BRENDA - Enzyme Database show

TADH, the thermostable alcohol dehydrogenase from Thermus sp. ATN1: a versatile new biocatalyst for organic synthesis

Hoellrigl, V.; Hollmann, F.; Kleeb, A.C.; Buehler, K.; Schmid, A.; Appl. Microbiol. Biotechnol. 81, 263-273 (2008)

Data extracted from this reference:

Activating Compound
EC Number
Activating Compound
Commentary
Organism
Structure
1.1.1.1
Triton X-100
201% relative activity at 10% (v/v)
Thermus sp.
1.1.1.1
Urea
130% relative activity at 1 M
Thermus sp.
Cloned(Commentary)
EC Number
Commentary
Organism
1.1.1.1
expressed in Escherichia coli BL21 (DE3) cells
Thermus sp.
General Stability
EC Number
General Stability
Organism
1.1.1.1
the presence of a second phase of a water-insoluble solvent like hexane or octane has only minor effects on the enzyme, which retains 80% of its activity, allowing the use of these solvents in aqueous/organic mixtures to increase the availability of low-water soluble substrates
Thermus sp.
Inhibitors
EC Number
Inhibitors
Commentary
Organism
Structure
1.1.1.1
2,2'-bipyridyl
91% relative activity at 10 mM
Thermus sp.
1.1.1.1
dithiothreitol
14% relative activity at 10 mM
Thermus sp.
1.1.1.1
EDTA
2.3% relative activity at 10 mM
Thermus sp.
1.1.1.1
SDS
0.4% relative activity at 10% (v/v)
Thermus sp.
1.1.1.1
Tween 80
13% relative activity at 10% (v/v)
Thermus sp.
1.1.1.1
Urea
1% relative activity at 5 M
Thermus sp.
1.1.1.1
Zn2+
91% relative activity at 10 mM
Thermus sp.
KM Value [mM]
EC Number
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
1.1.1.1
0.01
-
NADH
in 200 mM bicine, pH 6.0, at 60°C
Thermus sp.
1.1.1.1
0.13
-
NAD+
in 200 mM bicine, pH 9.0, at 60°C
Thermus sp.
1.1.1.1
2.09
-
Cyclohexanol
in 200 mM bicine, pH 9.0, at 60°C
Thermus sp.
1.1.1.1
3.68
-
cyclohexanone
in 200 mM bicine, pH 6.0, at 60°C
Thermus sp.
Metals/Ions
EC Number
Metals/Ions
Commentary
Organism
Structure
1.1.1.1
additional information
not stimulated by 10 mM Li+, Mg2+, Co2+, and Ca2+
Thermus sp.
Molecular Weight [Da]
EC Number
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
1.1.1.1
37200
-
calculated molecular weight
Thermus sp.
1.1.1.1
40000
-
SDS-PAGE
Thermus sp.
Natural Substrates/ Products (Substrates)
EC Number
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
1.1.1.1
additional information
Thermus sp.
TADH is a NAD(H)-dependent enzyme and shows a very broad substrate spectrum producing exclusively the (S)-enantiomer in high enantiomeric excess (more than 99%) during asymmetric reduction of ketones
?
-
-
-
1.1.1.1
additional information
Thermus sp. ATN1
TADH is a NAD(H)-dependent enzyme and shows a very broad substrate spectrum producing exclusively the (S)-enantiomer in high enantiomeric excess (more than 99%) during asymmetric reduction of ketones
?
-
-
-
Organism
EC Number
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
1.1.1.1
Thermus sp.
B2ZRE3
-
-
1.1.1.1
Thermus sp. ATN1
B2ZRE3
-
-
1.1.1.144
Thermus sp.
-
-
-
1.1.1.144
Thermus sp. ATN1
-
-
-
Purification (Commentary)
EC Number
Commentary
Organism
1.1.1.1
ultracentrifugation and Sepabeads EB-QA405 chromatography
Thermus sp.
