Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Ding, B.Y.; Niu, J.; Shang, F.; Yang, L.; Chang, T.Y.; Wang, J.J.
    Characterization of the geranylgeranyl diphosphate synthase gene in Acyrthosiphon pisum (Hemiptera Aphididae) and its association with carotenoid biosynthesis (2019), Front. Physiol., 10, 1398 .
    View publication on PubMedView publication on EuropePMC

Cloned(Commentary)

EC Number Cloned (Comment) Organism
1.3.99.28 gene crtI, sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli Cereibacter sphaeroides
1.3.99.28 sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli Rhodobacter capsulatus
1.3.99.30 gene al-1, sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli Neurospora crassa
1.3.99.30 gene carB, sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli Blakeslea trispora
1.3.99.31 gene carB, sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli Blakeslea trispora
1.3.99.31 gene crtI, sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli Pantoea ananatis
1.3.99.31 gene crtI, sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli Mycolicibacterium aurum
1.3.99.31 gene crtI, sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli Pantoea agglomerans
1.3.99.31 gene Rhu_A0493, sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli Rhodospirillum rubrum

Protein Variants

EC Number Protein Variants Comment Organism
1.3.99.28 additional information competition between lycopene cyclase and the phytoene desaturases modified the distribution between carotene intermediates when expressed in yeast in the context of the full beta-carotene production pathway Rhodobacter capsulatus
1.3.99.28 additional information competition between lycopene cyclase and the phytoene desaturases modified the distribution between carotene intermediates when expressed in yeast in the context of the full beta-carotene production pathway Cereibacter sphaeroides
1.3.99.30 additional information competition between lycopene cyclase and the phytoene desaturases modified the distribution between carotene intermediates when expressed in yeast in the context of the full beta-carotene production pathway Neurospora crassa
1.3.99.30 additional information competition between lycopene cyclase and the phytoene desaturases modified the distribution between carotene intermediates when expressed in yeast in the context of the full beta-carotene production pathway Blakeslea trispora
1.3.99.31 additional information competition between lycopene cyclase and the phytoene desaturases modified the distribution between carotene intermediates when expressed in yeast in the context of the full beta-carotene production pathway Pantoea ananatis
1.3.99.31 additional information competition between lycopene cyclase and the phytoene desaturases modified the distribution between carotene intermediates when expressed in yeast in the context of the full beta-carotene production pathway Blakeslea trispora
1.3.99.31 additional information competition between lycopene cyclase and the phytoene desaturases modified the distribution between carotene intermediates when expressed in yeast in the context of the full beta-carotene production pathway Mycolicibacterium aurum
1.3.99.31 additional information competition between lycopene cyclase and the phytoene desaturases modified the distribution between carotene intermediates when expressed in yeast in the context of the full beta-carotene production pathway Rhodospirillum rubrum
1.3.99.31 additional information competition between lycopene cyclase and the phytoene desaturases modified the distribution between carotene intermediates when expressed in yeast in the context of the full beta-carotene production pathway Pantoea agglomerans

KM Value [mM]

EC Number KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
1.3.99.28 additional information
-
additional information classical Michaelis-Menten kinetic model Rhodobacter capsulatus
1.3.99.28 additional information
-
additional information classical Michaelis-Menten kinetic model Cereibacter sphaeroides
1.3.99.30 additional information
-
additional information classical Michaelis-Menten kinetic model Neurospora crassa
1.3.99.30 additional information
-
additional information classical Michaelis-Menten kinetic model Blakeslea trispora
1.3.99.31 additional information
-
additional information classical Michaelis-Menten kinetic model Pantoea ananatis
1.3.99.31 additional information
-
additional information classical Michaelis-Menten kinetic model Blakeslea trispora
1.3.99.31 additional information
-
additional information classical Michaelis-Menten kinetic model Mycolicibacterium aurum
1.3.99.31 additional information
-
additional information classical Michaelis-Menten kinetic model Rhodospirillum rubrum
1.3.99.31 additional information
-
additional information classical Michaelis-Menten kinetic model Pantoea agglomerans

Localization

EC Number Localization Comment Organism GeneOntology No. Textmining
1.3.99.30 membrane
-
Neurospora crassa 16020
-
1.3.99.30 membrane
-
Blakeslea trispora 16020
-
1.3.99.31 membrane
-
Blakeslea trispora 16020
-
1.3.99.31 membrane
-
Mycolicibacterium aurum 16020
-
1.3.99.31 membrane
-
Rhodospirillum rubrum 16020
-
1.3.99.31 membrane
-
Pantoea agglomerans 16020
-
1.3.99.31 membrane CrtI from Pantoea ananas associates spontaneously to liposomal membranes but no membrane-spanning region per se is evidenced, suggesting a monotopic binding to membranes Pantoea ananatis 16020
-

