Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Kim, H.T.; Khang, T.U.; Baritugo, K.A.; Hyun, S.M.; Kang, K.H.; Jung, S.H.; Song, B.K.; Park, K.; Oh, M.K.; Kim, G.B.; Kim, H.U.; Lee, S.Y.; Park, S.J.; Joo, J.C.
    Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical (2019), Metab. Eng., 51, 99-109 .
    View publication on PubMed

Cloned(Commentary)

EC Number Cloned (Comment) Organism
1.2.1.20 gene davD, recombinant expression in Corynebacterium glutamicum strain KCTC 1857, coexpression with 5-aminovalerate transaminase (davT, EC 2.6.1.48) from Pseudomonas putida, 4-aminobutyrate-2-oxoglutarate transaminase (gabT, EC 2.6.1.19) from Corynebacterium glutamicum, and NADP-dependent succinic semialdehyde dehydrogenase (gabD, EC 1.2.1.79) from Corynebacterium glutamicum, as well as N-terminal His6-tagged lysine 2-monooxygenase (davB, EC 1.13.12.2) from Pseudomonas putida Pseudomonas putida
1.2.1.79 gene gabD, recombinant expression in Corynebacterium glutamicum strain KCTC 1857, coexpression with 5-aminovalerate transaminase (davT, EC 2.6.1.48) from Pseudomonas putida, 4-aminobutyrate-2-oxoglutarate transaminase (gabT, EC 2.6.1.19) from Corynebacterium glutamicum, and glutarate semialdehyde dehydrogenase (gabD, EC 1.2.1.20) from Pseudomonas putida, as well as N-terminal His6-tagged lysine 2-monooxygenase (davB, EC 1.13.12.2) from Pseudomonas putida Corynebacterium glutamicum
2.6.1.19 gene davD, recombinant expression in Corynebacterium glutamicum strain KCTC 1857, coexpression with 5-aminovalerate transaminase (davT, EC 2.6.1.48) from Pseudomonas putida, glutarate semialdehyde dehydrogenase (gabT, EC 1.2.1.20) from Pseudomonas putida, and NADP-dependent succinic semialdehyde dehydrogenase (gabD, EC 1.2.1.79) from Corynebacterium glutamicum, as well as N-terminal His6-tagged lysine 2-monooxygenase (davB, EC 1.13.12.2) from Pseudomonas putida Corynebacterium glutamicum
2.6.1.48 gene davT, recombinant expression of N-terminal His6-tagged enzyme in Corynebacterium glutamicum strain KCTC 1857, coexpression with glutarate semialdehyde dehydrogenase (davD, EC 1.2.1.20) from Pseudomonas putida, 4-aminobutyrate-2-oxoglutarate transaminase (gabT, EC 2.6.1.19) from Corynebacterium glutamicum, and NADP-dependent succinic semialdehyde dehydrogenase (gabD, EC 1.2.1.79) from Corynebacterium glutamicum, as well as N-terminal His6-tagged lysine 2-monooxygenase (davB, EC 1.13.12.2) from Pseudomonas putida Pseudomonas putida
2.6.1.48 gene dayB, recombinant expression in Corynebacterium glutamicum, co-expression with Pseudomonas putida dayA and dayB genes encoding encoding lysine 2-monooxygenase and delta-aminovaleramidase, respectively, and Corynebacterium glutamicum gabD gene encoding glutarate semialdehyde dehydrogenase Corynebacterium glutamicum
2.6.1.48 gene dayT, recombinant expression in Corynebacterium glutamicum, co-expression with Pseudomonas putida dayA, dayB, and dayD genes encoding lysine 2-monooxygenase, delta-aminovaleramidase, and glutarate semialdehyde dehydrogenase, respectively Pseudomonas putida
3.5.1.30 gene davA, coexpression with Pseudomonas putida genes davB, davT, and davD in Corynebacterium glutamicum engineered strain H30_GAHis under control of strong synthetic promoters PH30 and PH36, fed-batch fermentation Pseudomonas putida