Specific Activity [micromol/min/mg]
EC Number
Specific Activity Minimum [µmol/min/mg]
Specific Activity Maximum [µmol/min/mg]
Commentary
Organism
1.1.1.1
15
-
crude enzyme, after heat treatment at 75°C for 20 min
Thermus sp.
1.1.1.1
20.6
-
after 1.4fold purifictaion
Thermus sp.
Storage Stability
EC Number
Storage Stability
Organism
1.1.1.1
-20°C, several months, no loss of activity
Thermus sp.
Substrates and Products (Substrate)
EC Number
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
1.1.1.1
(-)-carvone + NADH + H+
1% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
(1S,3S)-3-methylcyclohexanol + NAD+
125% activity compared to cyclohexanol
695811
Thermus sp.
(rac)-3-methylcyclohexanone + NADH + H+
163% activity compared to cyclohexanone
-
-
r
1.1.1.1
(R)-3-methylcyclohexanone + NADH + H+
2% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
(S)-1-phenyl-2-propanol + NAD+
-
695811
Thermus sp.
phenylacetone + NADH + H+
9% activity compared to cyclohexanone
-
-
r
1.1.1.1
(S)-4-phenylbutan-2-ol + NAD+
-
695811
Thermus sp.
benzylacetone + NADH + H+
3% activity compared to cyclohexanone
-
-
r
1.1.1.1
(S)-heptan-2-ol + NAD+
-
695811
Thermus sp.
2-heptanone + NADH + H+
-
-
-
r
1.1.1.1
(S)-pentan-2-ol + NAD+
-
695811
Thermus sp.
2-pentanone + NADH + H+
-
-
-
r
1.1.1.1
(S)-perillylalcohol + NAD+
52% activity compared to cyclohexanol
695811
Thermus sp.
(S)-perillaldehyde + NADH + H+
-
-
-
?
1.1.1.1
1-(p-tolyl)-ethanol + NAD+
19% activity compared to cyclohexanol
695811
Thermus sp.
1-(4-methylphenyl)ethanone + NADH + H+
26% activity compared to cyclohexanone
-
-
?
1.1.1.1
1-butanol + NAD+
142% activity compared to cyclohexanol
695811
Thermus sp.
butanal + NADH + H+
-
-
-
r
1.1.1.1
1-butanol + NAD+
142% activity compared to cyclohexanol
695811
Thermus sp. ATN1
butanal + NADH + H+
-
-
-
r
1.1.1.1
1-heptanol + NAD+
80% activity compared to cyclohexanol
695811
Thermus sp.
heptanal + NADH + H+
-
-
-
r
1.1.1.1
1-heptanol + NAD+
80% activity compared to cyclohexanol
695811
Thermus sp. ATN1
heptanal + NADH + H+
-
-
-
r
1.1.1.1
1-hexanol + NAD+
109% activity compared to cyclohexanol
695811
Thermus sp.
hexanal + NADH + H+
-
-
-
r
1.1.1.1
1-hexanol + NAD+
109% activity compared to cyclohexanol
695811
Thermus sp. ATN1
hexanal + NADH + H+
-
-
-
r
1.1.1.1
1-indanol + NAD+
-
695811
Thermus sp.
1-indanone + NADH + H+
1% activity compared to cyclohexanone
-
-
r
1.1.1.1
1-octanol + NAD+
57% activity compared to cyclohexanol
695811
Thermus sp.
octanal + NADH + H+
-
-
-
r
1.1.1.1
1-pentanol + NAD+
121% activity compared to cyclohexanol
695811
Thermus sp.
pentanal + NADH + H+
-
-
-
r
1.1.1.1
1-phenyl-1,2-ethanediol + NAD+
1% activity compared to cyclohexanol
695811
Thermus sp.