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
1.3.99.28 15-cis-phytoene + acceptor Rhodobacter capsulatus
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor Cereibacter sphaeroides
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor Rhodobacter capsulatus NBRC 16581
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor Cereibacter sphaeroides ATCC 17023
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor Cereibacter sphaeroides JCM 6121
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor Cereibacter sphaeroides CCUG 31486
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor Rhodobacter capsulatus ATCC BAA-309
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor Cereibacter sphaeroides LMG 2827
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor Cereibacter sphaeroides NBRC 12203
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor Cereibacter sphaeroides ATH 2.4.1.
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor Rhodobacter capsulatus SB1003
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor Cereibacter sphaeroides DSM 158
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor Cereibacter sphaeroides NCIMB 8253
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor Rhodobacter capsulatus
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor Cereibacter sphaeroides
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor Rhodobacter capsulatus NBRC 16581
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor Cereibacter sphaeroides ATCC 17023
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor Cereibacter sphaeroides JCM 6121
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor Cereibacter sphaeroides CCUG 31486
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor Rhodobacter capsulatus ATCC BAA-309
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor Cereibacter sphaeroides LMG 2827
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor Cereibacter sphaeroides NBRC 12203
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor Cereibacter sphaeroides ATH 2.4.1.
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor Rhodobacter capsulatus SB1003
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor Cereibacter sphaeroides DSM 158
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor Cereibacter sphaeroides NCIMB 8253
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor Rhodobacter capsulatus
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor Cereibacter sphaeroides
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor Rhodobacter capsulatus NBRC 16581
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor Cereibacter sphaeroides ATCC 17023
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor Cereibacter sphaeroides JCM 6121
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor Cereibacter sphaeroides CCUG 31486
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor Rhodobacter capsulatus ATCC BAA-309
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor Cereibacter sphaeroides LMG 2827
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor Cereibacter sphaeroides NBRC 12203
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor Cereibacter sphaeroides ATH 2.4.1.
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor Rhodobacter capsulatus SB1003
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor Cereibacter sphaeroides DSM 158
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor Cereibacter sphaeroides NCIMB 8253
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.30 15-cis-phytoene + acceptor Neurospora crassa
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.30 15-cis-phytoene + acceptor Blakeslea trispora
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.30 15-cis-phytoene + acceptor Neurospora crassa CBS 708.71
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.30 15-cis-phytoene + acceptor Neurospora crassa 74-OR23-1A
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.30 15-cis-phytoene + acceptor Neurospora crassa DSM 1257
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.30 15-cis-phytoene + acceptor Neurospora crassa ATCC 24698
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.30 15-cis-phytoene + acceptor Neurospora crassa FGSC 987
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.30 all-trans-lycopene + acceptor Neurospora crassa
-
all-trans-3,4-didehydrolycopene + reduced acceptor
-
?
1.3.99.30 all-trans-lycopene + acceptor Blakeslea trispora
-
all-trans-3,4-didehydrolycopene + reduced acceptor
-
?
1.3.99.30 all-trans-lycopene + acceptor Neurospora crassa CBS 708.71
-
all-trans-3,4-didehydrolycopene + reduced acceptor
-
?
1.3.99.30 all-trans-lycopene + acceptor Neurospora crassa 74-OR23-1A
-
all-trans-3,4-didehydrolycopene + reduced acceptor
-
?
1.3.99.30 all-trans-lycopene + acceptor Neurospora crassa DSM 1257
-
all-trans-3,4-didehydrolycopene + reduced acceptor
-
?
1.3.99.30 all-trans-lycopene + acceptor Neurospora crassa ATCC 24698
-
all-trans-3,4-didehydrolycopene + reduced acceptor
-
?
1.3.99.30 all-trans-lycopene + acceptor Neurospora crassa FGSC 987
-
all-trans-3,4-didehydrolycopene + reduced acceptor
-
?
1.3.99.30 all-trans-neurosporene + acceptor Neurospora crassa
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.30 all-trans-neurosporene + acceptor Blakeslea trispora
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.30 all-trans-neurosporene + acceptor Neurospora crassa CBS 708.71
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.30 all-trans-neurosporene + acceptor Neurospora crassa 74-OR23-1A
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.30 all-trans-neurosporene + acceptor Neurospora crassa DSM 1257
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.30 all-trans-neurosporene + acceptor Neurospora crassa ATCC 24698
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.30 all-trans-neurosporene + acceptor Neurospora crassa FGSC 987
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.30 all-trans-phytofluene + acceptor Neurospora crassa
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.30 all-trans-phytofluene + acceptor Blakeslea trispora
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.30 all-trans-phytofluene + acceptor Neurospora crassa CBS 708.71
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.30 all-trans-phytofluene + acceptor Neurospora crassa 74-OR23-1A
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.30 all-trans-phytofluene + acceptor Neurospora crassa DSM 1257
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.30 all-trans-phytofluene + acceptor Neurospora crassa ATCC 24698
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.30 all-trans-phytofluene + acceptor Neurospora crassa FGSC 987
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.30 all-trans-zeta-carotene + acceptor Neurospora crassa
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.30 all-trans-zeta-carotene + acceptor Blakeslea trispora
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.30 all-trans-zeta-carotene + acceptor Neurospora crassa CBS 708.71
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.30 all-trans-zeta-carotene + acceptor Neurospora crassa 74-OR23-1A
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.30 all-trans-zeta-carotene + acceptor Neurospora crassa DSM 1257
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.30 all-trans-zeta-carotene + acceptor Neurospora crassa ATCC 24698
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.30 all-trans-zeta-carotene + acceptor Neurospora crassa FGSC 987
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor Pantoea ananatis
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor Blakeslea trispora
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor Mycolicibacterium aurum
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor Rhodospirillum rubrum
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor Pantoea agglomerans
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor Rhodospirillum rubrum S1
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor Rhodospirillum rubrum NCIMB 8255
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor Rhodospirillum rubrum ATH 1.1.1
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor Rhodospirillum rubrum ATCC 11170
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor Rhodospirillum rubrum LMG 4362
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor Rhodospirillum rubrum DSM 467
-
all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor Pantoea ananatis
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor Blakeslea trispora
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor Mycolicibacterium aurum
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor Rhodospirillum rubrum
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor Pantoea agglomerans
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor Rhodospirillum rubrum S1
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor Rhodospirillum rubrum NCIMB 8255
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor Rhodospirillum rubrum ATH 1.1.1
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor Rhodospirillum rubrum ATCC 11170
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor Rhodospirillum rubrum LMG 4362
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor Rhodospirillum rubrum DSM 467
-
all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor Pantoea ananatis
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor Blakeslea trispora
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor Mycolicibacterium aurum
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor Rhodospirillum rubrum
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor Pantoea agglomerans
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor Rhodospirillum rubrum S1
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor Rhodospirillum rubrum NCIMB 8255
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor Rhodospirillum rubrum ATH 1.1.1
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor Rhodospirillum rubrum ATCC 11170
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor Rhodospirillum rubrum LMG 4362
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor Rhodospirillum rubrum DSM 467
-
all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor Pantoea ananatis
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor Blakeslea trispora
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor Mycolicibacterium aurum
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor Rhodospirillum rubrum
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor Pantoea agglomerans
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor Rhodospirillum rubrum S1
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor Rhodospirillum rubrum NCIMB 8255
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor Rhodospirillum rubrum ATH 1.1.1
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor Rhodospirillum rubrum ATCC 11170
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor Rhodospirillum rubrum LMG 4362
-
all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor Rhodospirillum rubrum DSM 467
-
all-trans-neurosporene + reduced acceptor
-
?

