Information on Organism Aspergillus oryzae

TaxTree of Organism Aspergillus oryzae
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
transferred to EC 1.1.5.3
deleted, the activty is included in EC 1.3.5.1, succinate dehydrogenase (quinone)
transferred to EC 1.7.1.1, nitrate reductase (NADH), EC 1.7.1.2, nitrate reductase [NAD(P)H], EC 1.7.1.3, nitrate reductase (NADPH), EC 1.7.5.1, nitrate reductase (quinone), EC 1.7.7.2, nitrate reductase (ferredoxin) and EC 1.9.6.1, nitrate reductase (cytochrome)
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-propane-1,2-diol degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
acetaldehyde biosynthesis I
-
-
acetylene degradation (anaerobic)
-
-
alpha-Linolenic acid metabolism
-
-
Biosynthesis of secondary metabolites
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
chitin degradation to ethanol
-
-
Chloroalkane and chloroalkene degradation
-
-
Drug metabolism - cytochrome P450
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
Fatty acid degradation
-
-
Glycine, serine and threonine metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
heterolactic fermentation
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
leucine metabolism
-
-
Metabolic pathways
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
methionine metabolism
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Naphthalene degradation
-
-
noradrenaline and adrenaline degradation
-
-
phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
phytol degradation
-
-
propanol degradation
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Retinol metabolism
-
-
salidroside biosynthesis
-
-
serotonin degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
valine metabolism
-
-
degradation of sugar alcohols
-
-
glycerol degradation II
-
-
glycerol degradation V
-
-
Glycerolipid metabolism
-
-
Propanoate metabolism
-
-
Pentose and glucuronate interconversions
-
-
xylitol degradation
-
-
D-glucuronate degradation I
-
-
L-arabinose degradation II
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
Bifidobacterium shunt
-
-
Cysteine and methionine metabolism
-
-
L-lactaldehyde degradation
-
-
lactate fermentation
-
-
pyruvate fermentation to (S)-lactate
-
-
Pyruvate metabolism
-
-
superpathway of glucose and xylose degradation
-
-
alanine metabolism
-
-
L-alanine degradation II (to D-lactate)
-
-
vancomycin resistance I
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
formaldehyde assimilation I (serine pathway)
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate cycle
-
-
incomplete reductive TCA cycle
-
-
malate/L-aspartate shuttle pathway
-
-
Methane metabolism
-
-
methylaspartate cycle
-
-
partial TCA cycle (obligate autotrophs)
-
-
pyruvate fermentation to propanoate I
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
-
-
L-glutamine biosynthesis III
-
-
ethylene biosynthesis V (engineered)
-
-
Glutathione metabolism
-
-
NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
glucose degradation (oxidative)
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (oxidative branch) I
-
-
Entner-Doudoroff pathway I
-
-
formaldehyde oxidation I
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
CDP-diacylglycerol biosynthesis
-
-
CDP-diacylglycerol biosynthesis I
-
-
CDP-diacylglycerol biosynthesis II
-
-
CDP-diacylglycerol biosynthesis III
-
-
glucosylglycerol biosynthesis
-
-
Glycerophospholipid metabolism
-
-
Entner Doudoroff pathway
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Folate biosynthesis
-
-
D-xylose degradation II
-
-
L-leucine degradation IV (Stickland reaction)
-
-
(1'S,5'S)-averufin biosynthesis
-
-
Aflatoxin biosynthesis
-
-
Galactose metabolism
-
-
methane metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
glycerol degradation I
-
-
glycerol-3-phosphate shuttle
-
-
glycerol-3-phosphate to cytochrome bo oxidase electron transfer
-
-
glycerol-3-phosphate to fumarate electron transfer
-
-
glycerol-3-phosphate to hydrogen peroxide electron transport