1-phenyl-2-propanone + NADH + H+
-
-
-
r
1.1.1.1
1-phenyl-2-propanol + NAD+
3% activity compared to cyclohexanol
695811
Thermus sp.
1-phenyl-2-propanone + NADH + H+
-
-
-
r
1.1.1.1
1-phenylethanol + NAD+
3% activity compared to cyclohexanol
695811
Thermus sp.
1-phenylethanone + NADH + H+
-
-
-
r
1.1.1.1
1-phenylethanol + NAD+
-
695811
Thermus sp.
acetophenone + NADH + H+
1% activity compared to cyclohexanone
-
-
?
1.1.1.1
1-propanol + NAD+
153% activity compared to cyclohexanol
695811
Thermus sp.
propanal + NADH + H+
-
-
-
r
1.1.1.1
2,4-pentanediol + NAD+
4% activity compared to cyclohexanol
695811
Thermus sp.
?
-
-
-
?
1.1.1.1
2-butanol + NAD+
39% activity compared to cyclohexanol
695811
Thermus sp.
2-butanone + NADH + H+
4% activity compared to cyclohexanone
-
-
r
1.1.1.1
2-chlorocyclohexanone + NADH + H+
3% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
2-decalone + NADH + H+
28% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
2-heptanol + NAD+
63% activity compared to cyclohexanol
695811
Thermus sp.
2-heptanone + NADH + H+
5% activity compared to cyclohexanone
-
-
r
1.1.1.1
2-hexanol + NAD+
64% activity compared to cyclohexanol
695811
Thermus sp.
2-hexanone + NADH + H+
4% activity compared to cyclohexanone
-
-
r
1.1.1.1
2-mercaptoethanol + NAD+
11% activity compared to cyclohexanol
695811
Thermus sp.
?
-
-
-
?
1.1.1.1
2-methyl-2,4-pentanediol + NAD+
1% activity compared to cyclohexanol
695811
Thermus sp.
?
-
-
-
?
1.1.1.1
2-methylcyclohexanone + NADH + H+
46% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
2-octanol + NAD+
43% activity compared to cyclohexanol
695811
Thermus sp.
2-octanone + NADH + H+
4% activity compared to cyclohexanone
-
-
r
1.1.1.1
2-pentanone + NADH + H+
6% activity compared to cyclohexanol
695811
Thermus sp.
2-pentanol + NAD+
-
-
-
r
1.1.1.1
2-phenylcyclohexanone + NADH + H+
2% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
2-phenylethanol + NAD+
57% activity compared to cyclohexanol
695811
Thermus sp.
2-phenylethanone + NADH + H+
-
-
-
r
1.1.1.1
2-propanol + NAD+
6% activity compared to cyclohexanol
695811
Thermus sp.
2-propanone + NADH + H+
-
-
-
r
1.1.1.1
3,3,5-trimethylcyclohexanone + NADH + H+
2% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
3,4-dimethylbenzyl alcohol + NAD+
45% activity compared to cyclohexanol
695811
Thermus sp.
3,4-dimethylbenzaldehyde + NADH + H+
-
-
-
r
1.1.1.1
3,5-dimethylcyclohexanol + NAD+
1% activity compared to cyclohexanol
695811
Thermus sp.
3,5-dimethylcyclohexanone + NADH + H+
-
-
-
r
1.1.1.1
3-aminobenzyl alcohol + NAD+
8% activity compared to cyclohexanol
695811
Thermus sp.
3-aminobenzaldehyde + NADH + H+
-
-
-
r
1.1.1.1
3-methyl-2-cyclohexenone + NADH + H+
1% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
3-methylbutanol + NAD+
133% activity compared to cyclohexanol
695811
Thermus sp.
3-methylbutanone + NADH + H+
-
-
-
r
1.1.1.1
3-methylphenylethyl alcohol + NAD+
64% activity compared to cyclohexanol
695811
Thermus sp.
?
-
-
-
?