Organism

EC Number Organism UniProt Comment Textmining
1.3.99.28 Cereibacter sphaeroides P54980 Rhodobacter sphaeroides
-
1.3.99.28 Cereibacter sphaeroides ATCC 17023 P54980 Rhodobacter sphaeroides
-
1.3.99.28 Cereibacter sphaeroides ATH 2.4.1. P54980 Rhodobacter sphaeroides
-
1.3.99.28 Cereibacter sphaeroides CCUG 31486 P54980 Rhodobacter sphaeroides
-
1.3.99.28 Cereibacter sphaeroides DSM 158 P54980 Rhodobacter sphaeroides
-
1.3.99.28 Cereibacter sphaeroides JCM 6121 P54980 Rhodobacter sphaeroides
-
1.3.99.28 Cereibacter sphaeroides LMG 2827 P54980 Rhodobacter sphaeroides
-
1.3.99.28 Cereibacter sphaeroides NBRC 12203 P54980 Rhodobacter sphaeroides
-
1.3.99.28 Cereibacter sphaeroides NCIMB 8253 P54980 Rhodobacter sphaeroides
-
1.3.99.28 Rhodobacter capsulatus P17054
-
-
1.3.99.28 Rhodobacter capsulatus ATCC BAA-309 P17054
-
-
1.3.99.28 Rhodobacter capsulatus NBRC 16581 P17054
-
-
1.3.99.28 Rhodobacter capsulatus SB1003 P17054
-
-
1.3.99.30 Blakeslea trispora Q67GI0 Choanephora trispora
-
1.3.99.30 Neurospora crassa P21334
-
-
1.3.99.30 Neurospora crassa 74-OR23-1A P21334
-
-
1.3.99.30 Neurospora crassa ATCC 24698 P21334
-
-
1.3.99.30 Neurospora crassa CBS 708.71 P21334
-
-
1.3.99.30 Neurospora crassa DSM 1257 P21334
-
-
1.3.99.30 Neurospora crassa FGSC 987 P21334
-
-
1.3.99.31 Blakeslea trispora Q67GI0 Choanephora trispora
-
1.3.99.31 Mycolicibacterium aurum Q9K566 Mycobacterium aurum
-
1.3.99.31 Pantoea agglomerans E9LFG2 Erwinia herbicola or Pantoea agglomerans
-
1.3.99.31 Pantoea ananatis P21685 Erwinia uredovora
-
1.3.99.31 Rhodospirillum rubrum Q2RX47
-
-
1.3.99.31 Rhodospirillum rubrum ATCC 11170 Q2RX47
-
-
1.3.99.31 Rhodospirillum rubrum ATH 1.1.1 Q2RX47
-
-
1.3.99.31 Rhodospirillum rubrum DSM 467 Q2RX47
-
-
1.3.99.31 Rhodospirillum rubrum LMG 4362 Q2RX47
-
-
1.3.99.31 Rhodospirillum rubrum NCIMB 8255 Q2RX47
-
-
1.3.99.31 Rhodospirillum rubrum S1 Q2RX47
-
-
2.5.1.29 Acyrthosiphon pisum
-
-
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
1.3.99.28 15-cis-phytoene + acceptor
-
Rhodobacter capsulatus all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor
-
Cereibacter sphaeroides all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor
-
Rhodobacter capsulatus NBRC 16581 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor
-
Cereibacter sphaeroides ATCC 17023 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor
-
Cereibacter sphaeroides JCM 6121 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor
-
Cereibacter sphaeroides CCUG 31486 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor
-
Rhodobacter capsulatus ATCC BAA-309 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor
-
Cereibacter sphaeroides LMG 2827 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor
-
Cereibacter sphaeroides NBRC 12203 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor
-
Cereibacter sphaeroides ATH 2.4.1. all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor
-
Rhodobacter capsulatus SB1003 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor
-
Cereibacter sphaeroides DSM 158 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 15-cis-phytoene + acceptor
-
Cereibacter sphaeroides NCIMB 8253 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor
-
Rhodobacter capsulatus all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor
-
Rhodobacter capsulatus NBRC 16581 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides ATCC 17023 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides JCM 6121 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides CCUG 31486 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor
-
Rhodobacter capsulatus ATCC BAA-309 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides LMG 2827 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides NBRC 12203 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides ATH 2.4.1. all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor
-
Rhodobacter capsulatus SB1003 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides DSM 158 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides NCIMB 8253 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor
-
Rhodobacter capsulatus all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor
-
Rhodobacter capsulatus NBRC 16581 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides ATCC 17023 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides JCM 6121 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides CCUG 31486 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor
-
Rhodobacter capsulatus ATCC BAA-309 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides LMG 2827 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides NBRC 12203 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides ATH 2.4.1. all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor
-
Rhodobacter capsulatus SB1003 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides DSM 158 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.28 all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides NCIMB 8253 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.30 15-cis-phytoene + acceptor
-
Neurospora crassa all-trans-phytofluene + reduced acceptor
-
?
1.3.99.30 15-cis-phytoene + acceptor
-
Blakeslea trispora all-trans-phytofluene + reduced acceptor
-
?
1.3.99.30 15-cis-phytoene + acceptor
-
Neurospora crassa CBS 708.71 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.30 15-cis-phytoene + acceptor
-
Neurospora crassa 74-OR23-1A all-trans-phytofluene + reduced acceptor
-
?
1.3.99.30 15-cis-phytoene + acceptor
-
Neurospora crassa DSM 1257 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.30 15-cis-phytoene + acceptor
-
Neurospora crassa ATCC 24698 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.30 15-cis-phytoene + acceptor
-
Neurospora crassa FGSC 987 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.30 all-trans-lycopene + acceptor
-
Neurospora crassa all-trans-3,4-didehydrolycopene + reduced acceptor
-
?
1.3.99.30 all-trans-lycopene + acceptor
-
Blakeslea trispora all-trans-3,4-didehydrolycopene + reduced acceptor
-
?
1.3.99.30 all-trans-lycopene + acceptor
-
Neurospora crassa CBS 708.71 all-trans-3,4-didehydrolycopene + reduced acceptor
-
?
1.3.99.30 all-trans-lycopene + acceptor
-
Neurospora crassa 74-OR23-1A all-trans-3,4-didehydrolycopene + reduced acceptor
-
?
1.3.99.30 all-trans-lycopene + acceptor
-
Neurospora crassa DSM 1257 all-trans-3,4-didehydrolycopene + reduced acceptor
-
?
1.3.99.30 all-trans-lycopene + acceptor
-
Neurospora crassa ATCC 24698 all-trans-3,4-didehydrolycopene + reduced acceptor
