Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Bacik, J.P.; Jarboe, L.R.
    Bioconversion of anhydrosugars: emerging concepts and strategies (2016), IUBMB Life, 68, 700-708.
    View publication on PubMed

Cloned(Commentary)

EC Number Cloned (Comment) Organism
2.7.1.170 gene anmK, recombinant expression in Escherichia coli Pseudomonas aeruginosa
2.7.1.232 recombinant expression in Escherichia coli Aspergillus niger
2.7.1.232 recombinant expression in Escherichia coli Lipomyces starkeyi

Crystallization (Commentary)

EC Number Crystallization (Comment) Organism
2.7.1.170 analysis of several crystal structures Pseudomonas aeruginosa
2.7.1.170 crystal structure analysis Escherichia coli

Protein Variants

EC Number Protein Variants Comment Organism
2.7.1.170 D182A site-directed mutagenesis, inactive catalytic site mutant Pseudomonas aeruginosa
2.7.1.170 D182N site-directed mutagenesis, inactive catalytic site mutant Pseudomonas aeruginosa
2.7.1.232 additional information LGK derived from Lipomyces starkeyi is an interesting target for efforts in advanced protein engineering, single-site saturation mutagenesis coupled with selection of the LGK variants using deep sequencing approaches is used to develop LGK constructs with enhanced thermal stability and catalytic efficiency Lipomyces starkeyi

Inhibitors

EC Number Inhibitors Comment Organism Structure
2.7.1.170 ADP
-
Escherichia coli
2.7.1.170 ADP
-
Pseudomonas aeruginosa
2.7.1.170 additional information no inhibition by N-acetylmuramate up to 20 mM Escherichia coli
2.7.1.232 ADP
-
Aspergillus niger
2.7.1.232 gentiobiose a non-competitive inhibitor Sporidiobolus salmonicolor
2.7.1.232 Mg-ADP competitive inhibition Sporidiobolus salmonicolor
2.7.1.232 Tris
-
Lipomyces starkeyi

KM Value [mM]

EC Number KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
2.7.1.170 0.2
-
1,6-anhydro-N-acetyl-beta-muramate pH and temperature not specified in the publication Pseudomonas aeruginosa
2.7.1.170 1
-
ATP pH and temperature not specified in the publication Escherichia coli
2.7.1.170 1
-
1,6-anhydro-N-acetyl-beta-muramate pH and temperature not specified in the publication Escherichia coli
2.7.1.232 0.19
-
ATP pH and temperature not specified in the publication Sporidiobolus salmonicolor
2.7.1.232 0.2 0.68 ATP pH 9.0, 30°C Lipomyces starkeyi
2.7.1.232 0.21
-
ATP pH and temperature not specified in the publication Penicillium herquei
2.7.1.232 0.25
-
ATP pH 9.3, 30°C Aspergillus niger
2.7.1.232 0.29
-
ATP pH and temperature not specified in the publication Penicillium javanicum
2.7.1.232 0.29
-
ATP pH and temperature not specified in the publication Papiliotrema flavescens
2.7.1.232 0.3
-
ATP pH and temperature not specified in the publication Papiliotrema laurentii
2.7.1.232 0.3
-
ATP pH and temperature not specified in the publication Alternaria alternata
2.7.1.232 0.3
-
ATP pH and temperature not specified in the publication Buckleyzyma aurantiaca
2.7.1.232 0.35
-
ATP pH and temperature not specified in the publication Hannaella luteola
2.7.1.232 48
-
1,6-anhydro-beta-D-glucopyranose pH and temperature not specified in the publication Penicillium herquei
2.7.1.232 56
-
1,6-anhydro-beta-D-glucopyranose pH and temperature not specified in the publication Penicillium javanicum
2.7.1.232 60
-
1,6-anhydro-beta-D-glucopyranose pH 9.3, 30°C Aspergillus niger
2.7.1.232 68.6 105.3 1,6-anhydro-beta-D-glucopyranose pH 9.0, 30°C Lipomyces starkeyi
2.7.1.232 70
-
1,6-anhydro-beta-D-glucopyranose pH and temperature not specified in the publication Alternaria alternata
2.7.1.232 71.2
-
1,6-anhydro-beta-D-glucopyranose pH 9.3, 30°C Aspergillus niger
2.7.1.232 80
-
1,6-anhydro-beta-D-glucopyranose pH and temperature not specified in the publication Papiliotrema flavescens
2.7.1.232 84
-
1,6-anhydro-beta-D-glucopyranose pH and temperature not specified in the publication Papiliotrema laurentii
2.7.1.232 85
-
1,6-anhydro-beta-D-glucopyranose pH and temperature not specified in the publication Sporidiobolus salmonicolor
2.7.1.232 95
-
1,6-anhydro-beta-D-glucopyranose pH and temperature not specified in the publication Hannaella luteola
2.7.1.232 102
-
1,6-anhydro-beta-D-glucopyranose pH and temperature not specified in the publication Buckleyzyma aurantiaca
2.7.1.232 119
-
1,6-anhydro-beta-D-glucopyranose pH and temperature not specified in the publication Lipomyces starkeyi

