinate
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
chanoclavine I aldehyde biosynthesis
-
-
Indole alkaloid biosynthesis
-
-
plastoquinol-9 biosynthesis II
-
-
ubiquinol-10 biosynthesis (eukaryotic)
-
-
ubiquinol-10 biosynthesis (prokaryotic)
-
-
ubiquinol-6 biosynthesis from 4-hydroxybenzoate (eukaryotic)
-
-
ubiquinol-7 biosynthesis (eukaryotic)
-
-
ubiquinol-7 biosynthesis (prokaryotic)
-
-
ubiquinol-8 biosynthesis (eukaryotic)
-
-
ubiquinol-8 biosynthesis (prokaryotic)
-
-
ubiquinol-9 biosynthesis (eukaryotic)
-
-
ubiquinol-9 biosynthesis (prokaryotic)
-
-
ubiquinone biosynthesis
-
-
L-nicotianamine biosynthesis
-
-
L-cysteine biosynthesis I
-
-
seleno-amino acid biosynthesis (plants)
-
-
homocysteine and cysteine interconversion
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
L-methionine biosynthesis II (plants)
-
-
L-homocysteine biosynthesis
-
-
S-methyl-5-thio-alpha-D-ribose 1-phosphate degradation II
-
-
cis-zeatin biosynthesis
-
-
Zeatin biosynthesis
-
-
mono-trans, poly-cis decaprenyl phosphate biosynthesis
-
-
vitamin E metabolism
-
-
(R)-cysteate degradation
-
-
aspartate and asparagine metabolism
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-glutamate degradation II
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation VI (Stickland reaction)
-
-
sulfolactate degradation III
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation III
-
-
hydrogen sulfide biosynthesis I
-
-
L-cysteine degradation III
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
4-hydroxyphenylpyruvate biosynthesis
-
-
atromentin biosynthesis
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (Stickland reaction)
-
-
rosmarinic acid biosynthesis I
-
-
CMP-legionaminate biosynthesis I
-
-
UDP-GlcNAc biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis III
-
-
UDP-N-acetyl-D-glucosamine biosynthesis I
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
4-aminobutanoate degradation I
-
-
4-aminobutanoate degradation II
-
-
GABA shunt
-
-
L-glutamate degradation IV
-
-
nicotine degradation I (pyridine pathway)
-
-
Glucosinolate biosynthesis
-
-
L-alanine biosynthesis I
-
-
L-isoleucine biosynthesis V
-
-
L-leucine degradation IV (Stickland reaction)
-
-
L-valine degradation I
-
-
glycine biosynthesis III
-
-
L-serine biosynthesis II
-
-
L-arginine degradation II (AST pathway)
-
-
Phenazine biosynthesis
-
-
phenazine-1-carboxylate biosynthesis
-
-
dimethylsulfoniopropanoate biosynthesis III (algae)
-
-
L-homomethionine biosynthesis
-
-
d-mannose degradation
-
-
GDP-D-perosamine biosynthesis
-
-
GDP-glucose biosynthesis
-
-
glucose and glucose-1-phosphate degradation
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
Streptomycin biosynthesis
-
-
sucrose degradation III (sucrose invertase)
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
mannitol cycle
-
-
metabolism of disaccharids
-
-
sucrose degradation I (sucrose phosphotransferase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
sucrose degradation VII (sucrose 3-dehydrogenase)
-
-
D-galactose degradation I (Leloir pathway)
-
-
D-galactose detoxification
-
-
degradation of hexoses
-
-
stachyose degradation
-
-
D-gluconate degradation
-
-
L-idonate degradation
-
-
sorbitol biosynthesis II
-
-
D-arabitol degradation
-
-
D-xylose degradation I
-
-
adenine and adenosine salvage VI
-
-
cell-surface glycoconjugate-linked phosphocholine biosynthesis
-
-
phosphatidylcholine biosynthesis I
-
-
type IV lipoteichoic acid biosynthesis (S. pneumoniae)
-
-
L-threonine biosynthesis
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
glycolysis V (Pyrococcus)
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