-
?
1.3.99.30 all-trans-lycopene + acceptor
-
Neurospora crassa FGSC 987 all-trans-3,4-didehydrolycopene + reduced acceptor
-
?
1.3.99.30 all-trans-neurosporene + acceptor
-
Neurospora crassa all-trans-lycopene + reduced acceptor
-
?
1.3.99.30 all-trans-neurosporene + acceptor
-
Blakeslea trispora all-trans-lycopene + reduced acceptor
-
?
1.3.99.30 all-trans-neurosporene + acceptor
-
Neurospora crassa CBS 708.71 all-trans-lycopene + reduced acceptor
-
?
1.3.99.30 all-trans-neurosporene + acceptor
-
Neurospora crassa 74-OR23-1A all-trans-lycopene + reduced acceptor
-
?
1.3.99.30 all-trans-neurosporene + acceptor
-
Neurospora crassa DSM 1257 all-trans-lycopene + reduced acceptor
-
?
1.3.99.30 all-trans-neurosporene + acceptor
-
Neurospora crassa ATCC 24698 all-trans-lycopene + reduced acceptor
-
?
1.3.99.30 all-trans-neurosporene + acceptor
-
Neurospora crassa FGSC 987 all-trans-lycopene + reduced acceptor
-
?
1.3.99.30 all-trans-phytofluene + acceptor
-
Neurospora crassa all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.30 all-trans-phytofluene + acceptor
-
Blakeslea trispora all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.30 all-trans-phytofluene + acceptor
-
Neurospora crassa CBS 708.71 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.30 all-trans-phytofluene + acceptor
-
Neurospora crassa 74-OR23-1A all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.30 all-trans-phytofluene + acceptor
-
Neurospora crassa DSM 1257 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.30 all-trans-phytofluene + acceptor
-
Neurospora crassa ATCC 24698 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.30 all-trans-phytofluene + acceptor
-
Neurospora crassa FGSC 987 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.30 all-trans-zeta-carotene + acceptor
-
Neurospora crassa all-trans-neurosporene + reduced acceptor
-
?
1.3.99.30 all-trans-zeta-carotene + acceptor
-
Blakeslea trispora all-trans-neurosporene + reduced acceptor
-
?
1.3.99.30 all-trans-zeta-carotene + acceptor
-
Neurospora crassa CBS 708.71 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.30 all-trans-zeta-carotene + acceptor
-
Neurospora crassa 74-OR23-1A all-trans-neurosporene + reduced acceptor
-
?
1.3.99.30 all-trans-zeta-carotene + acceptor
-
Neurospora crassa DSM 1257 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.30 all-trans-zeta-carotene + acceptor
-
Neurospora crassa ATCC 24698 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.30 all-trans-zeta-carotene + acceptor
-
Neurospora crassa FGSC 987 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor
-
Pantoea ananatis all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor
-
Blakeslea trispora all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor
-
Mycolicibacterium aurum all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor
-
Rhodospirillum rubrum all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor
-
Pantoea agglomerans all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor
-
Rhodospirillum rubrum S1 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor
-
Rhodospirillum rubrum NCIMB 8255 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor
-
Rhodospirillum rubrum ATH 1.1.1 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor
-
Rhodospirillum rubrum ATCC 11170 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor
-
Rhodospirillum rubrum LMG 4362 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 15-cis-phytoene + acceptor
-
Rhodospirillum rubrum DSM 467 all-trans-phytofluene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor
-
Pantoea ananatis all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor
-
Blakeslea trispora all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor
-
Mycolicibacterium aurum all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor
-
Rhodospirillum rubrum all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor
-
Pantoea agglomerans all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor
-
Rhodospirillum rubrum S1 all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor
-
Rhodospirillum rubrum NCIMB 8255 all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor
-
Rhodospirillum rubrum ATH 1.1.1 all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor
-
Rhodospirillum rubrum ATCC 11170 all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor
-
Rhodospirillum rubrum LMG 4362 all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-neurosporene + acceptor
-
Rhodospirillum rubrum DSM 467 all-trans-lycopene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor
-
Pantoea ananatis all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor
-
Blakeslea trispora all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor
-
Mycolicibacterium aurum all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor
-
Rhodospirillum rubrum all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor
-
Pantoea agglomerans all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor
-
Rhodospirillum rubrum S1 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor
-
Rhodospirillum rubrum NCIMB 8255 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor
-
Rhodospirillum rubrum ATH 1.1.1 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor
-
Rhodospirillum rubrum ATCC 11170 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor
-
Rhodospirillum rubrum LMG 4362 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-phytofluene + acceptor
-
Rhodospirillum rubrum DSM 467 all-trans-zeta-carotene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor
-
Pantoea ananatis all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor
-
Blakeslea trispora all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor
-
Mycolicibacterium aurum all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor
-
Rhodospirillum rubrum all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor
-
Pantoea agglomerans all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor
-
Rhodospirillum rubrum S1 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor
-
Rhodospirillum rubrum NCIMB 8255 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor
-
Rhodospirillum rubrum ATH 1.1.1 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor
-
Rhodospirillum rubrum ATCC 11170 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor
-
Rhodospirillum rubrum LMG 4362 all-trans-neurosporene + reduced acceptor
-
?
1.3.99.31 all-trans-zeta-carotene + acceptor
-
Rhodospirillum rubrum DSM 467 all-trans-neurosporene + reduced acceptor
-
?