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
2.7.1.170 Mg2+ required Pseudomonas aeruginosa
2.7.1.170 Mg2+ required Escherichia coli
2.7.1.232 Mg2+ required Aspergillus niger
2.7.1.232 Mg2+ required Sporidiobolus salmonicolor
2.7.1.232 Mg2+ required Aspergillus terreus
2.7.1.232 Mg2+ required Papiliotrema laurentii
2.7.1.232 Mg2+ required Penicillium javanicum
2.7.1.232 Mg2+ required Alternaria alternata
2.7.1.232 Mg2+ required Buckleyzyma aurantiaca
2.7.1.232 Mg2+ required Papiliotrema flavescens
2.7.1.232 Mg2+ required Penicillium herquei
2.7.1.232 Mg2+ required Hannaella luteola
2.7.1.232 Mg2+ the enzyme requires Mg2+ or Mn2+, apparent binding of two magnesium ions in the active site showing ideal octahedral binding of the metals. The first of the bound metals, designated M1, forms an electrostatic interaction with the beta-phosphate, and its positioning suggests that it plays a direct role in phosphoryl transfer. The second of these metals, designated M2, likely plays a key role in coordinating the position of the alpha- and beta-phosphates since it binds to both of these phosphates, although a role in modulation of electrostatic charges is also plausible Lipomyces starkeyi
2.7.1.232 Mn2+ the enzyme requires Mg2+ or Mn2+, apparent binding of two magnesium ions in the active site showing ideal octahedral binding of the metals. The first of the bound metals, designated M1, forms an electrostatic interaction with the beta-phosphate, and its positioning suggests that it plays a direct role in phosphoryl transfer. The second of these metals, designated M2, likely plays a key role in coordinating the position of the alpha- and beta-phosphates since it binds to both of these phosphates, although a role in modulation of electrostatic charges is also plausible Lipomyces starkeyi

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
2.7.1.170 ATP + 1,6-anhydro-N-acetyl-beta-muramate + H2O Pseudomonas aeruginosa 1,6-anhydro-N-acetyl-beta-muramate is a breakdown product of bacterial peptidoglycan in many Gram-negative bacteria, it is released from murein tripeptide ADP + N-acetyl-beta-muramate 6-phosphate + H+
-
?
2.7.1.170 ATP + 1,6-anhydro-N-acetyl-beta-muramate + H2O Escherichia coli 1,6-anhydro-N-acetyl-beta-muramate is a breakdown product of bacterial peptidoglycan in many Gram-negative bacteria, it is released from murein tripeptide ADP + N-acetyl-beta-muramate 6-phosphate + H+
-
?
2.7.1.232 ATP + levoglucosan + H2O Aspergillus niger
-
ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O Sporidiobolus salmonicolor
-
ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O Aspergillus terreus
-
ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O Papiliotrema laurentii
-
ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O Penicillium javanicum
-
ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O Alternaria alternata
-
ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O Buckleyzyma aurantiaca
-
ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O Papiliotrema flavescens
-
ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O Lipomyces starkeyi
-
ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O Penicillium herquei
-
ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O Hannaella luteola
-
ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O Aspergillus niger CBX-209
-
ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O Lipomyces starkeyi YZ-215
-
ADP + D-glucopyranose 6-phosphate
-
?