pyrimidine ribonucleosides salvage I
-
-
3-phosphoinositide biosynthesis
-
-
D-myo-inositol (1,4,5)-trisphosphate biosynthesis
-
-
streptomycin biosynthesis
-
-
purine deoxyribonucleosides salvage
-
-
ceramide degradation (generic)
-
-
sphingosine metabolism
-
-
phosphatidate metabolism, as a signaling molecule
-
-
type I lipoteichoic acid biosynthesis (S. aureus)
-
-
1D-myo-inositol hexakisphosphate biosynthesis I (from Ins(1,4,5)P3)
-
-
1D-myo-inositol hexakisphosphate biosynthesis II (mammalian)
-
-
1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza)
-
-
1D-myo-inositol hexakisphosphate biosynthesis IV (Dictyostelium)
-
-
1D-myo-inositol hexakisphosphate biosynthesis V (from Ins(1,3,4)P3)
-
-
inositol diphosphates biosynthesis
-
-
glycine degradation (Stickland reaction)
-
-
L-threonine degradation I
-
-
creatine-phosphate biosynthesis
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
Thiamine metabolism
-
-
adenosine deoxyribonucleotides de novo biosynthesis
-
-
adenosine deoxyribonucleotides de novo biosynthesis II
-
-
CMP phosphorylation
-
-
guanosine deoxyribonucleotides de novo biosynthesis I
-
-
guanosine deoxyribonucleotides de novo biosynthesis II
-
-
ppGpp metabolism
-
-
pyrimidine deoxyribonucleotide phosphorylation
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis III
-
-
UTP and CTP de novo biosynthesis
-
-
PRPP biosynthesis
-
-
ppGpp biosynthesis
-
-
NAD salvage pathway IV (from nicotinamide riboside)
-
-
assimilatory sulfate reduction II
-
-
assimilatory sulfate reduction III
-
-
selenate reduction
-
-
sulfate activation for sulfonation
-
-
UDP-alpha-D-glucose biosynthesis I
-
-
GDP-mannose biosynthesis
-
-
L-ascorbate biosynthesis I (L-galactose pathway)
-
-
mRNA capping I
-
-
peptidoglycan biosynthesis I (meso-diaminopimelate containing)
-
-
Lipopolysaccharide biosynthesis
-
-
thiosulfate disproportionation IV (rhodanese)
-
-
Ether lipid metabolism
-
-
gala-series glycosphingolipids biosynthesis
-
-
3-oxoadipate degradation
-
-
4-methylcatechol degradation (ortho cleavage)
-
-
methyl indole-3-acetate interconversion
-
-
methylsalicylate degradation
-
-
superpathway of methylsalicylate metabolism
-
-
Bisphenol degradation
-
-
triacylglycerol degradation
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
plasmalogen degradation
-
-
sophorosyloxydocosanoate deacetylation
-
-
L-ascorbate biosynthesis IV
-
-
L-ascorbate biosynthesis VI (engineered pathway)
-
-
chlorogenic acid degradation
-
-
cellulose and hemicellulose degradation (cellulolosome)
-
-
acyl-CoA hydrolysis
-
-
stearate biosynthesis III (fungi)
-
-
methylglyoxal degradation
-
-
methylglyoxal degradation I
-
-
4-chlorobenzoate degradation
-
-
diethylphosphate degradation
-
-
sulfopterin metabolism
-
-
phosphate acquisition
-
-
2-arachidonoylglycerol biosynthesis
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
pyridine nucleotide cycling (plants)
-
-
tunicamycin biosynthesis
-
-
UTP and CTP dephosphorylation I
-
-
myo-inositol biosynthesis
-
-
phytate degradation I
-
-
D-myo-inositol (1,4,5)-trisphosphate degradation
-
-
myo-inositol biosynthesis
-
-
3-phosphoinositide degradation
-
-
degradation of aromatic, nitrogen containing compounds
-
-
fructose 2,6-bisphosphate biosynthesis
-
-
D-myo-inositol (1,3,4)-trisphosphate biosynthesis
-
-
ginkgotoxin biosynthesis
-
-
pyridoxal 5'-phosphate salvage II (plants)
-
-
phosphatidylcholine resynthesis via glycerophosphocholine
-
-
choline biosynthesis III
-
-
D-myo-inositol-5-phosphate metabolism
-
-
sphingolipid biosynthesis (mammals)
-
-
sphingomyelin metabolism
-
-
Glycosaminoglycan degradation
-
-
dolichol and dolichyl phosphate biosynthesis
-
-
chlorpyrifos degradation
-