Synonyms

EC Number Synonyms Comment Organism
1.3.99.28 CrtI
-
Rhodobacter capsulatus
1.3.99.28 CrtI
-
Cereibacter sphaeroides
1.3.99.28 PDS
-
Rhodobacter capsulatus
1.3.99.28 PDS
-
Cereibacter sphaeroides
1.3.99.28 phytoene desaturase
-
Rhodobacter capsulatus
1.3.99.28 phytoene desaturase
-
Cereibacter sphaeroides
1.3.99.30 Al-1
-
Neurospora crassa
1.3.99.30 CarB
-
Blakeslea trispora
1.3.99.30 CrtI
-
Neurospora crassa
1.3.99.30 CrtI
-
Blakeslea trispora
1.3.99.30 PDS
-
Neurospora crassa
1.3.99.30 PDS
-
Blakeslea trispora
1.3.99.30 phytoene desaturase
-
Neurospora crassa
1.3.99.30 phytoene desaturase
-
Blakeslea trispora
1.3.99.31 CarB
-
Blakeslea trispora
1.3.99.31 CrtI
-
Pantoea ananatis
1.3.99.31 CrtI
-
Blakeslea trispora
1.3.99.31 CrtI
-
Mycolicibacterium aurum
1.3.99.31 CrtI
-
Rhodospirillum rubrum
1.3.99.31 CrtI
-
Pantoea agglomerans
1.3.99.31 PDS
-
Pantoea ananatis
1.3.99.31 PDS
-
Blakeslea trispora
1.3.99.31 PDS
-
Mycolicibacterium aurum
1.3.99.31 PDS
-
Rhodospirillum rubrum
1.3.99.31 PDS
-
Pantoea agglomerans
1.3.99.31 phytoene desaturase
-
Pantoea ananatis
1.3.99.31 phytoene desaturase
-
Blakeslea trispora
1.3.99.31 phytoene desaturase
-
Mycolicibacterium aurum
1.3.99.31 phytoene desaturase
-
Rhodospirillum rubrum
1.3.99.31 phytoene desaturase
-
Pantoea agglomerans
1.3.99.31 Rru_A0493
-
Rhodospirillum rubrum
2.5.1.29 GGPPS
-
Acyrthosiphon pisum

Expression

EC Number Organism Comment Expression
2.5.1.29 Acyrthosiphon pisum there might be an association with higher expression of geranylgeranyl diphosphate synthase in the green morph and a relatively higher carotenoid content up