1.1.1.1
3-pentanol + NAD+
2% activity compared to cyclohexanol
695811
Thermus sp.
3-pentanone + NADH + H+
2% activity compared to cyclohexanone
-
-
r
1.1.1.1
3-penten-2-one + NADH + H+
2% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
4-ethylcyclohexanol + NAD+
60% activity compared to cyclohexanol
695811
Thermus sp.
4-ethylcyclohexanone + NADH + H+
-
-
-
r
1.1.1.1
4-ethylcyclohexanone + NADH + H+
22% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
4-methylcyclohexanol + NAD+
56% activity compared to cyclohexanol
695811
Thermus sp.
4-methylcyclohexanone + NADH + H+
-
-
-
r
1.1.1.1
4-methylcyclohexanone + NADH + H+
25% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
acetylacetone + NADH + H+
1% activity compared to cyclohexanone
695811
Thermus sp.
acetophenone + NADH + H+
1% activity compared to cyclohexanone
-
-
r
1.1.1.1
benzyl alcohol + NAD+
-
695811
Thermus sp.
benzaldehyde + NADH + H+
178% activity compared to cyclohexanone
-
-
r
1.1.1.1
benzyl alcohol + NAD+
47% activity compared to cyclohexanol
695811
Thermus sp.
benzaldehyde + NADH + H+
154% activity compared to cyclohexanone
-
-
r
1.1.1.1
butanol + NAD+
-
695811
Thermus sp.
butyraldehyde + NADH + H+
359% activity compared to cyclohexanone
-
-
r
1.1.1.1
cyclohexanol + NAD+
100% activity
695811
Thermus sp.
cyclohexanone + NADH + H+
100% activity
-
-
r
1.1.1.1
cyclopentanone + NADH + H+
1% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
decahydro-2-naphthol + NAD+
37% activity compared to cyclohexanol
695811
Thermus sp.
?
-
-
-
?
1.1.1.1
ethanol + NAD+
88% activity compared to cyclohexanol
695811
Thermus sp.
acetaldehyde + NADH + H+
-
-
-
r
1.1.1.1
isopropanol + NAD+
-
695811
Thermus sp.
2-propanone + NADH + H+
-
-
-
r
1.1.1.1
additional information
TADH is a NAD(H)-dependent enzyme and shows a very broad substrate spectrum producing exclusively the (S)-enantiomer in high enantiomeric excess (more than 99%) during asymmetric reduction of ketones
695811
Thermus sp.
?
-
-
-
-
1.1.1.1
additional information
ADH exhibits a clear preference for primary alcohols and corresponding aldehydes for aliphatic substrates, in the oxidative direction activity steeply increases with chain length until 1-propanol and then decreases slightly again with growing chain length, alpha,beta-unsaturated ketones like 3-penten-2-one and cyclohexenone are not converted by ADH, almost no conversion of methanol (0.2%) and (+)-carvone (0.4%) is detected
695811
Thermus sp.
?
-
-
-
-
1.1.1.1
additional information
TADH is a NAD(H)-dependent enzyme and shows a very broad substrate spectrum producing exclusively the (S)-enantiomer in high enantiomeric excess (more than 99%) during asymmetric reduction of ketones
695811
Thermus sp. ATN1
?
-
-
-
-
1.1.1.1
additional information
ADH exhibits a clear preference for primary alcohols and corresponding aldehydes for aliphatic substrates, in the oxidative direction activity steeply increases with chain length until 1-propanol and then decreases slightly again with growing chain length, alpha,beta-unsaturated ketones like 3-penten-2-one and cyclohexenone are not converted by ADH, almost no conversion of methanol (0.2%) and (+)-carvone (0.4%) is detected
695811
Thermus sp. ATN1
?