Organism

EC Number Organism UniProt Comment Textmining
2.7.1.170 Escherichia coli P77570 gene anmK
-
2.7.1.170 Pseudomonas aeruginosa Q9I5Q5 gene anmK
-
2.7.1.232 Alternaria alternata
-
-
-
2.7.1.232 Aspergillus niger
-
-
-
2.7.1.232 Aspergillus niger CBX-209
-
-
-
2.7.1.232 Aspergillus terreus
-
-
-
2.7.1.232 Buckleyzyma aurantiaca
-
-
-
2.7.1.232 Hannaella luteola
-
-
-
2.7.1.232 Lipomyces starkeyi B3VI55
-
-
2.7.1.232 Lipomyces starkeyi YZ-215 B3VI55
-
-
2.7.1.232 Papiliotrema flavescens
-
-
-
2.7.1.232 Papiliotrema laurentii
-
-
-
2.7.1.232 Penicillium herquei
-
-
-
2.7.1.232 Penicillium javanicum
-
-
-
2.7.1.232 Sporidiobolus salmonicolor
-
-
-

Purification (Commentary)

EC Number Purification (Comment) Organism
2.7.1.232 native enzyme by ion exchange chromatography Sporidiobolus salmonicolor
2.7.1.232 native enzyme by ion exchange chromatography Aspergillus terreus

Reaction

EC Number Reaction Comment Organism Reaction ID
2.7.1.170 ATP + 1,6-anhydro-N-acetyl-beta-muramate + H2O = ADP + N-acetylmuramate 6-phosphate the oxygen of 1,6-anhydro-N-acetyl-beta-muramate, that is to be phosphorylated, is trapped in the anhydro ring structure and must first be cleaved prior to phosphorylation. In order to do this, Asp182 is predicted to act as a base to deprotonate a water molecule and enhance its nucleophilicity. The water would then attack the anomeric carbon of the sugar concomitant with transfer of the gamma-phosphate of ATP. The lone pair electrons from the O5 position would assume partial double-bond characteristics and stabilize the oxocarbenium ion that would otherwise develop, with the anomeric carbon adopting an axial conformation in the product acetylmuramate 6-phosphate, catalytic role of the conserved residue Asp182 residue in catalysis Pseudomonas aeruginosa
2.7.1.232 ATP + 1,6-anhydro-beta-D-glucopyranose + H2O = ADP + 6-phospho-alpha-D-glucopyranose the catalytic mechanism involves both cleavage of the 1,6-intramolecular linkage as well as phosphorylation Sporidiobolus salmonicolor
2.7.1.232 ATP + 1,6-anhydro-beta-D-glucopyranose + H2O = ADP + 6-phospho-alpha-D-glucopyranose the catalytic mechanism involves both cleavage of the 1,6-intramolecular linkage as well as phosphorylation Aspergillus terreus

Storage Stability

EC Number Storage Stability Organism
2.7.1.232 -20°C, recombinant enzyme, stable at Aspergillus niger

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
2.7.1.170 ATP + 1,6-anhydro-N-acetyl-beta-muramate + H2O
-
Pseudomonas aeruginosa ADP + N-acetyl-beta-muramate 6-phosphate + H+
-
?
2.7.1.170 ATP + 1,6-anhydro-N-acetyl-beta-muramate + H2O
-
Escherichia coli ADP + N-acetyl-beta-muramate 6-phosphate + H+
-
?
2.7.1.170 ATP + 1,6-anhydro-N-acetyl-beta-muramate + H2O 1,6-anhydro-N-acetyl-beta-muramate is a breakdown product of bacterial peptidoglycan in many Gram-negative bacteria, it is released from murein tripeptide Pseudomonas aeruginosa ADP + N-acetyl-beta-muramate 6-phosphate + H+
-
?
2.7.1.170 ATP + 1,6-anhydro-N-acetyl-beta-muramate + H2O 1,6-anhydro-N-acetyl-beta-muramate is a breakdown product of bacterial peptidoglycan in many Gram-negative bacteria, it is released from murein tripeptide Escherichia coli ADP + N-acetyl-beta-muramate 6-phosphate + H+
-
?
2.7.1.170 additional information the enzyme utilizes an unusual mechanism whereby the sugar substrate is both cleaved and phosphorylated. N-acetylmuramate cannot be used as a substrate for AnmK Pseudomonas aeruginosa ?
-
?
2.7.1.170 additional information the enzyme utilizes an unusual mechanism whereby the sugar substrate is both cleaved and phosphorylated. N-acetylmuramate cannot be used as a substrate for AnmK Escherichia coli ?
-
?
2.7.1.232 ATP + levoglucosan + H2O
-
Aspergillus niger ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O
-
Sporidiobolus salmonicolor ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O
-
Aspergillus terreus ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O
-
Papiliotrema laurentii ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O
-
Penicillium javanicum ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O
-
Alternaria alternata ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O
-
Buckleyzyma aurantiaca ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O
-
Papiliotrema flavescens ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O
-
Lipomyces starkeyi ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O
-
Penicillium herquei ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O
-
Hannaella luteola ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O
-
Sporidiobolus salmonicolor ADP + D-glucopyranose 6-phosphate reaction products ADP and glucose 6-phosphate are measured by a pyruvatekinase/lactate dehydrogenase coupling system as well as through the use of 14C labeled levoglucosan and thin layer chromatography techniques ?
2.7.1.232 ATP + levoglucosan + H2O
-
Aspergillus terreus ADP + D-glucopyranose 6-phosphate reaction products ADP and glucose 6-phosphate are measured by a pyruvatekinase/lactate dehydrogenase coupling system as well as through the use of 14C labeled levoglucosan and thin layer chromatography techniques ?
2.7.1.232 ATP + levoglucosan + H2O structure-function analysis and reaction mechanism Lipomyces starkeyi ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O
-
Aspergillus niger CBX-209 ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O
-
Lipomyces starkeyi YZ-215 ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 ATP + levoglucosan + H2O structure-function analysis and reaction mechanism Lipomyces starkeyi YZ-215 ADP + D-glucopyranose 6-phosphate
-
?
2.7.1.232 additional information enzme LGK shows specificity for the levoglucosan sugar, showing activity for only this anhydrosugar and no activity for galactosan or maltosan and only very weak activity for mannosan (1% relative activity) that also contain the same 1,6-anhydro intramolecular linkage as levoglucosan, demonstrating that the nature of the pyranose frame is also important for substrate recognition by enzyme LGK Sporidiobolus salmonicolor ?
-
?