Protein Variants

EC Number Protein Variants Comment Organism
1.2.1.20 additional information metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical, by co-expression of Pseudomonas putida davT, davB, and davD genes encoding lysine 2-monooxygenase, delta-aminovaleramidase, and glutarate semialdehyde dehydrogenase, respectively, in Corynebacterium glutamicum. The glutaric acid biosynthesis pathway constructed in recombinant Corynebacterium glutamicum is engineered by examining strong synthetic promoters H30 and H36, Corynebacterium glutamicum codon-optimized davTDBA genes, and modification of davB gene with an N-terminal His6-tag to improve the production of glutaric acid. The use of N-terminal His6-tagged DavB is most suitable for the production of glutaric acid from glucose. Fed-batch fermentation on of the final engineered Corynebacterium glutamicum H30_GAHis strain, expressing davTDA genes along with davB fused with His6-tag at N-terminus can produce 24.5 g/l of glutaric acid with low accumulation of L-lysine (1.7 g/l), wherein 5-aminovaleric acid (5-AVA) ccumulation is not observed during fermentation. Metabolically engineered Corynebacterium glutamicum strain H30_GA-2 (engineered strain KCTC 1857) is able for catalysis of the biosynthesis of glutaric acid from glucose. Method optimization and evaluation, overview Pseudomonas putida
1.2.1.79 additional information metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical, by co-expression of Pseudomonas putida davT, davB, and davD genes encoding lysine 2-monooxygenase, delta-aminovaleramidase, and glutarate semialdehyde dehydrogenase, respectively, in Corynebacterium glutamicum. Method optimization and evaluation. The glutaric acid biosynthesis pathway constructed in recombinant Corynebacterium glutamicum is engineered by examining strong synthetic promoters H30 and H36, Corynebacterium glutamicum codon-optimized davTDBA genes, and modification of davB gene with an N-terminal His6-tag to improve the production of glutaric acid. The use of N-terminal His6-tagged DavB is most suitable for the production of glutaric acid from glucose. Fed-batch fermentation of the final engineered Corynebacterium glutamicum H30_GAHis strain, expressing davTDA genes along with davB fused with His6-tag at N-terminus can produce 24.5 g/l of glutaric acid with low accumulation of L-lysine (1.7 g/l), wherein 5-aminovaleric acid (5-AVA) ccumulation is not observed during fermentation. Metabolically engineered Corynebacterium glutamicum strain KCTC H30_GA-2 (engineered strain KCTC 1857) is able for catalysis of the biosynthesis of glutaric acid from glucose. Method optimization and evaluation, overview Corynebacterium glutamicum
2.6.1.19 additional information metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical, by co-expression of Pseudomonas putida davT, davB, and davD genes encoding lysine 2-monooxygenase, delta-aminovaleramidase, and glutarate semialdehyde dehydrogenase, respectively, in Corynebacterium glutamicum. Method optimization and evaluation. The glutaric acid biosynthesis pathway constructed in recombinant Corynebacterium glutamicum is engineered by examining strong synthetic promoters H30 and H36, Corynebacterium glutamicum codon-optimized davTDBA genes, and modification of davB gene with an N-terminal His6-tag to improve the production of glutaric acid. The use of N-terminal His6-tagged DavB is most suitable for the production of glutaric acid from glucose. Fed-batch fermentation on of the final engineered Corynebacterium glutamicum H30_GAHis strain, expressing davTDA genes along with davB fused with His6-tag at N-terminus can produce 24.5 g/l of glutaric acid with low accumulation of L-lysine (1.7 g/l), wherein 5-aminovaleric acid (5-AVA) ccumulation is not observed during fermentation. Metabolically engineered Corynebacterium glutamicum strain KCTC H30_GA-2 (engineered strain KCTC 1857) is able for catalysis of the biosynthesis of glutaric acid from glucose. Method optimization and evaluation, overview Corynebacterium glutamicum
2.6.1.48 additional information metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical by co-expression with Pseudomonas putida dayA, dayB, and dayD genes encoding encoding lysine 2-monooxygenase, delta-aminovaleramidase, and glutarate semialdehyde dehydrogenase, respectively, in Corynebacterium glutamicum. Method optimization and evaluation Corynebacterium glutamicum
2.6.1.48 additional information metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical by co-expression with Pseudomonas putida dayA, dayB, and dayD genes encoding lysine 2-monooxygenase, delta-aminovaleramidase, and glutarate semialdehyde dehydrogenase, respectively, in Corynebacterium glutamicum. Method optimization and evaluation Pseudomonas putida
2.6.1.48 additional information metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical, by co-expression of Pseudomonas putida davT, davB, and davD genes encoding lysine 2-monooxygenase, delta-aminovaleramidase, and glutarate semialdehyde dehydrogenase, respectively, in Corynebacterium glutamicum. Method optimization and evaluation. The glutaric acid biosynthesis pathway constructed in recombinant Corynebacterium glutamicum is engineered by examining strong synthetic promoters H30 and H36, Corynebacterium glutamicum codon-optimized davTDBA genes, and modification of davB gene with an N-terminal His6-tag to improve the production of glutaric acid. The use of N-terminal His6-tagged DavB is most suitable for the production of glutaric acid from glucose. Fed-batch fermentation on of the final engineered Corynebacterium glutamicum H30_GAHis strain, expressing davTDA genes along with davB fused with His6-tag at N-terminus can produce 24.5 g/l of glutaric acid with low accumulation of L-lysine (1.7 g/l), wherein 5-aminovaleric acid (5-AVA) ccumulation is not observed during fermentation. Metabolically engineered Corynebacterium glutamicum strain KCTC H30_GA-2 (engineered strain KCTC 1857) is able for catalysis of the biosynthesis of glutaric acid from glucose. Method optimization and evaluation, overview Pseudomonas putida
3.5.1.30 additional information Corynebacterium glutamicum KCTC 1857, which naturally producs high amounts of L-lysine, a direct precursor for the production of cadaverine, 5-AVA, and glutaric acid, is metabolically engineered for the production of glutaric acid, a C5 dicarboxylic acid that can be used as platform building block chemical for nylons and plasticizers. Corynebacterium glutamicum gabT and gabD genes and Pseudomonas putida davT and davD genes encoding 5-aminovalerate transaminase and glutarate semialdehyde dehydrogenase, respectively, are examined in Corynebacterium glutamicum for the construction of a glutaric acid biosynthesis pathway along with Pseudomonas putida davB and davA genes encoding lysine 2-monooxygenase and delta-aminovaleramidase, respectively. Evaluation of strong synthetic promoters PH30 and PH36, usage of Corynebacterium glutamicum codon-optimized davTDBA genes, and modification of davB gene with an N-terminal His6-tag are established to improve the production of glutaric acid. N-terminal His6-tagged DavB is most suitable for the production of glutaric acid from glucose. Fed-batch fermentation using the final engineered Corynebacterium glutamicum H30_GAHis strain, expressing davTDA genes along with N-terminally His6-tagged davB produce 24.5 g/l of glutaric acid with low accumulation of L-lysine (1.7 g/l), wherein 5-AVA accumulation is not observed during fermentation Pseudomonas putida