-
-
glycerophosphodiester degradation
-
-
nitrate reduction IX (dissimilatory)
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
cellulose degradation
-
-
retinoate biosynthesis I
-
-
photosynthesis
-
-
Nicotinate and nicotinamide metabolism
-
-
Tryptophan metabolism
-
-
Valine, leucine and isoleucine degradation
-
-
Vitamin B6 metabolism
-
-
Biotin metabolism
-
-
Fatty acid biosynthesis
-
-
fatty acid elongation -- saturated
-
-
lipid metabolism
-
-
myristate biosynthesis (mitochondria)
-
-
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast)
-
-
Porphyrin and chlorophyll metabolism
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
Butanoate metabolism
-
-
Oxidative phosphorylation
-
-
propionate fermentation
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
L-leucine degradation I
-
-
4-aminobutanoate degradation V
-
-
Alanine, aspartate and glutamate metabolism
-
-
Arginine biosynthesis
-
-
ethylene biosynthesis IV (engineered)
-
-
glutamate and glutamine metabolism
-
-
L-glutamate degradation I
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
Nitrogen metabolism
-
-
Taurine and hypotaurine metabolism
-
-
L-glutamate biosynthesis III
-
-
nitrate reduction V (assimilatory)
-
-
nitrate reduction VI (assimilatory)
-
-
Isoquinoline alkaloid biosynthesis
-
-
Phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
Arginine and proline metabolism
-
-
D-Arginine and D-ornithine metabolism
-
-
glycine metabolism
-
-
L-lysine degradation V
-
-
lysine metabolism
-
-
Penicillin and cephalosporin biosynthesis
-
-
beta-alanine biosynthesis I
-
-
histamine degradation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
N-methyl-Delta1-pyrrolinium cation biosynthesis
-
-
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
One carbon pool by folate
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
tetrahydrofolate metabolism
-
-
flavin biosynthesis
-
-
Riboflavin metabolism
-
-
non-pathway related
-
-
superpathway of photosynthetic hydrogen production
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
vitamin K-epoxide cycle
-
-
nitrate reduction II (assimilatory)
-
-
alkylnitronates degradation
-
-
ammonia oxidation II (anaerobic)
-
-
denitrification
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction VII (denitrification)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
nitrate assimilation
-
-
gliotoxin biosynthesis
-
-
o-diquinones biosynthesis
-
-
justicidin B biosynthesis
-
-
matairesinol biosynthesis
-
-
sesamin biosynthesis
-
-
Ascorbate and aldarate metabolism
-
-
ethanol degradation IV
-
-
reactive oxygen species degradation
-
-
superoxide radicals degradation
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
betanidin degradation
-
-
luteolin triglucuronide degradation
-
-
Phenylpropanoid biosynthesis
-
-
glutathione-peroxide redox reactions
-
-
manganese oxidation I
-
-
Drug metabolism - other enzymes
-
-
2-nitrotoluene degradation
-
-
Benzoate degradation
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
phenol degradation
-
-
Styrene degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
Xylene degradation
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis I
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis II
-
-
L-tryptophan degradation I (via anthranilate)
-
-
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
tryptophan metabolism
-
-
divinyl ether biosynthesis II
-
-
jasmonic acid biosynthesis
-
-
Linoleic acid metabolism
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
Polycyclic aromatic hydrocarbon degradation
-
-
nicotine degradation IV
-
-
nitric oxide biosynthesis II (mammals)
-
-
1,5-anhydrofructose degradation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Aminobenzoate degradation
-
-
bupropion degradation
-
-
Caffeine metabolism
-
-
melatonin degradation I
-
-
nicotine degradation V
-
-
Steroid hormone biosynthesis
-
-
vanillin biosynthesis I
-
-
heme degradation I
-
-
heme metabolism
-
-
bile acid biosynthesis, neutral pathway