Subunits

EC Number Subunits Comment Organism
2.7.1.170 dimer the enzyme structure exhibits two major domains separated by a deep hinge region with the nucleotide and sugar binding near the hinge. The protein forms a dimer, with extensive interactions between the two monomers Pseudomonas aeruginosa

Synonyms

EC Number Synonyms Comment Organism
2.7.1.170 1,6-anhydro-N-acetylmuramic acid kinase
-
Pseudomonas aeruginosa
2.7.1.170 1,6-anhydro-N-acetylmuramic acid kinase
-
Escherichia coli
2.7.1.170 AnmK
-
Pseudomonas aeruginosa
2.7.1.170 AnmK
-
Escherichia coli
2.7.1.232 LGK
-
Aspergillus niger
2.7.1.232 LGK
-
Sporidiobolus salmonicolor
2.7.1.232 LGK
-
Aspergillus terreus
2.7.1.232 LGK
-
Papiliotrema laurentii
2.7.1.232 LGK
-
Penicillium javanicum
2.7.1.232 LGK
-
Alternaria alternata
2.7.1.232 LGK
-
Buckleyzyma aurantiaca
2.7.1.232 LGK
-
Papiliotrema flavescens
2.7.1.232 LGK
-
Lipomyces starkeyi
2.7.1.232 LGK
-
Penicillium herquei
2.7.1.232 LGK
-
Hannaella luteola

Temperature Optimum [°C]

EC Number Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
2.7.1.232 30
-
-
Aspergillus niger
2.7.1.232 30
-
-
Lipomyces starkeyi

Temperature Stability [°C]

EC Number Temperature Stability Minimum [°C] Temperature Stability Maximum [°C] Comment Organism
2.7.1.232 5 30 stable at, activity drops off sharply between 30°C and 40°C Aspergillus niger

Turnover Number [1/s]

EC Number Turnover Number Minimum [1/s] Turnover Number Maximum [1/s] Substrate Comment Organism Structure
2.7.1.170 7000
-
1,6-anhydro-N-acetyl-beta-muramate pH and temperature not specified in the publication Escherichia coli

pH Optimum

EC Number pH Optimum Minimum pH Optimum Maximum Comment Organism
2.7.1.170 10
-
-
Escherichia coli
2.7.1.232 9
-
-
Lipomyces starkeyi
2.7.1.232 9.3
-
-
Aspergillus niger

pH Stability

EC Number pH Stability pH Stability Maximum Comment Organism
2.7.1.232 6 10 recombinant enzyme, stable at Aspergillus niger
2.7.1.232 7 10 stable at Aspergillus niger