-
methyl parathion degradation
-
-
paraoxon degradation
-
-
parathion degradation
-
-
tRNA processing
-
-
starch degradation I
-
-
cellulose degradation II (fungi)
-
-
(1,4)-beta-D-xylan degradation
-
-
d-xylose degradation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Other glycan degradation
-
-
alpha-tomatine degradation
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
ginsenoside metabolism
-
-
linamarin degradation
-
-
linustatin bioactivation
-
-
lotaustralin degradation
-
-
neolinustatin bioactivation
-
-
melibiose degradation
-
-
lactose degradation II
-
-
xyloglucan degradation II (exoglucanase)
-
-
trehalose degradation VI (periplasmic)
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
degradation of sugar acids
-
-
Flavone and flavonol biosynthesis
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
degradation of pentoses
-
-
pectin degradation II
-
-
trehalose biosynthesis V
-
-
fructan degradation
-
-
protein N-glycosylation processing phase (plants and animals)
-
-
protein N-glycosylation processing phase (yeast)
-
-
lactose degradation III
-
-
amygdalin and prunasin degradation
-
-
2,3-dihydroxybenzoate biosynthesis
-
-
Biosynthesis of siderophore group nonribosomal peptides
-
-
enterobactin biosynthesis
-
-
poly-hydroxy fatty acids biosynthesis
-
-
alliin metabolism
-
-
methiin metabolism
-
-
propanethial S-oxide biosynthesis
-
-
Ac/N-end rule pathway
-
-
Arg/N-end rule pathway (eukaryotic)
-
-
glutathione degradation (DUG pathway - yeast)
-
-
muropeptide degradation
-
-
nocardicin A biosynthesis
-
-
lipoprotein posttranslational modification
-
-
hemoglobin degradation
-
-
L-asparagine degradation I
-
-
superpathway of L-aspartate and L-asparagine biosynthesis
-
-
glutaminyl-tRNAgln biosynthesis via transamidation
-
-
L-asparagine biosynthesis III (tRNA-dependent)
-
-
L-glutamine degradation I
-
-
acrylonitrile degradation I
-
-
IAA biosynthesis
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
Atrazine degradation
-
-
urea degradation II
-
-
aldoxime degradation
-
-
NAD salvage pathway I (PNC VI cycle)
-
-
bile acids degradation
-
-
glycocholate metabolism (bacteria)
-
-
Secondary bile acid biosynthesis
-
-
vitamin B6 degradation
-
-
anandamide degradation
-
-
lipid IVA biosynthesis (E. coli)
-
-
lipid IVA biosynthesis (P. putida)
-
-
thymine degradation
-
-
uracil degradation I (reductive)
-
-
5-oxo-L-proline metabolism
-
-
urate conversion to allantoin II
-
-
urate conversion to allantoin III
-
-
canavanine degradation
-
-
L-arginine degradation VII (arginase 3 pathway)
-
-
putrescine biosynthesis III
-
-
L-arginine degradation V (arginine deiminase pathway)
-
-
L-arginine degradation III (arginine decarboxylase/agmatinase pathway)
-
-
putrescine biosynthesis I
-
-
protein citrullination
-
-
pyrimidine nucleobases salvage II
-
-
pyrimidine ribonucleosides salvage III
-
-
drosopterin and aurodrosopterin biosynthesis
-
-
pyrimidine ribonucleosides salvage II
-
-
UTP and CTP dephosphorylation II
-
-
pyrimidine deoxyribonucleotides dephosphorylation
-
-
2,2'-dihydroxybiphenyl degradation
-
-
dibenzofuran degradation
-
-
acetaldehyde biosynthesis II
-
-
long chain fatty acid ester synthesis (engineered)
-
-
pyruvate fermentation to acetate VIII
-
-
pyruvate fermentation to acetoin III
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
superpathway of ornithine degradation
-
-
arginine dependent acid resistance
-
-
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway)
-
-
putrescine biosynthesis II
-
-
spermidine biosynthesis III
-
-
histamine biosynthesis
-
-
methanofuran biosynthesis
-
-
octopamine biosynthesis
-
-
betaxanthin biosynthesis (via dopamine)