-
-
-
-
1.1.1.1
octanol + NAD+
-
695811
Thermus sp.
octanal + NADH + H+
178% activity compared to cyclohexanone
-
-
r
1.1.1.1
pentanol + NAD+
-
695811
Thermus sp.
valeraldehyde + NADH + H+
240% activity compared to cyclohexanone
-
-
r
1.1.1.1
propan-2-ol + NAD+
-
695811
Thermus sp.
acetone + NADH + H+
6% activity compared to cyclohexanone
-
-
r
1.1.1.1
tetrahydro-4H-pyran-4-one + NADH + H+
10% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.144
(S)-perillylalcohol + NAD+
52% activity compared to cyclohexanol
695811
Thermus sp.
(S)-perillaldehyde + NADH + H+
-
-
-
?
1.1.1.144
(S)-perillylalcohol + NAD+
52% activity compared to cyclohexanol
695811
Thermus sp. ATN1
(S)-perillaldehyde + NADH + H+
-
-
-
?
pH Optimum
EC Number
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
1.1.1.1
6
-
the optimal pH for reduction is at a pH of 6.0
Thermus sp.
1.1.1.1
9
-
the optimal pH for oxidation is at a pH of 9.0
Thermus sp.
Cofactor
EC Number
Cofactor
Commentary
Organism
Structure
1.1.1.1
NAD+
dependent on
Thermus sp.
1.1.1.144
NAD+
dependent on
Thermus sp.
Activating Compound (protein specific)
EC Number
Activating Compound
Commentary
Organism
Structure
1.1.1.1
Triton X-100
201% relative activity at 10% (v/v)
Thermus sp.
1.1.1.1
Urea
130% relative activity at 1 M
Thermus sp.
Cloned(Commentary) (protein specific)
EC Number
Commentary
Organism
1.1.1.1
expressed in Escherichia coli BL21 (DE3) cells
Thermus sp.
Cofactor (protein specific)
EC Number
Cofactor
Commentary
Organism
Structure
1.1.1.1
NAD+
dependent on
Thermus sp.
1.1.1.144
NAD+
dependent on
Thermus sp.
General Stability (protein specific)
EC Number
General Stability
Organism
1.1.1.1
the presence of a second phase of a water-insoluble solvent like hexane or octane has only minor effects on the enzyme, which retains 80% of its activity, allowing the use of these solvents in aqueous/organic mixtures to increase the availability of low-water soluble substrates
Thermus sp.
Inhibitors (protein specific)
EC Number
Inhibitors
Commentary
Organism
Structure
1.1.1.1
2,2'-bipyridyl
91% relative activity at 10 mM
Thermus sp.
1.1.1.1
dithiothreitol
14% relative activity at 10 mM
Thermus sp.
1.1.1.1
EDTA
2.3% relative activity at 10 mM
Thermus sp.
1.1.1.1
SDS
0.4% relative activity at 10% (v/v)
Thermus sp.
1.1.1.1
Tween 80
13% relative activity at 10% (v/v)
Thermus sp.
1.1.1.1
Urea
1% relative activity at 5 M
Thermus sp.
1.1.1.1
Zn2+
91% relative activity at 10 mM
Thermus sp.
KM Value [mM] (protein specific)
EC Number
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
1.1.1.1
0.01
-
NADH
in 200 mM bicine, pH 6.0, at 60°C
Thermus sp.
1.1.1.1
0.13
-
NAD+
in 200 mM bicine, pH 9.0, at 60°C
Thermus sp.
1.1.1.1
2.09
-
Cyclohexanol
in 200 mM bicine, pH 9.0, at 60°C
Thermus sp.
1.1.1.1
3.68
-
cyclohexanone
in 200 mM bicine, pH 6.0, at 60°C
Thermus sp.
Metals/Ions (protein specific)
EC Number
Metals/Ions
Commentary
Organism
Structure
1.1.1.1
additional information
not stimulated by 10 mM Li+, Mg2+, Co2+, and Ca2+
Thermus sp.
Molecular Weight [Da] (protein specific)
EC Number
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
1.1.1.1
37200
-
calculated molecular weight
Thermus sp.
