Information on Organism Catharanthus roseus

TaxTree of Organism Catharanthus roseus
Condensed Tree View
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(3R)-linalool biosynthesis
-
-
(3S)-linalool biosynthesis
-
-
(aminomethyl)phosphonate degradation
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1,5-anhydrofructose degradation
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
2'-deoxymugineic acid phytosiderophore biosynthesis
-
-
2,3-dihydroxybenzoate biosynthesis
-
-
2-arachidonoylglycerol biosynthesis
-
-
2-carboxy-1,4-naphthoquinol biosynthesis
-
-
2-deoxy-D-ribose degradation II
-
-
2-methylpropene degradation
-
-
2-nitrotoluene degradation
-
-
3-dehydroquinate biosynthesis I
-
-
3-hydroxypropanoate cycle
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
3-methylbutanol biosynthesis (engineered)
-
-
4-aminobutanoate degradation V
-
-
4-coumarate degradation (aerobic)
-
-
4-coumarate degradation (anaerobic)
-
-
4-hydroxy-2(1H)-quinolone biosynthesis
-
-
4-hydroxy-2-nonenal detoxification
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
4-oxopentanoate degradation
-
-
6-gingerol analog biosynthesis (engineered)
-
-
acacetin biosynthesis
-
-
acetaldehyde biosynthesis I
-
-
acetoacetate degradation (to acetyl CoA)
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetyl CoA biosynthesis
-
-
acetyl-CoA fermentation to butanoate II
-
-
acetylene degradation (anaerobic)
-
-
acridone alkaloid biosynthesis
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage II
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
adenine and adenosine salvage VI
-
-
adenine salvage
-
-
adenosine nucleotides degradation I
-
-
adenosine nucleotides degradation II
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
ajmaline and sarpagine biosynthesis
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
aldoxime degradation
-
-
alkane oxidation
-
-
all-trans-farnesol biosynthesis
-
-
alpha-Linolenic acid metabolism
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminobenzoate degradation
-
-
ammonia assimilation cycle I
-
-
amygdalin and prunasin degradation
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
anthocyanin biosynthesis
-
-
anthocyanin biosynthesis (pelargonidin 3-O-glucoside)
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
arginine dependent acid resistance
-
-
arginine metabolism
-
-
aromatic biogenic amine degradation (bacteria)
-
-
aromatic polyketides biosynthesis
-
-
arsenite oxidation I (respiratory)
-
-
artemisinin and arteannuin B biosynthesis
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate metabolism
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
assimilatory sulfate reduction I
-
-
assimilatory sulfate reduction II
-
-
assimilatory sulfate reduction III
-
-
astaxanthin biosynthesis (bacteria, fungi, algae)
-
-
ATP biosynthesis
-
-
avenacin A-1 biosynthesis
-
-
bacterial bioluminescence
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
benzoate biosynthesis II (CoA-independent, non-beta-oxidative)
-
-
Benzoate degradation
-
-
Benzoxazinoid biosynthesis
-
-
beta-alanine biosynthesis I
-
-
beta-Alanine metabolism
-
-
beta-carboline biosynthesis
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
beta-methyl-branched fatty acid alpha-oxidation
-
-
Betalain biosynthesis
-
-
betanidin degradation
-
-
betaxanthin biosynthesis
-
-
betaxanthin biosynthesis (via dopamine)
-
-
Bifidobacterium shunt
-
-
Biosynthesis of ansamycins
-
-
Biosynthesis of secondary metabolites
-
-
Biosynthesis of siderophore group nonribosomal peptides
-
-
bisabolene biosynthesis (engineered)
-
-
brassicicene C biosynthesis
-
-
bupropion degradation
-
-
butanoate fermentation
-
-
Butanoate metabolism
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
C20 prostanoid biosynthesis
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
caffeine biosynthesis I
-
-
caffeine biosynthesis II (via paraxanthine)
-
-
Caffeine metabolism
-
-
caffeoylglucarate biosynthesis
-
-
Calvin-Benson-Bassham cycle
-
-
camalexin biosynthesis
-
-
cannabinoid biosynthesis
-
-
Caprolactam degradation
-
-
capsaicin biosynthesis
-
-
Carbapenem biosynthesis