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
3,8-divinyl-chlorophyllide a biosynthesis I (aerobic, light-dependent)
-
-
3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
-
-
heme b biosynthesis I (aerobic)
-
-
heme b biosynthesis IV (Gram-positive bacteria)
-
-
superpathway of heme b biosynthesis from uroporphyrinogen-III
-
-
spermine biosynthesis
-
-
phosphatidylserine and phosphatidylethanolamine biosynthesis I
-
-
Benzoxazinoid biosynthesis
-
-
DIBOA-glucoside biosynthesis
-
-
L-tryptophan biosynthesis
-
-
glycine biosynthesis IV
-
-
L-threonine degradation IV
-
-
mevalonate degradation
-
-
4-hydroxy-2(1H)-quinolone biosynthesis
-
-
acridone alkaloid biosynthesis
-
-
cuticular wax biosynthesis
-
-
3-hydroxypropanoate cycle
-
-
cyanate degradation
glyoxylate assimilation
-
-
fatty acid beta-oxidation IV (unsaturated, even number)
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
D-galactarate degradation II
-
-
D-galacturonate degradation II
-
-
D-glucarate degradation II
-
-
D-glucuronate degradation II
-
-
L-histidine degradation I
-
-
L-histidine degradation II
-
-
L-histidine degradation VI
-
-
hyaluronan degradation
-
-
alginate degradation
-
-
chondroitin sulfate degradation I (bacterial)
-
-
heparin degradation
-
-
heparan sulfate degradation
-
-
dermatan sulfate degradation I (bacterial)
-
-
erythro-tetrahydrobiopterin biosynthesis I
-
-
erythro-tetrahydrobiopterin biosynthesis II
-
-
threo-tetrahydrobiopterin biosynthesis
-
-
gossypol biosynthesis
-
-
lacinilene C biosynthesis
-
-
farnesene biosynthesis
-
-
monoterpene biosynthesis
-
-
Monoterpenoid biosynthesis
-
-
L-glutamate degradation VI (to pyruvate)
-
-
L-ornithine degradation I (L-proline biosynthesis)
-
-
L-threonine degradation V
-
-
coumarins biosynthesis (engineered)
-
-
benzoate biosynthesis II (CoA-independent, non-beta-oxidative)
-
-
cinnamoyl-CoA biosynthesis
-
-
ephedrine biosynthesis
-
-
phenylpropanoid biosynthesis, initial reactions
-
-
canavanine biosynthesis
-
-
allantoin degradation to glyoxylate I
-
-
allantoin degradation to glyoxylate III
-
-
dimethyl sulfide biosynthesis from methionine
-
-
selenocysteine biosynthesis
-
-
D-serine metabolism
-
-
vancomycin resistance II
-
-
4-hydroxymandelate degradation
-
-
mandelate degradation I
-
-
colanic acid building blocks biosynthesis
-
-
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
-
-
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
-
-
UDP-alpha-D-galactose biosynthesis
-
-
teichuronic acid biosynthesis (B. subtilis 168)
-
-
UDP-N-acetyl-D-galactosamine biosynthesis I
-
-
beta-1,4-D-mannosyl-N-acetyl-D-glucosamine degradation
-
-
D-mannose degradation
-
-
mannitol biosynthesis
-
-
D-sorbitol biosynthesis I
-
-
fucose degradation
-
-
brassinosteroid biosynthesis I
-
-
brassinosteroid biosynthesis II
-
-
eumelanin biosynthesis
-
-
glucosylglycerol biosynthesis
-
-
Rapoport-Luebering glycolytic shunt
-
-
2-carboxy-1,4-naphthoquinol biosynthesis
-
-
salicylate biosynthesis I
-
-
vitamin K metabolism
-
-
lanosterol biosynthesis
-
-
O-antigen building blocks biosynthesis (E. coli)
-
-
UDP-alpha-D-galactofuranose biosynthesis
-
-
trehalose biosynthesis IV
-
-
di-myo-inositol phosphate biosynthesis
-
-
mycothiol biosynthesis
-
-
phosphatidylinositol biosynthesis I (bacteria)
-
-
secologanin and strictosidine biosynthesis
-
-
Aminoacyl-tRNA biosynthesis
-
-
tRNA charging
-
-
L-selenocysteine biosynthesis I (bacteria)
-
-
L-selenocysteine biosynthesis II (archaea and eukaryotes)
-
-
acetate conversion to acetyl-CoA
-
-
adlupulone and adhumulone biosynthesis
-
-
cis-genanyl-CoA degradation
-
-
colupulone and cohumulone biosynthesis
-
-