1.1.1.1
40000
-
SDS-PAGE
Thermus sp.
Natural Substrates/ Products (Substrates) (protein specific)
EC Number
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
1.1.1.1
additional information
Thermus sp.
TADH is a NAD(H)-dependent enzyme and shows a very broad substrate spectrum producing exclusively the (S)-enantiomer in high enantiomeric excess (more than 99%) during asymmetric reduction of ketones
?
-
-
-
1.1.1.1
additional information
Thermus sp. ATN1
TADH is a NAD(H)-dependent enzyme and shows a very broad substrate spectrum producing exclusively the (S)-enantiomer in high enantiomeric excess (more than 99%) during asymmetric reduction of ketones
?
-
-
-
Purification (Commentary) (protein specific)
EC Number
Commentary
Organism
1.1.1.1
ultracentrifugation and Sepabeads EB-QA405 chromatography
Thermus sp.
Specific Activity [micromol/min/mg] (protein specific)
EC Number
Specific Activity Minimum [µmol/min/mg]
Specific Activity Maximum [µmol/min/mg]
Commentary
Organism
1.1.1.1
15
-
crude enzyme, after heat treatment at 75°C for 20 min
Thermus sp.
1.1.1.1
20.6
-
after 1.4fold purifictaion
Thermus sp.
Storage Stability (protein specific)
EC Number
Storage Stability
Organism
1.1.1.1
-20°C, several months, no loss of activity
Thermus sp.
Substrates and Products (Substrate) (protein specific)
EC Number
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
1.1.1.1
(-)-carvone + NADH + H+
1% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
(1S,3S)-3-methylcyclohexanol + NAD+
125% activity compared to cyclohexanol
695811
Thermus sp.
(rac)-3-methylcyclohexanone + NADH + H+
163% activity compared to cyclohexanone
-
-
r
1.1.1.1
(R)-3-methylcyclohexanone + NADH + H+
2% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
(S)-1-phenyl-2-propanol + NAD+
-
695811
Thermus sp.
phenylacetone + NADH + H+
9% activity compared to cyclohexanone
-
-
r
1.1.1.1
(S)-4-phenylbutan-2-ol + NAD+
-
695811
Thermus sp.
benzylacetone + NADH + H+
3% activity compared to cyclohexanone
-
-
r
1.1.1.1
(S)-heptan-2-ol + NAD+
-
695811
Thermus sp.
2-heptanone + NADH + H+
-
-
-
r
1.1.1.1
(S)-pentan-2-ol + NAD+
-
695811
Thermus sp.
2-pentanone + NADH + H+
-
-
-
r
1.1.1.1
(S)-perillylalcohol + NAD+
52% activity compared to cyclohexanol
695811
Thermus sp.
(S)-perillaldehyde + NADH + H+
-
-
-
?
1.1.1.1
1-(p-tolyl)-ethanol + NAD+
19% activity compared to cyclohexanol
695811
Thermus sp.
1-(4-methylphenyl)ethanone + NADH + H+
26% activity compared to cyclohexanone
-
-
?
1.1.1.1
1-butanol + NAD+
142% activity compared to cyclohexanol
695811
Thermus sp.
butanal + NADH + H+
-
-
-
r
1.1.1.1
1-butanol + NAD+
142% activity compared to cyclohexanol
695811
Thermus sp. ATN1
butanal + NADH + H+
-
-
-
r
1.1.1.1
1-heptanol + NAD+
80% activity compared to cyclohexanol
695811
Thermus sp.
heptanal + NADH + H+
-
-
-
r
1.1.1.1
1-heptanol + NAD+
80% activity compared to cyclohexanol
695811
Thermus sp. ATN1
heptanal + NADH + H+
-
-
-
r
1.1.1.1
1-hexanol + NAD+
109% activity compared to cyclohexanol
695811
Thermus sp.
hexanal + NADH + H+
-
-
-
r
1.1.1.1
1-hexanol + NAD+
109% activity compared to cyclohexanol
695811
Thermus sp. ATN1
hexanal + NADH + H+
-
-
-
r
1.1.1.1
1-indanol + NAD+
-
695811
Thermus sp.