General Information

EC Number General Information Comment Organism
1.3.99.28 evolution the enzyme belongs to the CrtI family of enzymes, analysis of the phylogenetic tree of a subset of phytoene desaturases from the CrtI family, overview. Recombinant expression of eight codon optimized CrtI enzymes from different clades in a bacterial system reveals that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Existence of characteristic patterns of desaturated molecules associated with various CrtI clades. Variations in the reaction rates and binding constants can explain the various carotene patterns observed. Relationship between genetic and functional evolution of certain CrtI enzymes, overview Rhodobacter capsulatus
1.3.99.28 evolution the enzyme belongs to the CrtI family of enzymes, analysis of the phylogenetic tree of a subset of phytoene desaturases from the CrtI family, overview. Recombinant expression of eight codon optimized CrtI enzymes from different clades in a bacterial system reveals that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Existence of characteristic patterns of desaturated molecules associated with various CrtI clades. Variations in the reaction rates and binding constants can explain the various carotene patterns observed. Relationship between genetic and functional evolution of certain CrtI enzymes, overview Cereibacter sphaeroides
1.3.99.28 metabolism carotenoid biosynthesis starts with the symmetrical condensation of two geranylgeranyl diphosphate molecules, forming phytoene. A series of successive desaturation reactions convert phytoene into phytofluene, zeta-carotene, neurosporene, lycopene. These desaturation reactions can be accomplished by a single enzyme (poly-trans pathway) or through a cascade of different enzymes (poly-cis pathway). In algae and plants, four different enzymes are necessary to form the final product (all-trans-lycopene). The phytoene and the zeta-carotene desaturases (PDS and ZDS, respectively) add double bonds in the cis-conformation. ZISO (zeta-carotene isomerase) and CRTISO (prolycopene isomerase) convert the cis-carotenes into di-cis-zeta-carotene and all-trans-lycopene, respectively. By contrast to other phytoene desaturases, CrtI are versatile enzymes classified into four enzymatic subgroups (EC 1.3.99.28, EC 1.3.99.29, EC 1.3.99.30, and EC 1.3.99.31) based on the last product they presumably produce (from zeta-carotene to didehydrolycopene). Carotene diversity can be further expanded in later steps with the addition of one or two rings by lycopene cyclases, thereby producing an extensive variety of symmetrical or asymmetrical cyclised carotenes, such as beta-zeacarotene, dehydro-beta-carotene, gamma-carotene, beta-carotene, and the fungi-specific torulene. When expressed in heterologous hosts, CrtI enzymes exhibit distinct desaturation patterns, CrtI enzyme activities may depend on the experimental conditions and thus be inconsistent with the patterns generated in the natural host. Rhodobacter capsulatus strain SB1003 also produces lycopene in vitro (cf. EC 1.3.99.31) Rhodobacter capsulatus
1.3.99.28 metabolism carotenoid biosynthesis starts with the symmetrical condensation of two geranylgeranyl diphosphate molecules, forming phytoene. A series of successive desaturation reactions convert phytoene into phytofluene, zeta-carotene, neurosporene, lycopene. These desaturation reactions can be accomplished by a single enzyme (poly-trans pathway) or through a cascade of different enzymes (poly-cis pathway). In algae and plants, four different enzymes are necessary to form the final product (all-trans-lycopene). The phytoene and the zeta-carotene desaturases (PDS and ZDS, respectively) add double bonds in the cis-conformation. ZISO (zeta-carotene isomerase) and CRTISO (prolycopene isomerase) convert the cis-carotenes into di-cis-zeta-carotene and all-trans-lycopene, respectively. By contrast to other phytoene desaturases, CrtI are versatile enzymes classified into four enzymatic subgroups (EC 1.3.99.28, EC 1.3.99.29, EC 1.3.99.30, and EC 1.3.99.31) based on the last product they presumably produce (from zeta-carotene to didehydrolycopene). Carotene diversity can be further expanded in later steps with the addition of one or two rings by lycopene cyclases, thereby producing an extensive variety of symmetrical or asymmetrical cyclised carotenes, such as beta-zeacarotene, dehydro-beta-carotene, gamma-carotene, beta-carotene, and the fungi-specific torulene. When expressed in heterologous hosts, CrtI enzymes exhibit distinct desaturation patterns, CrtI enzyme activities may depend on the experimental conditions and thus be inconsistent with the patterns generated in the natural host. CrtI from Rhodobacter sphaeroides produced neurosporene in vitro and in vivo Cereibacter sphaeroides
1.3.99.28 additional information comparison of the natural evolution and kinetic properties of selected CrtI enzymes expressed and assayed under standardised conditions. Potentially all CrtI enzymes can catalyse desaturation reactions that progress beyond the already observed end-products and the pattern of products formed originates from variations in the reaction rates rather than affinity constants Rhodobacter capsulatus
1.3.99.28 additional information comparison of the natural evolution and kinetic properties of selected CrtI enzymes expressed and assayed under standardised conditions. Potentially all CrtI enzymes can catalyse desaturation reactions that progress beyond the already observed end-products and the pattern of products formed originates from variations in the reaction rates rather than affinity constants Cereibacter sphaeroides
1.3.99.30 evolution the enzyme belongs to the CrtI family of enzymes, analysis of the phylogenetic tree of a subset of phytoene desaturases from the CrtI family, overview. Recombinant expression of eight codon optimized CrtI enzymes from different clades in a bacterial system reveals that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Existence of characteristic patterns of desaturated molecules associated with various CrtI clades. Variations in the reaction rates and binding constants can explain the various carotene patterns observed. Relationship between genetic and functional evolution of certain CrtI enzymes, overview Neurospora crassa
1.3.99.30 evolution the enzyme belongs to the CrtI family of enzymes, analysis of the phylogenetic tree of a subset of phytoene desaturases from the CrtI family, overview. Recombinant expression of eight codon optimized CrtI enzymes from different clades in a bacterial system reveals that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Existence of characteristic patterns of desaturated molecules associated with various CrtI clades. Variations in the reaction rates and binding constants can explain the various carotene patterns observed. Relationship between genetic and functional evolution of certain CrtI enzymes, overview Blakeslea trispora
1.3.99.30 metabolism carotenoid biosynthesis starts with the symmetrical condensation of two geranylgeranyl diphosphate molecules, forming phytoene. A series of successive desaturation reactions convert phytoene into phytofluene, zeta-carotene, neurosporene, lycopene. These desaturation reactions can be accomplished by a single enzyme (poly-trans pathway) or through a cascade of different enzymes (poly-cis pathway). In algae and plants, four different enzymes are necessary to form the final product (all-trans-lycopene). The phytoene and the zeta-carotene desaturases (PDS and ZDS, respectively) add double bonds in the cis-conformation. ZISO (zeta-carotene isomerase) and CRTISO (prolycopene isomerase) convert the cis-carotenes into di-cis-zeta-carotene and all-trans-lycopene, respectively. By contrast to other phytoene desaturases, CrtI are versatile enzymes classified into four enzymatic subgroups (EC 1.3.99.28, EC 1.3.99.29, EC 1.3.99.30, and EC 1.3.99.31) based on the last product they presumably produce (from zeta-carotene to didehydrolycopene). Carotene diversity can be further expanded in later steps with the addition of one or two rings by lycopene cyclases, thereby producing an extensive variety of symmetrical or asymmetrical cyclised carotenes, such as beta-zeacarotene, dehydro-beta-carotene, gamma-carotene, beta-carotene, and the fungi-specific torulene. When expressed in heterologous hosts, CrtI enzymes exhibit distinct desaturation patterns, CrtI enzyme activities may depend on the experimental conditions and thus be inconsistent with the patterns generated in the natural host. Pantoea ananatis CrtI produces lycopene in vivo, but also tetradehydrolycopene in vitro Neurospora crassa