Primary bile acid biosynthesis
-
-
ginsenoside metabolism
-
-
ginsenosides biosynthesis
-
-
cholesterol biosynthesis
-
-
cholesterol biosynthesis (plants)
-
-
ergosterol biosynthesis II
-
-
Steroid biosynthesis
-
-
Caprolactam degradation
-
-
octane oxidation
Betalain biosynthesis
-
-
firefly bioluminescence
-
-
L-dopa and L-dopachrome biosynthesis
-
-
pheomelanin biosynthesis
-
-
Biosynthesis of unsaturated fatty acids
-
-
oleate biosynthesis II (animals and fungi)
-
-
sorgoleone biosynthesis
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
gamma-linolenate biosynthesis II (animals)
-
-
icosapentaenoate biosynthesis II (6-desaturase, mammals)
-
-
crepenynate biosynthesis
-
-
C20 prostanoid biosynthesis
-
-
ergothioneine biosynthesis II (fungi)
-
-
chitin degradation III (Serratia)
-
-
ethylene biosynthesis III (microbes)
-
-
formate oxidation to CO2
-
-
oxalate degradation III
-
-
oxalate degradation VI
-
-
purine nucleobases degradation I (anaerobic)
-
-
purine nucleobases degradation II (anaerobic)
-
-
reductive acetyl coenzyme A pathway
-
-
Photosynthesis
-
-
photosynthesis light reactions
-
-
nitrogen fixation I (ferredoxin)
-
-
berberine biosynthesis
-
-
chelerythrine biosynthesis
-
-
coptisine biosynthesis
-
-
dehydroscoulerine biosynthesis
-
-
epiberberine biosynthesis
-
-
noscapine biosynthesis
-
-
palmatine biosynthesis
-
-
sanguinarine and macarpine biosynthesis
-
-
glutathione-mediated detoxification II
-
-
sulfur volatiles biosynthesis
-
-
capsaicin biosynthesis
-
-
chlorogenic acid biosynthesis I
-
-
coumarins biosynthesis (engineered)
-
-
Flavonoid biosynthesis
-
-
phenylpropanoid biosynthesis
phenylpropanoids methylation (ice plant)
-
-
scopoletin biosynthesis
-
-
Stilbenoid, diarylheptanoid and gingerol biosynthesis
-
-
suberin monomers biosynthesis
aflatoxins B2 and G2 biosynthesis
-
-
sterigmatocystin biosynthesis
-
-
L-arginine biosynthesis I (via L-ornithine)
-
-
L-arginine biosynthesis II (acetyl cycle)
-
-
L-arginine biosynthesis IV (archaebacteria)
-
-
L-citrulline biosynthesis
-
-
L-citrulline degradation
-
-
L-proline biosynthesis II (from arginine)
-
-
urea cycle
Biosynthesis of ansamycins
-
-
Calvin-Benson-Bassham cycle
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
pentose phosphate pathway (non-oxidative branch)
-
-
pentose phosphate pathway (partial)
-
-
Rubisco shunt
-
-
Nitrotoluene degradation
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
2-deoxy-D-ribose degradation II
-
-
2-methylpropene degradation
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
4-ethylphenol degradation (anaerobic)
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
4-oxopentanoate degradation
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
acetoacetate degradation (to acetyl CoA)
-
-
acetyl-CoA fermentation to butanoate II
-
-
androstenedione degradation
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
Ethylbenzene degradation
-
-
ethylmalonyl-CoA pathway
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
fermentation to 2-methylbutanoate
-
-
Geraniol degradation
-
-
glutaryl-CoA degradation
-
-
isoprene biosynthesis II (engineered)
-
-
isopropanol biosynthesis (engineered)
-
-
ketogenesis
-
-
ketolysis
-
-
L-isoleucine degradation I
-
-
L-lysine fermentation to acetate and butanoate
-
-
methyl tert-butyl ether degradation
-
-
mevalonate pathway I
-
-
mevalonate pathway II (archaea)
-
-
mevalonate pathway III (archaea)
-
-
oleate beta-oxidation
-
-
polyhydroxybutanoate biosynthesis
-
-
pyruvate fermentation to acetone
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol I
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to hexanol (engineered)
-
-
sitosterol degradation to androstenedione
-
-
Cutin, suberine and wax biosynthesis
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
carnitine metabolism
-
-
mitochondrial L-carnitine shuttle
-
-
sterol:steryl ester interconversion (yeast)
-
-
2-amino-3-hydroxycyclopent-2-enone biosynthesis
-
-