1-indanone + NADH + H+
1% activity compared to cyclohexanone
-
-
r
1.1.1.1
1-octanol + NAD+
57% activity compared to cyclohexanol
695811
Thermus sp.
octanal + NADH + H+
-
-
-
r
1.1.1.1
1-pentanol + NAD+
121% activity compared to cyclohexanol
695811
Thermus sp.
pentanal + NADH + H+
-
-
-
r
1.1.1.1
1-phenyl-1,2-ethanediol + NAD+
1% activity compared to cyclohexanol
695811
Thermus sp.
1-phenyl-2-propanone + NADH + H+
-
-
-
r
1.1.1.1
1-phenyl-2-propanol + NAD+
3% activity compared to cyclohexanol
695811
Thermus sp.
1-phenyl-2-propanone + NADH + H+
-
-
-
r
1.1.1.1
1-phenylethanol + NAD+
3% activity compared to cyclohexanol
695811
Thermus sp.
1-phenylethanone + NADH + H+
-
-
-
r
1.1.1.1
1-phenylethanol + NAD+
-
695811
Thermus sp.
acetophenone + NADH + H+
1% activity compared to cyclohexanone
-
-
?
1.1.1.1
1-propanol + NAD+
153% activity compared to cyclohexanol
695811
Thermus sp.
propanal + NADH + H+
-
-
-
r
1.1.1.1
2,4-pentanediol + NAD+
4% activity compared to cyclohexanol
695811
Thermus sp.
?
-
-
-
?
1.1.1.1
2-butanol + NAD+
39% activity compared to cyclohexanol
695811
Thermus sp.
2-butanone + NADH + H+
4% activity compared to cyclohexanone
-
-
r
1.1.1.1
2-chlorocyclohexanone + NADH + H+
3% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
2-decalone + NADH + H+
28% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
2-heptanol + NAD+
63% activity compared to cyclohexanol
695811
Thermus sp.
2-heptanone + NADH + H+
5% activity compared to cyclohexanone
-
-
r
1.1.1.1
2-hexanol + NAD+
64% activity compared to cyclohexanol
695811
Thermus sp.
2-hexanone + NADH + H+
4% activity compared to cyclohexanone
-
-
r
1.1.1.1
2-mercaptoethanol + NAD+
11% activity compared to cyclohexanol
695811
Thermus sp.
?
-
-
-
?
1.1.1.1
2-methyl-2,4-pentanediol + NAD+
1% activity compared to cyclohexanol
695811
Thermus sp.
?
-
-
-
?
1.1.1.1
2-methylcyclohexanone + NADH + H+
46% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
2-octanol + NAD+
43% activity compared to cyclohexanol
695811
Thermus sp.
2-octanone + NADH + H+
4% activity compared to cyclohexanone
-
-
r
1.1.1.1
2-pentanone + NADH + H+
6% activity compared to cyclohexanol
695811
Thermus sp.
2-pentanol + NAD+
-
-
-
r
1.1.1.1
2-phenylcyclohexanone + NADH + H+
2% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
2-phenylethanol + NAD+
57% activity compared to cyclohexanol
695811
Thermus sp.
2-phenylethanone + NADH + H+
-
-
-
r
1.1.1.1
2-propanol + NAD+
6% activity compared to cyclohexanol
695811
Thermus sp.
2-propanone + NADH + H+
-
-
-
r
1.1.1.1
3,3,5-trimethylcyclohexanone + NADH + H+
2% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
3,4-dimethylbenzyl alcohol + NAD+
45% activity compared to cyclohexanol
695811
Thermus sp.