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
Carotenoid biosynthesis
-
-
carotenoid biosynthesis
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
catecholamine biosynthesis
CDP-diacylglycerol biosynthesis
-
-
CDP-diacylglycerol biosynthesis I
-
-
CDP-diacylglycerol biosynthesis II
-
-
CDP-diacylglycerol biosynthesis III
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
ceramide degradation by alpha-oxidation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
chitin degradation to ethanol
-
-
Chloroalkane and chloroalkene degradation
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
chlorogenic acid biosynthesis I
-
-
cholesterol biosynthesis
-
-
choline biosynthesis III
-
-
chorismate metabolism
-
-
chrysin biosynthesis
-
-
cinnamoyl-CoA biosynthesis
-
-
cis-zeatin biosynthesis
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
CO2 fixation in Crenarchaeota
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
coumarins biosynthesis (engineered)
-
-
creatine-phosphate biosynthesis
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
crotonosine biosynthesis
-
-
cyanate degradation
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
cytokinin-O-glucosides biosynthesis
-
-
D-galactose degradation IV
-
-
D-myo-inositol (1,4,5)-trisphosphate biosynthesis
-
-
D-myo-inositol-5-phosphate metabolism
-
-
D-sorbitol degradation I
-
-
degradation of sugar acids
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
diethylphosphate degradation
-
-
DIMBOA-glucoside biosynthesis
-
-
dimethylsulfoniopropanoate biosynthesis I (Wollastonia)
-
-
dimethylsulfoniopropanoate biosynthesis II (Spartina)
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
dissimilatory sulfate reduction II (to thiosulfate)
-
-
Diterpenoid biosynthesis
-
-
divinyl ether biosynthesis II
-
-
dopamine degradation
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
enterobactin biosynthesis
-
-
Entner Doudoroff pathway
-
-
Entner-Doudoroff pathway I
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
ephedrine biosynthesis
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation III
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
Ether lipid metabolism
-
-
ethylene biosynthesis I (plants)
-
-
ethylene biosynthesis III (microbes)
-
-
ethylene biosynthesis IV (engineered)
-
-
ethylene glycol biosynthesis (engineered)
-
-
ethylmalonyl-CoA pathway
-
-
fatty acid alpha-oxidation I (plants)
-
-
Fatty acid degradation
-
-
Fe(II) oxidation
-
-
ferrichrome A biosynthesis
-
-
firefly bioluminescence
-
-
Flavone and flavonol biosynthesis
-
-
flavonoid biosynthesis
-
-
Flavonoid biosynthesis
-
-
flavonoid biosynthesis (in equisetum)
-
-
flavonoid di-C-glucosylation
-
-
flavonol biosynthesis
-
-
flexixanthin biosynthesis
-
-
Folate biosynthesis
-
-
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
formaldehyde assimilation I (serine pathway)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
Fructose and mannose metabolism
-
-
fusicoccin A biosynthesis
-
-
GABA shunt
-
-
Galactose metabolism
-
-
GDP-glucose biosynthesis
-
-
geraniol and geranial biosynthesis
-
-
geranyl diphosphate biosynthesis
-
-
geranylgeranyl diphosphate biosynthesis
-
-
ginsenoside metabolism
-
-
ginsenosides biosynthesis
-
-
gliotoxin biosynthesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glucose and glucose-1-phosphate degradation
-
-
glucosylglycerol biosynthesis
-
-
glutamate and glutamine metabolism
-
-
glutaryl-CoA degradation
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
glutathione-peroxide redox reactions
-
-
glycerol degradation to butanol
-
-
Glycerolipid metabolism
-
-
Glycerophospholipid metabolism
-
-
glycine betaine biosynthesis
-
-
Glycine, serine and threonine metabolism
-
-
glycogen biosynthesis
-
-
glycogen biosynthesis II (from UDP-D-Glucose)
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV (plant cytosol)
-
-
glycolysis V (Pyrococcus)
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
glycyrrhetinate biosynthesis
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate assimilation
-
-
glyoxylate cycle
-
-
glyphosate degradation III
-
-
heterolactic fermentation