1.3.99.30 metabolism carotenoid biosynthesis starts with the symmetrical condensation of two geranylgeranyl diphosphate molecules, forming phytoene. A series of successive desaturation reactions convert phytoene into phytofluene, zeta-carotene, neurosporene, lycopene. These desaturation reactions can be accomplished by a single enzyme (poly-trans pathway) or through a cascade of different enzymes (poly-cis pathway). In algae and plants, four different enzymes are necessary to form the final product (all-trans-lycopene). The phytoene and the zeta-carotene desaturases (PDS and ZDS, respectively) add double bonds in the cis-conformation. ZISO (zeta-carotene isomerase) and CRTISO (prolycopene isomerase) convert the cis-carotenes into di-cis-zeta-carotene and all-trans-lycopene, respectively. By contrast to other phytoene desaturases, CrtI are versatile enzymes classified into four enzymatic subgroups (EC 1.3.99.28, EC 1.3.99.29, EC 1.3.99.30, and EC 1.3.99.31) based on the last product they presumably produce (from zeta-carotene to didehydrolycopene). Carotene diversity can be further expanded in later steps with the addition of one or two rings by lycopene cyclases, thereby producing an extensive variety of symmetrical or asymmetrical cyclised carotenes, such as beta-zeacarotene, dehydro-beta-carotene, gamma-carotene, beta-carotene, and the fungi-specific torulene. When expressed in heterologous hosts, CrtI enzymes exhibit distinct desaturation patterns, CrtI enzyme activities may depend on the experimental conditions and thus be inconsistent with the patterns generated in the natural host. Blakeslea trispora CrtI produces lycopene in vivo and in vitro (see also EC 1.3.99.31), but also didehydrolycopene in vivo Blakeslea trispora
1.3.99.30 additional information comparison of the natural evolution and kinetic properties of selected CrtI enzymes expressed and assayed under standardised conditions. Potentially all CrtI enzymes can catalyse desaturation reactions that progress beyond the already observed end-products and the pattern of products formed originates from variations in the reaction rates rather than affinity constants Neurospora crassa
1.3.99.30 additional information comparison of the natural evolution and kinetic properties of selected CrtI enzymes expressed and assayed under standardised conditions. Potentially all CrtI enzymes can catalyse desaturation reactions that progress beyond the already observed end-products and the pattern of products formed originates from variations in the reaction rates rather than affinity constants Blakeslea trispora
1.3.99.31 evolution the enzyme belongs to the CrtI family of enzymes, analysis of the phylogenetic tree of a subset of phytoene desaturases from the CrtI family, overview. Recombinant expression of eight codon optimized CrtI enzymes from different clades in a bacterial system reveals that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Existence of characteristic patterns of desaturated molecules associated with various CrtI clades. Variations in the reaction rates and binding constants can explain the various carotene patterns observed. Relationship between genetic and functional evolution of certain CrtI enzymes, overview Pantoea ananatis
1.3.99.31 evolution the enzyme belongs to the CrtI family of enzymes, analysis of the phylogenetic tree of a subset of phytoene desaturases from the CrtI family, overview. Recombinant expression of eight codon optimized CrtI enzymes from different clades in a bacterial system reveals that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Existence of characteristic patterns of desaturated molecules associated with various CrtI clades. Variations in the reaction rates and binding constants can explain the various carotene patterns observed. Relationship between genetic and functional evolution of certain CrtI enzymes, overview Blakeslea trispora
1.3.99.31 evolution the enzyme belongs to the CrtI family of enzymes, analysis of the phylogenetic tree of a subset of phytoene desaturases from the CrtI family, overview. Recombinant expression of eight codon optimized CrtI enzymes from different clades in a bacterial system reveals that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Existence of characteristic patterns of desaturated molecules associated with various CrtI clades. Variations in the reaction rates and binding constants can explain the various carotene patterns observed. Relationship between genetic and functional evolution of certain CrtI enzymes, overview Mycolicibacterium aurum
1.3.99.31 evolution the enzyme belongs to the CrtI family of enzymes, analysis of the phylogenetic tree of a subset of phytoene desaturases from the CrtI family, overview. Recombinant expression of eight codon optimized CrtI enzymes from different clades in a bacterial system reveals that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Existence of characteristic patterns of desaturated molecules associated with various CrtI clades. Variations in the reaction rates and binding constants can explain the various carotene patterns observed. Relationship between genetic and functional evolution of certain CrtI enzymes, overview Rhodospirillum rubrum
1.3.99.31 evolution the enzyme belongs to the CrtI family of enzymes, analysis of the phylogenetic tree of a subset of phytoene desaturases from the CrtI family, overview. Recombinant expression of eight codon optimized CrtI enzymes from different clades in a bacterial system reveals that three CrtI enzymes can catalyse up to six desaturations, formingtetradehydrolycopene. Existence of characteristic patterns of desaturated molecules associated with various CrtI clades. Variations in the reaction rates and binding constants can explain the various carotene patterns observed. Relationship between genetic and functional evolution of certain CrtI enzymes, overview Pantoea agglomerans
1.3.99.31 metabolism carotenoid biosynthesis starts with the symmetrical condensation of two geranylgeranyl diphosphate molecules, forming phytoene. A series of successive desaturation reactions convert phytoene into phytofluene, zeta-carotene, neurosporene, lycopene. These desaturation reactions can be accomplished by a single enzyme (poly-trans pathway) or through a cascade of different enzymes (poly-cis pathway). In algae and plants, four different enzymes are necessary to form the final product (all-trans-lycopene). The phytoene and the zeta-carotene desaturases (PDS and ZDS, respectively) add double bonds in the cis-conformation. ZISO (zeta-carotene isomerase) and CRTISO (prolycopene isomerase) convert the cis-carotenes into di-cis-zeta-carotene and all-trans-lycopene, respectively. By contrast to other phytoene desaturases, CrtI are versatile enzymes classified into four enzymatic subgroups (EC 1.3.99.28, EC 1.3.99.29, EC 1.3.99.30, and EC 1.3.99.31) based on the last product they presumably produce (from zeta-carotene to didehydrolycopene). Carotene diversity can be further expanded in later steps with the addition of one or two rings by lycopene cyclases, thereby producing an extensive variety of symmetrical or asymmetrical cyclised carotenes, such as beta-zeacarotene, dehydro-beta-carotene, gamma-carotene, beta-carotene, and the fungi-specific torulene. When expressed in heterologous hosts, CrtI enzymes exhibit distinct desaturation patterns, CrtI enzyme activities may depend on the experimental conditions and thus be inconsistent with the patterns generated in the natural host. Pantoea ananatis CrtI produces lycopene in vivo, but also tetradehydrolycopene in vitro Pantoea ananatis