lupulone and humulone biosynthesis
-
-
alkane biosynthesis II
-
-
linoleate biosynthesis II (animals)
-
-
long-chain fatty acid activation
-
-
oleate biosynthesis I (plants)
-
-
wax esters biosynthesis II
-
-
itaconate degradation
-
-
4-coumarate degradation (aerobic)
-
-
4-coumarate degradation (anaerobic)
-
-
caffeoylglucarate biosynthesis
-
-
phaselate biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
trans-caffeate degradation (aerobic)
-
-
umbelliferone biosynthesis
-
-
ammonia assimilation cycle II
-
-
L-glutamine biosynthesis I
-
-
phosphopantothenate biosynthesis I
-
-
ergothioneine biosynthesis I (bacteria)
-
-
glutathione biosynthesis
-
-
homoglutathione biosynthesis
-
-
ophthalmate biosynthesis
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate containing)
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-containing)
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis III (meso-diaminopimelate containing)
-
-
formate assimilation into 5,10-methylenetetrahydrofolate
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
L-asparagine biosynthesis I
-
-
anapleurotic synthesis of oxalacetate
-
-
Aflatoxin biosynthesis
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
jadomycin biosynthesis
-
-
Fe(II) oxidation
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
D-lactate to cytochrome bo oxidase electron transfer
-
-
NADH to cytochrome bo oxidase electron transfer II
-
-
pyruvate to cytochrome bo oxidase electron transfer
-
-
ammonia oxidation IV (autotrophic ammonia oxidizers)
-
-
arsenite oxidation I (respiratory)
-
-
ATP biosynthesis
-
-
oleandomycin activation/inactivation
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
abdominal skin
Manually annotated by BRENDA team
-
prominent expression and activity of isoform TGase II
Manually annotated by BRENDA team
-
basal surface
Manually annotated by BRENDA team
-
distribution of neprilysin is high in the striatum, globus pallidus, and substantia nigra, but very low in the cerebral cortex
Manually annotated by BRENDA team
-
NADPH-diaphorase activity is found in the midpiece of the spermatozoa tail and epithelial cells of all intratesticular and excurrent ducts analyzed, except for nonciliated cells of the efferent ductules. Immunostaining shows cell-specific localization in the efferent ductules and region- and cell-specific localization in the epididymal duct
Manually annotated by BRENDA team
-
in culture
Manually annotated by BRENDA team
-
distribution of neprilysin is high in the striatum, globus pallidus, and substantia nigra, but very low in the cerebral cortex
Manually annotated by BRENDA team
-
only about 20% of the activity of normal liver
Manually annotated by BRENDA team
-
-
Manually annotated by BRENDA team
-
-
Manually annotated by BRENDA team
-
-
Manually annotated by BRENDA team
-
isolated cardiac myocyte shows only isoform arginase-I
Manually annotated by BRENDA team
-
-
Manually annotated by BRENDA team
initially present in the sperm acrosomal vesicle of mammalian spermatozoa as the zymogen form, proacrosin, converted to the active form during the acrosome reaction, after which most acrosin molecules are released from the acrosomal vesicle, with a portion remaining associated with the sperm
Manually annotated by BRENDA team
-
distribution of neprilysin is high in the striatum, globus pallidus, and substantia nigra, but very low in the cerebral cortex
Manually annotated by BRENDA team
at oestrus and mid and late phases of pseudopregnancy
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
membrane-bound
Manually annotated by BRENDA team
additional information
-
polarized distribution
-
Manually annotated by BRENDA team