tetrapyrrole biosynthesis II (from glycine)
-
-
8-amino-7-oxononanoate biosynthesis I
-
-
8-amino-7-oxononanoate biosynthesis II
-
-
8-amino-7-oxononanoate biosynthesis III
-
-
biotin biosynthesis
-
-
aromatic polyketides biosynthesis
-
-
flavonoid biosynthesis
-
-
flavonoid biosynthesis (in equisetum)
-
-
flavonoid di-C-glucosylation
-
-
naringenin biosynthesis (engineered)
-
-
phloridzin biosynthesis
-
-
xanthohumol biosynthesis
-
-
cuticular wax biosynthesis
-
-
long chain fatty acid ester synthesis (engineered)
-
-
wax esters biosynthesis I
-
-
wax esters biosynthesis II
-
-
fatty acid biosynthesis initiation (animals and fungi, cytoplasm)
-
-
palmitate biosynthesis (animals and fungi, cytoplasm)
-
-
Biosynthesis of 12-, 14- and 16-membered macrolides
-
-
erythromycin D biosynthesis
-
-
Biosynthesis of enediyne antibiotics
-
-
patulin biosynthesis
-
-
Biosynthesis of various secondary metabolites - part 1
-
-
NAD salvage pathway V (PNC V cycle)
-
-
Cyanoamino acid metabolism
-
-
gamma-glutamyl cycle
-
-
glutathione metabolism
-
-
hypoglycin biosynthesis
-
-
leukotriene biosynthesis
-
-
protein ubiquitination
-
-
acetyl-CoA biosynthesis III (from citrate)
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
Starch and sucrose metabolism
-
-
starch degradation III
-
-
starch degradation V
-
-
sucrose biosynthesis II
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose biosynthesis III
-
-
Amino sugar and nucleotide sugar metabolism
-
-
chitin biosynthesis
-
-
glycogen biosynthesis
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis II (from UDP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
starch biosynthesis
-
-
starch degradation
-
-
starch degradation IV
-
-
starch degradation II
-
-
complex N-linked glycan biosynthesis (vertebrates)
-
-
Glycosaminoglycan biosynthesis - keratan sulfate
-
-
N-Glycan biosynthesis
-
-
Various types of N-glycan biosynthesis
-
-
ABH and Lewis epitopes biosynthesis from type 1 precursor disaccharide
-
-
biosynthesis of Lewis epitopes (H. pylori)
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
lacto-series glycosphingolipids biosynthesis
-
-
fructan biosynthesis
-
-
complex N-linked glycan biosynthesis (plants)
-
-
cichoriin interconversion
-
-
daphnin interconversion
-
-
cardenolide glucosides biosynthesis
-
-
solasodine glycosylation
-
-
ajmaline and sarpagine biosynthesis
-
-
Indole alkaloid biosynthesis
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
adenosine nucleotides degradation II
-
-
arsenate detoxification I (mammalian)
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
guanine and guanosine salvage
-
-
guanosine nucleotides degradation III
-
-
inosine 5'-phosphate degradation
-
-
nucleoside and nucleotide degradation (archaea)
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
Purine metabolism
-
-
purine metabolism
-
-
purine ribonucleosides degradation
-
-
Pyrimidine metabolism
-
-
salinosporamide A biosynthesis
-
-
xanthine and xanthosine salvage
-
-
(aminomethyl)phosphonate degradation
-
-
adenine and adenosine salvage II
-
-
adenine salvage
-
-
glyphosate degradation III
-
-
guanine and guanosine salvage II
-
-
S-methyl-5'-thioadenosine degradation II
-
-
Flavone and flavonol biosynthesis
-
-
(3R)-linalool biosynthesis
-
-
(3S)-linalool biosynthesis
-
-
all-trans-farnesol biosynthesis
-
-
bisabolene biosynthesis (engineered)
-
-
geranyl diphosphate biosynthesis
-
-
ipsdienol biosynthesis
-
-
isoprenoid biosynthesis
-
-
linalool biosynthesis I
-
-
mono-trans, poly-cis decaprenyl phosphate biosynthesis
-
-
stellatic acid biosynthesis
-
-
Terpenoid backbone biosynthesis
-
-
trans, trans-farnesyl diphosphate biosynthesis
-
-
viridicatumtoxin biosynthesis
-
-
4-hydroxy-2-nonenal detoxification
-
-
camalexin biosynthesis
-
-
glutathione-mediated detoxification I
-
-
indole glucosinolate activation (intact plant cell)
-
-
pentachlorophenol degradation
-
-
brassicicene C biosynthesis
-
-
fusicoccin A biosynthesis
-
-