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
1.2.1.20 5-oxopentanoate + NADP+ + H2O Pseudomonas putida
-
glutarate + NADPH + H+
-
?
1.2.1.20 5-oxopentanoate + NADP+ + H2O Pseudomonas putida DSM 6125
-
glutarate + NADPH + H+
-
?
1.2.1.20 5-oxopentanoate + NADP+ + H2O Pseudomonas putida NCIMB 11950
-
glutarate + NADPH + H+
-
?
1.2.1.20 5-oxopentanoate + NADP+ + H2O Pseudomonas putida ATCC 47054
-
glutarate + NADPH + H+
-
?
1.2.1.79 succinate semialdehyde + NADP+ + H2O Corynebacterium glutamicum
-
succinate + NADPH + 2 H+
-
?
2.6.1.19 4-aminobutanoate + 2-oxoglutarate Corynebacterium glutamicum
-
succinate semialdehyde + L-glutamate
-
?
2.6.1.48 5-aminopentanoate + 2-oxoglutarate Pseudomonas putida
-
5-oxopentanoate + L-glutamate
-
?
2.6.1.48 5-aminopentanoate + 2-oxoglutarate Pseudomonas putida DSM 6125
-
5-oxopentanoate + L-glutamate
-
?
2.6.1.48 5-aminopentanoate + 2-oxoglutarate Pseudomonas putida NCIMB 11950
-
5-oxopentanoate + L-glutamate
-
?
2.6.1.48 5-aminopentanoate + 2-oxoglutarate Pseudomonas putida ATCC 47054
-
5-oxopentanoate + L-glutamate
-
?
3.5.1.30 5-aminopentanamide + H2O Pseudomonas putida
-
5-aminopentanoate + NH3
-
?
3.5.1.30 5-aminopentanamide + H2O Pseudomonas putida ATCC 12633
-
5-aminopentanoate + NH3
-
?