-
-
histamine degradation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
homocysteine and cysteine interconversion
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
hydroxycinnamic acid serotonin amides biosynthesis
-
-
hydroxycinnamic acid tyramine amides biosynthesis
-
-
hyoscyamine and scopolamine biosynthesis
-
-
hypotaurine degradation
-
-
incomplete reductive TCA cycle
-
-
Indole alkaloid biosynthesis
-
-
indole glucosinolate activation (intact plant cell)
-
-
indole-3-acetate biosynthesis II
-
-
Inositol phosphate metabolism
-
-
Insect hormone biosynthesis
-
-
ipsdienol biosynthesis
-
-
Isoflavonoid biosynthesis
-
-
isoflavonoid biosynthesis II
-
-
isoleucine metabolism
-
-
isoprene biosynthesis II (engineered)
-
-
isoprenoid biosynthesis
-
-
isopropanol biosynthesis (engineered)
-
-
Isoquinoline alkaloid biosynthesis
-
-
jasmonic acid biosynthesis
-
-
justicidin B biosynthesis
-
-
kaempferide triglycoside biosynthesis
-
-
ketogenesis
-
-
ketolysis
-
-
L-alanine degradation II (to D-lactate)
-
-
L-arabinose degradation II
-
-
L-arginine degradation III (arginine decarboxylase/agmatinase pathway)
-
-
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway)
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-ascorbate degradation II (bacterial, aerobic)
-
-
L-ascorbate degradation III
-
-
L-ascorbate degradation V
-
-
L-citrulline biosynthesis
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
L-dopa and L-dopachrome biosynthesis
-
-
L-glutamate biosynthesis IV
-
-
L-glutamate degradation I
-
-
L-glutamate degradation IV
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-isoleucine biosynthesis I (from threonine)
-
-
L-isoleucine biosynthesis III
-
-
L-isoleucine degradation II
-
-
L-lactaldehyde degradation
-
-
L-leucine degradation I
-
-
L-leucine degradation III
-
-
L-lysine fermentation to acetate and butanoate
-
-
L-methionine biosynthesis I
-
-
L-methionine biosynthesis II (plants)
-
-
L-methionine biosynthesis III
-
-
L-methionine biosynthesis IV (archaea)
-
-
L-methionine degradation I (to L-homocysteine)
-
-
L-methionine degradation III
-
-
L-methionine salvage from L-homocysteine
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
L-ornithine biosynthesis II
-
-
L-ornithine degradation II (Stickland reaction)
-
-
L-phenylalanine degradation III
-
-
L-proline biosynthesis I (from L-glutamate)
-
-
L-proline biosynthesis II (from arginine)
-
-
L-proline biosynthesis III (from L-ornithine)
-
-
L-tryptophan biosynthesis
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tryptophan degradation VI (via tryptamine)
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
L-tyrosine degradation I
-
-
L-tyrosine degradation III
-
-
L-valine biosynthesis
-
-
L-valine degradation II
-
-
lactate fermentation
-
-
lanosterol biosynthesis
-
-
leucine metabolism
-
-
leucodelphinidin biosynthesis
-
-
leucopelargonidin and leucocyanidin biosynthesis
-
-
Limonene and pinene degradation
-
-
limonene degradation IV (anaerobic)
-
-
linalool biosynthesis I
-
-
Linoleic acid metabolism
-
-
lipid A biosynthesis
-
-
lipid A-core biosynthesis (E. coli K-12)
-
-
lipid metabolism
-
-
lupeol biosynthesis
-
-
luteolin biosynthesis
-
-
luteolin triglucuronide degradation
-
-
Lysine degradation
-
-
malate/L-aspartate shuttle pathway
-
-
mangrove triterpenoid biosynthesis
-
-
mannitol cycle
-
-
matairesinol biosynthesis
-
-
melatonin degradation I
-
-
melibiose degradation
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
methanofuran biosynthesis
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methyl phomopsenoate biosynthesis
-
-
methyl tert-butyl ether degradation
-
-
methylaspartate cycle
-
-
methylerythritol phosphate pathway I
-
-
methylerythritol phosphate pathway II
-
-
mevalonate degradation
-
-
mevalonate metabolism
-
-
mevalonate pathway I
-
-
mevalonate pathway II (archaea)
-
-
mevalonate pathway III (archaea)
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
mono-trans, poly-cis decaprenyl phosphate biosynthesis
-
-
Monobactam biosynthesis
-
-
Monoterpenoid biosynthesis
-
-
morphine biosynthesis
-
-
N-methyl-Delta1-pyrrolinium cation biosynthesis