geranylgeranyl diphosphate biosynthesis
-
-
methyl phomopsenoate biosynthesis
-
-
ophiobolin F biosynthesis
-
-
paspaline biosynthesis
-
-
plaunotol biosynthesis
-
-
chanoclavine I aldehyde biosynthesis
-
-
2'-deoxymugineic acid phytosiderophore biosynthesis
-
-
L-nicotianamine biosynthesis
-
-
cis-zeatin biosynthesis
-
-
Zeatin biosynthesis
-
-
stephacidin A biosynthesis
-
-
(R)-cysteate degradation
-
-
aspartate and asparagine metabolism
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
cysteine metabolism
-
-
gluconeogenesis
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-glutamate degradation II
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-phenylalanine degradation VI (Stickland reaction)
-
-
Novobiocin biosynthesis
-
-
sulfolactate degradation III
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation III
-
-
D-Alanine metabolism
-
-
Lysine degradation
-
-
L-serine biosynthesis II
-
-
serine metabolism
-
-
1,3-propanediol biosynthesis (engineered)
-
-
Fructose and mannose metabolism
-
-
GDP-glucose biosynthesis
-
-
glucose and glucose-1-phosphate degradation
-
-
glycolysis
-
-
glycolysis III (from glucose)
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
Streptomycin biosynthesis
-
-
sucrose degradation III (sucrose invertase)
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
D-sorbitol degradation I
-
-
mannitol cycle
-
-
metabolism of disaccharids
-
-
sucrose degradation I (sucrose phosphotransferase)
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
sucrose degradation VII (sucrose 3-dehydrogenase)
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis IV (plant cytosol)
-
-
D-arabitol degradation
-
-
D-xylose degradation I
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
glycerol degradation to butanol
-
-
creatine-phosphate biosynthesis
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
Thiamine metabolism
-
-
thiamine diphosphate biosynthesis III (Staphylococcus)
-
-
thiamine diphosphate biosynthesis IV (eukaryotes)
-
-
thiamine salvage III
-
-
thiamine salvage IV (yeast)
-
-
vitamin B1 metabolism
-
-
assimilatory sulfate reduction II
-
-
assimilatory sulfate reduction III
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
dissimilatory sulfate reduction II (to thiosulfate)
-
-
Monobactam biosynthesis
-
-
selenate reduction
-
-
Selenocompound metabolism
-
-
sulfate activation for sulfonation
-
-
sulfate reduction
-
-
sulfite oxidation III
-
-
Sulfur metabolism
-
-
dopamine degradation
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
methyl indole-3-acetate interconversion
-
-
methylsalicylate degradation
-
-
retinol biosynthesis
-
-
superpathway of methylsalicylate metabolism
-
-
triacylglycerol degradation
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
Ether lipid metabolism
-
-
phosphatidylcholine acyl editing
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
plasmalogen degradation
-
-
resolvin D biosynthesis
-
-
sophorosyloxydocosanoate deacetylation
-
-
pectin degradation I
-
-
pectin degradation II
-
-
ascorbate metabolism
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
L-ascorbate biosynthesis IV
-
-
L-ascorbate biosynthesis VI (engineered pathway)
-
-
sorbitol biosynthesis II
-
-
monoacylglycerol metabolism (yeast)
-
-
chlorogenic acid degradation
-
-
cellulose and hemicellulose degradation (cellulolosome)
-
-
polyethylene terephthalate degradation
-
-
acyl-CoA hydrolysis
-
-
bacterial bioluminescence
-
-
cutin biosynthesis
-
-
sporopollenin precursors biosynthesis
-
-
stearate biosynthesis I (animals)
-
-
stearate biosynthesis III (fungi)
-
-
formaldehyde oxidation
-
-
formaldehyde oxidation II (glutathione-dependent)
-
-
acyl-[acyl-carrier protein] thioesterase pathway
-
-
arachidonate biosynthesis
-
-
cis-vaccenate biosynthesis
mycobacterial sulfolipid biosynthesis
-
-
oleate biosynthesis I (plants)
-
-
palmitate biosynthesis
-
-
palmitate biosynthesis II (bacteria and plant cytoplasm)
-
-
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)