Organism

EC Number Organism UniProt Comment Textmining
1.2.1.20 Pseudomonas putida Q88RC0
-
-
1.2.1.20 Pseudomonas putida ATCC 47054 Q88RC0
-
-
1.2.1.20 Pseudomonas putida DSM 6125 Q88RC0
-
-
1.2.1.20 Pseudomonas putida NCIMB 11950 Q88RC0
-
-
1.2.1.79 Corynebacterium glutamicum A0A1Q6BLU5
-
-
2.6.1.19 Corynebacterium glutamicum A0A0U4XQS6
-
-
2.6.1.48 Corynebacterium glutamicum A0A0U4XQS6
-
-
2.6.1.48 Pseudomonas putida
-
-
-
2.6.1.48 Pseudomonas putida Q88RB9
-
-
2.6.1.48 Pseudomonas putida ATCC 47054 Q88RB9
-
-
2.6.1.48 Pseudomonas putida DSM 6125 Q88RB9
-
-
2.6.1.48 Pseudomonas putida NCIMB 11950 Q88RB9
-
-
3.5.1.30 Pseudomonas putida B3IVI7
-
-
3.5.1.30 Pseudomonas putida ATCC 12633 B3IVI7
-
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
1.2.1.20 5-oxopentanoate + NADP+ + H2O
-
Pseudomonas putida glutarate + NADPH + H+
-
?
1.2.1.20 5-oxopentanoate + NADP+ + H2O
-
Pseudomonas putida DSM 6125 glutarate + NADPH + H+
-
?
1.2.1.20 5-oxopentanoate + NADP+ + H2O
-
Pseudomonas putida NCIMB 11950 glutarate + NADPH + H+
-
?
1.2.1.20 5-oxopentanoate + NADP+ + H2O
-
Pseudomonas putida ATCC 47054 glutarate + NADPH + H+
-
?
1.2.1.79 succinate semialdehyde + NADP+ + H2O
-
Corynebacterium glutamicum succinate + NADPH + 2 H+
-
?
2.6.1.19 4-aminobutanoate + 2-oxoglutarate
-
Corynebacterium glutamicum succinate semialdehyde + L-glutamate
-
?
2.6.1.48 5-aminopentanoate + 2-oxoglutarate
-
Pseudomonas putida 5-oxopentanoate + L-glutamate
-
?
2.6.1.48 5-aminopentanoate + 2-oxoglutarate
-
Pseudomonas putida DSM 6125 5-oxopentanoate + L-glutamate
-
?
2.6.1.48 5-aminopentanoate + 2-oxoglutarate
-
Pseudomonas putida NCIMB 11950 5-oxopentanoate + L-glutamate
-
?
2.6.1.48 5-aminopentanoate + 2-oxoglutarate
-
Pseudomonas putida ATCC 47054 5-oxopentanoate + L-glutamate
-
?
3.5.1.30 5-aminopentanamide + H2O
-
Pseudomonas putida 5-aminopentanoate + NH3
-
?
3.5.1.30 5-aminopentanamide + H2O
-
Pseudomonas putida ATCC 12633 5-aminopentanoate + NH3
-
?

Synonyms

EC Number Synonyms Comment Organism
1.2.1.20 davD
-
Pseudomonas putida
1.2.1.20 glutarate semialdehyde dehydrogenase
-
Pseudomonas putida
1.2.1.79 gabD
-
Corynebacterium glutamicum
1.2.1.79 NADP-dependent succinic semialdehyde dehydrogenase
-
Corynebacterium glutamicum
2.6.1.19 4-aminobutyrate-2-oxoglutarate transaminase
-
Corynebacterium glutamicum
2.6.1.19 GabT
-
Corynebacterium glutamicum
2.6.1.48 5-aminovalerate transaminase
-
Pseudomonas putida
2.6.1.48 5-aminovalerate transaminase
-
Corynebacterium glutamicum
2.6.1.48 davT
-
Pseudomonas putida
2.6.1.48 dayT
-
Pseudomonas putida
2.6.1.48 GabT
-
Corynebacterium glutamicum

Temperature Optimum [°C]

EC Number Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
3.5.1.30 30
-
assay at Pseudomonas putida

pH Optimum

EC Number pH Optimum Minimum pH Optimum Maximum Comment Organism
3.5.1.30 7.4
-
assay at Pseudomonas putida

Cofactor

EC Number Cofactor Comment Organism Structure
1.2.1.20 NADP+
-
Pseudomonas putida
1.2.1.79 NADP+
-
Corynebacterium glutamicum
2.6.1.19 pyridoxal 5'-phosphate
-
Corynebacterium glutamicum
2.6.1.48 pyridoxal 5'-phosphate
-
Pseudomonas putida

General Information

EC Number General Information Comment Organism
1.2.1.20 metabolism glutarate semialdehyde dehydrogenase encoded by davD converts glutarate semialdehyde into glutaric acid. In the natural L-lysine catabolic pathway of Pseudomonas strains, glutaric acid is then further converted to acetyl-CoA, a main intermediate of Krebs cycle Pseudomonas putida
1.2.1.79 physiological function production of glutaric acid depends on the expression of native gabT (EC 2.6.1.48) and gabD of Corynebacterium glutamicum, or on heterologous expression of davT (EC 2.6.1.48) and davD (EC 1.2.1.20) from Pseudomonas putida encoding 5-aminovalerate aminotransferase, and glutarate semialdehyde, respectively Corynebacterium glutamicum
2.6.1.19 physiological function production of glutaric acid depends on the expression of native gabT (EC 2.6.1.48) and gabD of Corynebacterium glutamicum, or on heterologous expression of davT (EC 2.6.1.48) and davD (EC 1.2.1.20) from Pseudomonas putida encoding 5-aminovalerate aminotransferase, and glutarate semialdehyde, respectively Corynebacterium glutamicum
2.6.1.48 metabolism in the L-lysine catabolism pathway, 5-aminovaleric acid (5-AVA) is furter converted into glutarate semialdehyde by 5-aminovalerate transaminase encoded by davT Pseudomonas putida