-
-
NAD biosynthesis from 2-amino-3-carboxymuconate semialdehyde
-
-
NAD biosynthesis III (from nicotinamide)
-
-
NAD de novo biosynthesis I (from aspartate)
-
-
NAD metabolism
-
-
NAD salvage pathway I (PNC VI cycle)
-
-
NAD salvage pathway V (PNC V cycle)
-
-
NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast)
-
-
Naphthalene degradation
-
-
naringenin biosynthesis (engineered)
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
nepetalactone biosynthesis
-
-
Nicotinate and nicotinamide metabolism
-
-
nicotine biosynthesis
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nitrate reduction II (assimilatory)
-
-
nitric oxide biosynthesis II (mammals)
-
-
Nitrogen metabolism
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
nucleoside and nucleotide degradation (archaea)
-
-
o-diquinones biosynthesis
-
-
octane oxidation
octopamine biosynthesis
-
-
oleandomycin activation/inactivation
-
-
oleanolate biosynthesis
-
-
oleate beta-oxidation
-
-
One carbon pool by folate
-
-
ophiobolin F biosynthesis
-
-
oxidative decarboxylation of pyruvate
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
palmitoyl ethanolamide biosynthesis
-
-
Pantothenate and CoA biosynthesis
-
-
pantothenate biosynthesis
-
-
partial TCA cycle (obligate autotrophs)
-
-
paspaline biosynthesis
-
-
pectin degradation I
-
-
pectin degradation II
-
-
pentachlorophenol degradation
-
-
pentacyclic triterpene biosynthesis
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch)
-
-
pentose phosphate pathway (oxidative branch) I
-
-
pentose phosphate pathway (partial)
-
-
phaselate biosynthesis
-
-
Phenazine biosynthesis
-
-
phenol degradation
-
-
phenolic malonylglucosides biosynthesis
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis, initial reactions
-
-
phenylpropanoids methylation (ice plant)
-
-
pheomelanin biosynthesis
-
-
phloridzin biosynthesis
-
-
phosphate acquisition
-
-
phosphatidate metabolism, as a signaling molecule
-
-
phosphatidylcholine acyl editing
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
phosphopantothenate biosynthesis I
-
-
Photosynthesis
-
-
photosynthesis
-
-
photosynthesis light reactions
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
phytol degradation
-
-
pinobanksin biosynthesis
-
-
plasmalogen biosynthesis
-
-
plasmalogen degradation
-
-
plaunotol biosynthesis
-
-
polyamine pathway
-
-
polyhydroxybutanoate biosynthesis
-
-
polymethylated kaempferol biosynthesis
-
-
polymethylated myricetin biosynthesis (tomato)
-
-
ponciretin biosynthesis
-
-
Porphyrin and chlorophyll metabolism
-
-
proanthocyanidins biosynthesis from flavanols
-
-
procollagen hydroxylation and glycosylation
-
-
proline metabolism
-
-
Propanoate metabolism
-
-
propanol degradation
-
-
propionate fermentation
-
-
protein ubiquitination
-
-
psilocybin biosynthesis
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
Purine metabolism
-
-
purine metabolism
-
-
purine ribonucleosides degradation
-
-
putrescine biosynthesis I
-
-
putrescine biosynthesis II
-
-
putrescine biosynthesis III
-
-
putrescine degradation III
-
-
pyridine nucleotide cycling (plants)
-
-
pyridoxal 5'-phosphate biosynthesis I
-
-
pyrimidine deoxyribonucleosides degradation
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
pyrrolnitrin biosynthesis
-
-
pyruvate decarboxylation to acetyl CoA
-
-
pyruvate fermentation to (S)-lactate
-
-
pyruvate fermentation to acetone
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol I
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to hexanol (engineered)
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
pyruvate fermentation to opines
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
rebeccamycin biosynthesis
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
resolvin D biosynthesis
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
rosmarinic acid biosynthesis I
-
-
Rubisco shunt
-
-
rutin biosynthesis
-
-
S-adenosyl-L-methionine biosynthesis
-
-
S-adenosyl-L-methionine cycle I
-
-
S-adenosyl-L-methionine cycle II
-
-
S-methyl-5'-thioadenosine degradation I
-
-
S-methyl-5'-thioadenosine degradation IV
-
-