Cofactor

EC Number Cofactor Comment Organism Structure
2.7.1.170 ATP
-
Pseudomonas aeruginosa
2.7.1.170 ATP
-
Escherichia coli
2.7.1.232 ATP
-
Aspergillus niger
2.7.1.232 ATP
-
Sporidiobolus salmonicolor
2.7.1.232 ATP
-
Aspergillus terreus
2.7.1.232 ATP
-
Papiliotrema laurentii
2.7.1.232 ATP
-
Penicillium javanicum
2.7.1.232 ATP
-
Alternaria alternata
2.7.1.232 ATP
-
Buckleyzyma aurantiaca
2.7.1.232 ATP
-
Papiliotrema flavescens
2.7.1.232 ATP
-
Lipomyces starkeyi
2.7.1.232 ATP
-
Penicillium herquei
2.7.1.232 ATP
-
Hannaella luteola

Ki Value [mM]

EC Number Ki Value [mM] Ki Value maximum [mM] Inhibitor Comment Organism Structure
2.7.1.170 0.4
-
ADP pH and temperature not specified in the publication Pseudomonas aeruginosa
2.7.1.170 0.4
-
ADP pH and temperature not specified in the publication Escherichia coli
2.7.1.232 48
-
Tris pH 9.0, 30°C Lipomyces starkeyi

IC50 Value

EC Number IC50 Value IC50 Value Maximum Comment Organism Inhibitor Structure
2.7.1.232 0.015
-
pH and temperature not specified in the publication Sporidiobolus salmonicolor Mg-ADP
2.7.1.232 0.05
-
pH and temperature not specified in the publication Sporidiobolus salmonicolor gentiobiose
2.7.1.232 0.2
-
pH 9.3, 30°C Aspergillus niger ADP

General Information

EC Number General Information Comment Organism
2.7.1.170 evolution 1,6-anhydro-N-acetylmuramic acid kinase (AnmK) and levoglucosan kinase (LGK) share significant sequence homology (30-40%) and form a subfamily of anhydrosugar kinases in the sugar kinase family, which is itself part of a larger superfamily of ATPase domain containing proteins (sugar kinase/heat shock protein 70/actin superfamily) that contain conserved structural motifs including the ATP binding domain and an interdomain hinge region that allows the two major domains to rotate relative to each other Pseudomonas aeruginosa
2.7.1.170 evolution 1,6-anhydro-N-acetylmuramic acid kinase (AnmK) and levoglucosan kinase (LGK) share significant sequence homology (30-40%) and form a subfamily of anhydrosugar kinases in the sugar kinase family, which is itself part of a larger superfamily of ATPase domain containing proteins (sugar kinase/heat shock protein 70/actin superfamily) that contain conserved structural motifs including the ATP binding domain and an interdomain hinge region that allows the two major domains to rotate relative to each other Escherichia coli
2.7.1.170 metabolism 1,6-anhydro-N-acetylmuramic acid is produced during peptidoglucan degeneration by transglycosylases, e.g. AmpD or NagZ. The AnmK reaction product N-acetylmuramate 6-phosphate returns into peptidoglycan recycling Escherichia coli
2.7.1.170 additional information analysis of structures of enzyme AnmK bound to the reaction product ADP and the substrate anhMurNAc as well as the positioning of a conserved aspartate residue (Asp182) in the active site, prediction of a mechanism of catalysis for this enzyme. Conformational dynamics of AnmK during its catalytic cycle from subsequent structural studies of AnmK in the open conformation as well as small-angle X-ray scattering analysis of the enzyme. In solution the enzyme may adopt an open conformation when bound to either AMPPCP or without nucleotide present, while it adopts a more compact globular conformation in the presence of ADP, suggestive of a closed state. Dramatic conformational dynamics for AnmK, whereby it cycles between a closed catalytically competent state and an open state that likely facilitates substrate binding and product departure Pseudomonas aeruginosa
2.7.1.170 physiological function enzyme AnmK has plays a role in bacterial resistance to the antibiotic fosfomycin, a classical broad-spectrum antibiotic Pseudomonas aeruginosa
2.7.1.170 physiological function enzyme AnmK has plays a role in bacterial resistance to the antibiotic fosfomycin, a classical broad-spectrum antibiotic Escherichia coli
2.7.1.232 additional information three dimensional structure analysis, comparison of structure and mechanism with 1,6-anhydro-N-acetylmuramic acid kinase and AnmK-like enzymes, overview Lipomyces starkeyi