-
-
palmitoleate biosynthesis II (plants and bacteria)
-
-
petroselinate biosynthesis
-
-
stearate biosynthesis II (bacteria and plants)
-
-
diethylphosphate degradation
-
-
sulfopterin metabolism
-
-
NAD metabolism
-
-
phosphate acquisition
-
-
Inositol phosphate metabolism
-
-
myo-inositol biosynthesis
-
-
phytate degradation I
-
-
mannitol biosynthesis
-
-
2-arachidonoylglycerol biosynthesis
-
-
plasmalogen biosynthesis
-
-
D-myo-inositol (1,4,5)-trisphosphate biosynthesis
-
-
D-myo-inositol-5-phosphate metabolism
-
-
phosphatidate metabolism, as a signaling molecule
-
-
Sphingolipid metabolism
-
-
tRNA processing
-
-
starch degradation I
-
-
cellulose degradation II (fungi)
-
-
(1,4)-beta-D-xylan degradation
-
-
d-xylose degradation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
Other glycan degradation
-
-
alpha-tomatine degradation
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
linamarin degradation
-
-
linustatin bioactivation
-
-
lotaustralin degradation
-
-
neolinustatin bioactivation
-
-
melibiose degradation
-
-
stachyose degradation
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
lactose degradation II
-
-
xyloglucan degradation II (exoglucanase)
-
-
d-mannose degradation
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
trehalose degradation VI (periplasmic)
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
degradation of sugar acids
-
-
rutin degradation (plants)
-
-
degradation of hexoses
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
degradation of pentoses
-
-
trehalose biosynthesis V
-
-
beta-(1,4)-mannan degradation
-
-
fructan degradation
-
-
lactose degradation III
-
-
protein N-glycosylation processing phase (plants and animals)
-
-
amygdalin and prunasin degradation
-
-
tea aroma glycosidic precursor bioactivation
-
-
ginsenoside degradation I
-
-
ginsenoside degradation III
-
-
protein N-glycosylation processing phase (yeast)
-
-
alliin metabolism
-
-
methiin metabolism
-
-
propanethial S-oxide biosynthesis
-
-
Ac/N-end rule pathway
-
-
Arg/N-end rule pathway (eukaryotic)
-
-
Peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis II (staphylococci)
-
-
peptidoglycan biosynthesis IV (Enterococcus faecium)
-
-
peptidoglycan maturation (meso-diaminopimelate containing)
-
-
nocardicin A biosynthesis
-
-
L-asparagine degradation I
-
-
superpathway of L-aspartate and L-asparagine biosynthesis
-
-
D-Glutamine and D-glutamate metabolism
-
-
glutaminyl-tRNAgln biosynthesis via transamidation
-
-
L-asparagine biosynthesis III (tRNA-dependent)
-
-
L-glutamine degradation I
-
-
acrylonitrile degradation I
-
-
arginine metabolism
-
-
degradation of aromatic, nitrogen containing compounds
-
-
IAA biosynthesis
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
Atrazine degradation
-
-
urea degradation II
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
ceramide degradation (generic)
-
-
ceramide degradation by alpha-oxidation
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
sphingosine metabolism
-
-
NAD salvage pathway II (PNC IV cycle)
-
-
adenosine nucleotides degradation I
-
-
indole glucosinolate activation (herbivore attack)
-
-
indole-3-acetate biosynthesis V (bacteria and fungi)
-
-
pyrimidine deoxyribonucleotides biosynthesis from CTP
-
-
UTP and CTP dephosphorylation I
-
-
L-tyrosine degradation I
-
-
heparan sulfate degradation
-
-
heparin degradation
-
-
4-hydroxymandelate degradation
indole-3-acetate degradation II
-
-
mandelate degradation I
-
-
beta-Alanine metabolism
-
-
GABA shunt
-
-
L-glutamate degradation IV
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
arginine dependent acid resistance
-
-
L-arginine degradation III (arginine decarboxylase/agmatinase pathway)
-
-
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway)
-
-
polyamine pathway
-
-
putrescine biosynthesis I
-
-
putrescine biosynthesis II
-
-
spermidine biosynthesis III
-
-
pyrimidine metabolism
-
-
UMP biosynthesis I
-
-
UMP biosynthesis II
-
-