salicylate biosynthesis I
-
-
salidroside biosynthesis
-
-
scopoletin biosynthesis
-
-
secologanin and strictosidine biosynthesis
-
-
selenate reduction
-
-
seleno-amino acid biosynthesis (plants)
-
-
Selenocompound metabolism
-
-
serotonin and melatonin biosynthesis
-
-
serotonin degradation
-
-
sesamin biosynthesis
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
sophorosyloxydocosanoate deacetylation
-
-
soybean saponin I biosynthesis
-
-
spermidine biosynthesis I
-
-
spermidine biosynthesis III
-
-
spermine biosynthesis
-
-
Sphingolipid metabolism
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
sphingosine metabolism
-
-
stachyose degradation
-
-
Starch and sucrose metabolism
-
-
starch degradation
-
-
Staurosporine biosynthesis
-
-
stellatic acid biosynthesis
-
-
Steroid biosynthesis
-
-
Steroid hormone biosynthesis
-
-
sterol:steryl ester interconversion (yeast)
-
-
stigma estolide biosynthesis
-
-
Stilbenoid, diarylheptanoid and gingerol biosynthesis
-
-
Streptomycin biosynthesis
-
-
Styrene degradation
-
-
suberin monomers biosynthesis
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
sucrose biosynthesis II
-
-
sucrose degradation I (sucrose phosphotransferase)
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
sucrose degradation VII (sucrose 3-dehydrogenase)
-
-
sulfate activation for sulfonation
-
-
sulfate reduction
-
-
sulfite oxidation II
-
-
sulfite oxidation III
-
-
sulfopterin metabolism
-
-
Sulfur metabolism
-
-
sulfur volatiles biosynthesis
-
-
superoxide radicals degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of hyoscyamine and scopolamine biosynthesis
-
-
superpathway of nicotine biosynthesis
-
-
superpathway of ornithine degradation
-
-
superpathway of photosynthetic hydrogen production
-
-
superpathway of scopolin and esculin biosynthesis
-
-
Synthesis and degradation of ketone bodies
-
-
syringetin biosynthesis
-
-
Taurine and hypotaurine metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
Terpenoid backbone biosynthesis
-
-
theobromine biosynthesis I
-
-
Thiamine metabolism
-
-
thiazole biosynthesis I (facultative anaerobic bacteria)
-
-
thiazole biosynthesis II (aerobic bacteria)
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
trans, trans-farnesyl diphosphate biosynthesis
-
-
trans-caffeate degradation (aerobic)
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
triacylglycerol degradation
-
-
tRNA processing
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
type I lipoteichoic acid biosynthesis (S. aureus)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
UDP-alpha-D-glucuronate biosynthesis (from myo-inositol)
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
umbelliferone biosynthesis
-
-
valine metabolism
-
-
Valine, leucine and isoleucine biosynthesis
-
-
Valine, leucine and isoleucine degradation
-
-
vancomycin resistance I
-
-
vanillin biosynthesis I
-
-
vindoline, vindorosine and vinblastine biosynthesis
-
-
viridicatumtoxin biosynthesis
-
-
vitamin B1 metabolism
-
-
vitamin K metabolism
-
-
vitamin K-epoxide cycle
-
-
xanthohumol biosynthesis
-
-
Xylene degradation
-
-
Zeatin biosynthesis
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
low activity
Manually annotated by BRENDA team
-
preferentially expressed in internal phloem associated parenchyma cells
Manually annotated by BRENDA team
-
no association between plantlet formation and other biosynthetic enzymes such as deacetoxyvindoline 4-hydroxylase and tryptophan decarboxylase, is found
Manually annotated by BRENDA team
-
actively growing cells around the root tip
Manually annotated by BRENDA team
similar activity as in leaves
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
C0KYN4
T16H is anchored to the endoplasmic reticulum as a monomer via a putative 18-residue N-terminal helix
Manually annotated by BRENDA team
-
the enzyme resides in the nucleocytoplasmic compartment following passive diffusion to the nucleus allowed by the protein size. Colocalization with deacetylvindoline-4-O-acetyltransferase
Manually annotated by BRENDA team
additional information
LINKS TO OTHER DATABASES (specific for Catharanthus roseus)