1.3.99.31 metabolism carotenoid biosynthesis starts with the symmetrical condensation of two geranylgeranyl diphosphate molecules, forming phytoene. A series of successive desaturation reactions convert phytoene into phytofluene, zeta-carotene, neurosporene, lycopene. These desaturation reactions can be accomplished by a single enzyme (poly-trans pathway) or through a cascade of different enzymes (poly-cis pathway). In algae and plants, four different enzymes are necessary to form the final product (all-trans-lycopene). The phytoene and the zeta-carotene desaturases (PDS and ZDS, respectively) add double bonds in the cis-conformation. ZISO (zeta-carotene isomerase) and CRTISO (prolycopene isomerase) convert the cis-carotenes into di-cis-zeta-carotene and all-trans-lycopene, respectively. By contrast to other phytoene desaturases, CrtI are versatile enzymes classified into four enzymatic subgroups (EC 1.3.99.28, EC 1.3.99.29, EC 1.3.99.30, and EC 1.3.99.31) based on the last product they presumably produce (from zeta-carotene to didehydrolycopene). Carotene diversity can be further expanded in later steps with the addition of one or two rings by lycopene cyclases, thereby producing an extensive variety of symmetrical or asymmetrical cyclised carotenes, such as beta-zeacarotene, dehydro-beta-carotene, gamma-carotene, beta-carotene, and the fungi-specific torulene. When expressed in heterologous hosts, CrtI enzymes exhibit distinct desaturation patterns, CrtI enzyme activities may depend on the experimental conditions and thus be inconsistent with the patterns generated in the natural host. Mycolicibacterium aurum CrtI produces lycopene in vivo and in vitro Mycolicibacterium aurum
1.3.99.31 metabolism carotenoid biosynthesis starts with the symmetrical condensation of two geranylgeranyl diphosphate molecules, forming phytoene. A series of successive desaturation reactions convert phytoene into phytofluene, zeta-carotene, neurosporene, lycopene. These desaturation reactions can be accomplished by a single enzyme (poly-trans pathway) or through a cascade of different enzymes (poly-cis pathway). In algae and plants, four different enzymes are necessary to form the final product (all-trans-lycopene). The phytoene and the zeta-carotene desaturases (PDS and ZDS, respectively) add double bonds in the cis-conformation. ZISO (zeta-carotene isomerase) and CRTISO (prolycopene isomerase) convert the cis-carotenes into di-cis-zeta-carotene and all-trans-lycopene, respectively. By contrast to other phytoene desaturases, CrtI are versatile enzymes classified into four enzymatic subgroups (EC 1.3.99.28, EC 1.3.99.29, EC 1.3.99.30, and EC 1.3.99.31) based on the last product they presumably produce (from zeta-carotene to didehydrolycopene). Carotene diversity can be further expanded in later steps with the addition of one or two rings by lycopene cyclases, thereby producing an extensive variety of symmetrical or asymmetrical cyclised carotenes, such as beta-zeacarotene, dehydro-beta-carotene, gamma-carotene, beta-carotene, and the fungi-specific torulene. When expressed in heterologous hosts, CrtI enzymes exhibit distinct desaturation patterns, CrtI enzyme activities may depend on the experimental conditions and thus be inconsistent with the patterns generated in the natural host. Rhodospirillum rubrum CrtI produces lycopene in vivo and in vitro Rhodospirillum rubrum
1.3.99.31 metabolism carotenoid biosynthesis starts with the symmetrical condensation of two geranylgeranyl diphosphate molecules, forming phytoene. A series of successive desaturation reactions convert phytoene into phytofluene, zeta-carotene, neurosporene, lycopene. These desaturation reactions can be accomplished by a single enzyme (poly-trans pathway) or through a cascade of different enzymes (poly-cis pathway). In algae and plants, four different enzymes are necessary to form the final product (all-trans-lycopene). The phytoene and the zeta-carotene desaturases (PDS and ZDS, respectively) add double bonds in the cis-conformation. ZISO (zeta-carotene isomerase) and CRTISO (prolycopene isomerase) convert the cis-carotenes into di-cis-zeta-carotene and all-trans-lycopene, respectively. By contrast to other phytoene desaturases, CrtI are versatile enzymes classified into four enzymatic subgroups (EC 1.3.99.28, EC 1.3.99.29, EC 1.3.99.30, and EC 1.3.99.31) based on the last product they presumably produce (from zeta-carotene to didehydrolycopene). Carotene diversity can be further expanded in later steps with the addition of one or two rings by lycopene cyclases, thereby producing an extensive variety of symmetrical or asymmetrical cyclised carotenes, such as beta-zeacarotene, dehydro-beta-carotene, gamma-carotene, beta-carotene, and the fungi-specific torulene. When expressed in heterologous hosts, CrtI enzymes exhibit distinct desaturation patterns, CrtI enzyme activities may depend on the experimental conditions and thus be inconsistent with the patterns generated in the natural host. Blakeslea trispora CrtI produces lycopene in vivo and in vitro, but also didehydrolycopene in vivo (see also EC 1.3.99.30) Blakeslea trispora
1.3.99.31 metabolism carotenoid biosynthesis starts with the symmetrical condensation of two geranylgeranyl diphosphate molecules, forming phytoene. A series of successive desaturation reactions convert phytoene into phytofluene, zeta-carotene, neurosporene, lycopene. These desaturation reactions can be accomplished by a single enzyme (poly-trans pathway) or through a cascade of different enzymes (poly-cis pathway). In algae and plants, four different enzymes are necessary to form the final product (all-trans-lycopene). The phytoene and the zeta-carotene desaturases (PDS and ZDS, respectively) add double bonds in the cis-conformation. ZISO (zeta-carotene isomerase) and CRTISO (prolycopene isomerase) convert the cis-carotenes into di-cis-zeta-carotene and all-trans-lycopene, respectively. By contrast to other phytoene desaturases, CrtI are versatile enzymes classified into four enzymatic subgroups (EC 1.3.99.28, EC 1.3.99.29, EC 1.3.99.30, and EC 1.3.99.31) based on the last product they presumably produce (from zeta-carotene to didehydrolycopene). Carotene diversity can be further expanded in later steps with the addition of one or two rings by lycopene cyclases, thereby producing an extensive variety of symmetrical or asymmetrical cyclised carotenes, such as beta-zeacarotene, dehydro-beta-carotene, gamma-carotene, beta-carotene, and the fungi-specific torulene. When expressed in heterologous hosts, CrtI enzymes exhibit distinct desaturation patterns, CrtI enzyme activities may depend on the experimental conditions and thus be inconsistent with the patterns generated in the natural host. Enterobacter agglomerans CrtI produces lycopene in vivo and in vitro, but also tetradehydrolycopene in vitro Pantoea agglomerans
1.3.99.31 additional information comparison of the natural evolution and kinetic properties of selected CrtI enzymes expressed and assayed under standardised conditions. Potentially all CrtI enzymes can catalyse desaturation reactions that progress beyond the already observed end-products and the pattern of products formed originates from variations in the reaction rates rather than affinity constants Pantoea ananatis
1.3.99.31 additional information comparison of the natural evolution and kinetic properties of selected CrtI enzymes expressed and assayed under standardised conditions. Potentially all CrtI enzymes can catalyse desaturation reactions that progress beyond the already observed end-products and the pattern of products formed originates from variations in the reaction rates rather than affinity constants Blakeslea trispora
1.3.99.31 additional information comparison of the natural evolution and kinetic properties of selected CrtI enzymes expressed and assayed under standardised conditions. Potentially all CrtI enzymes can catalyse desaturation reactions that progress beyond the already observed end-products and the pattern of products formed originates from variations in the reaction rates rather than affinity constants Mycolicibacterium aurum
1.3.99.31 additional information comparison of the natural evolution and kinetic properties of selected CrtI enzymes expressed and assayed under standardised conditions. Potentially all CrtI enzymes can catalyse desaturation reactions that progress beyond the already observed end-products and the pattern of products formed originates from variations in the reaction rates rather than affinity constants Rhodospirillum rubrum
1.3.99.31 additional information comparison of the natural evolution and kinetic properties of selected CrtI enzymes expressed and assayed under standardised conditions. Potentially all CrtI enzymes can catalyse desaturation reactions that progress beyond the already observed end-products and the pattern of products formed originates from variations in the reaction rates rather than affinity constants Pantoea agglomerans
2.5.1.29 malfunction direct silencing of geranylgeranyl diphosphate synthase decreases the carotenoid content Acyrthosiphon pisum