UMP biosynthesis III
-
-
(S)-reticuline biosynthesis I
-
-
betaxanthin biosynthesis
-
-
betaxanthin biosynthesis (via dopamine)
-
-
catecholamine biosynthesis
serotonin and melatonin biosynthesis
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
mevalonate metabolism
-
-
glycolysis V (Pyrococcus)
-
-
D-galactarate degradation I
-
-
D-glucarate degradation I
-
-
glycine biosynthesis IV
-
-
L-threonine degradation IV
-
-
3-hydroxypropanoate cycle
-
-
cyanate degradation
glyoxylate assimilation
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
chorismate biosynthesis from 3-dehydroquinate
-
-
chorismate metabolism
-
-
gallate biosynthesis
-
-
quinate degradation I
-
-
quinate degradation II
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
homocysteine and cysteine interconversion
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
cyanide detoxification II
-
-
alginate degradation
-
-
rhamnogalacturonan type I degradation II (bacteria)
-
-
gossypol biosynthesis
-
-
lacinilene C biosynthesis
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
geosmin biosynthesis
-
-
Diterpenoid biosynthesis
-
-
farnesene biosynthesis
-
-
C5-Branched dibasic acid metabolism
-
-
L-glutamate degradation VI (to pyruvate)
-
-
benzoate biosynthesis II (CoA-independent, non-beta-oxidative)
-
-
cinnamoyl-CoA biosynthesis
-
-
ephedrine biosynthesis
-
-
phenylpropanoid biosynthesis, initial reactions
-
-
rosmarinic acid biosynthesis I
-
-
dimethyl sulfide biosynthesis from methionine
-
-
ethylene biosynthesis I (plants)
-
-
L-methionine salvage cycle II (plants)
-
-
selenocysteine biosynthesis
-
-
colanic acid building blocks biosynthesis
-
-
D-galactose degradation I (Leloir pathway)
-
-
D-galactose detoxification
-
-
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
-
-
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
-
-
UDP-alpha-D-galactose biosynthesis
-
-
streptomycin biosynthesis
-
-
UDP-alpha-D-glucose biosynthesis I
-
-
echinatin biosynthesis
-
-
isoflavonoid biosynthesis I
-
-
pinobanksin biosynthesis
-
-
Aminoacyl-tRNA biosynthesis
-
-
isoleucine metabolism
-
-
tRNA charging
-
-
acetate conversion to acetyl-CoA
-
-
acetate fermentation
-
-
adlupulone and adhumulone biosynthesis
-
-
cis-genanyl-CoA degradation
-
-
colupulone and cohumulone biosynthesis
-
-
ethanol degradation III
-
-
L-isoleucine biosynthesis V
-
-
lupulone and humulone biosynthesis
-
-
ammonia assimilation cycle I
-
-
ammonia assimilation cycle II
-
-
L-glutamine biosynthesis I
-
-
Pantothenate and CoA biosynthesis
-
-
pantothenate biosynthesis
-
-
phosphopantothenate biosynthesis I
-
-
L-asparagine biosynthesis I
-
-
anapleurotic synthesis of oxalacetate
-
-
CO2 fixation in Crenarchaeota
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
jadomycin biosynthesis
-
-
Fe(II) oxidation
-
-
NAD/NADH phosphorylation and dephosphorylation
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
oxidative phosphorylation
-
-
ATP biosynthesis
-
-
oleandomycin activation/inactivation
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
enzyme synthesis during formation of germ tubes, the pH droops during germination from pH 5.5 to pH 3.5
Manually annotated by BRENDA team
-
solid culture on wheat bran
Manually annotated by BRENDA team
-
maximum induction of enzyme synthesis by culturing in media containing yeast mannan and a nitrogen source
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
2 forms: extracellular and cytoplasmic, the cytoplasmic isozymes are immunologically related to extracellular isozyme A2
Manually annotated by BRENDA team
-
in contrast to the wild-type strain in which the inactivated RNase T1-GFP fusion protein is localized at the vacuole only under cold stress or nitrogen starvation, the inactivated RNase T1-GFP fusion protein expressed in the rns4 mutant is localized at the ER and vacuole, both under normal growth conditions and upon ambient stress conditions
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Aspergillus oryzae)