3,4-dimethylbenzaldehyde + NADH + H+
-
-
-
r
1.1.1.1
3,5-dimethylcyclohexanol + NAD+
1% activity compared to cyclohexanol
695811
Thermus sp.
3,5-dimethylcyclohexanone + NADH + H+
-
-
-
r
1.1.1.1
3-aminobenzyl alcohol + NAD+
8% activity compared to cyclohexanol
695811
Thermus sp.
3-aminobenzaldehyde + NADH + H+
-
-
-
r
1.1.1.1
3-methyl-2-cyclohexenone + NADH + H+
1% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
3-methylbutanol + NAD+
133% activity compared to cyclohexanol
695811
Thermus sp.
3-methylbutanone + NADH + H+
-
-
-
r
1.1.1.1
3-methylphenylethyl alcohol + NAD+
64% activity compared to cyclohexanol
695811
Thermus sp.
?
-
-
-
?
1.1.1.1
3-pentanol + NAD+
2% activity compared to cyclohexanol
695811
Thermus sp.
3-pentanone + NADH + H+
2% activity compared to cyclohexanone
-
-
r
1.1.1.1
3-penten-2-one + NADH + H+
2% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
4-ethylcyclohexanol + NAD+
60% activity compared to cyclohexanol
695811
Thermus sp.
4-ethylcyclohexanone + NADH + H+
-
-
-
r
1.1.1.1
4-ethylcyclohexanone + NADH + H+
22% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
4-methylcyclohexanol + NAD+
56% activity compared to cyclohexanol
695811
Thermus sp.
4-methylcyclohexanone + NADH + H+
-
-
-
r
1.1.1.1
4-methylcyclohexanone + NADH + H+
25% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
acetylacetone + NADH + H+
1% activity compared to cyclohexanone
695811
Thermus sp.
acetophenone + NADH + H+
1% activity compared to cyclohexanone
-
-
r
1.1.1.1
benzyl alcohol + NAD+
-
695811
Thermus sp.
benzaldehyde + NADH + H+
178% activity compared to cyclohexanone
-
-
r
1.1.1.1
benzyl alcohol + NAD+
47% activity compared to cyclohexanol
695811
Thermus sp.
benzaldehyde + NADH + H+
154% activity compared to cyclohexanone
-
-
r
1.1.1.1
butanol + NAD+
-
695811
Thermus sp.
butyraldehyde + NADH + H+
359% activity compared to cyclohexanone
-
-
r
1.1.1.1
cyclohexanol + NAD+
100% activity
695811
Thermus sp.
cyclohexanone + NADH + H+
100% activity
-
-
r
1.1.1.1
cyclopentanone + NADH + H+
1% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.1
decahydro-2-naphthol + NAD+
37% activity compared to cyclohexanol
695811
Thermus sp.
?
-
-
-
?
1.1.1.1
ethanol + NAD+
88% activity compared to cyclohexanol
695811
Thermus sp.
acetaldehyde + NADH + H+
-
-
-
r
1.1.1.1
isopropanol + NAD+
-
695811
Thermus sp.
2-propanone + NADH + H+
-
-
-
r
1.1.1.1
additional information
TADH is a NAD(H)-dependent enzyme and shows a very broad substrate spectrum producing exclusively the (S)-enantiomer in high enantiomeric excess (more than 99%) during asymmetric reduction of ketones
695811
Thermus sp.
?
-
-
-
-
1.1.1.1
additional information
ADH exhibits a clear preference for primary alcohols and corresponding aldehydes for aliphatic substrates, in the oxidative direction activity steeply increases with chain length until 1-propanol and then decreases slightly again with growing chain length, alpha,beta-unsaturated ketones like 3-penten-2-one and cyclohexenone are not converted by ADH, almost no conversion of methanol (0.2%) and (+)-carvone (0.4%) is detected
695811
Thermus sp.
?
-
-
-
-
1.1.1.1
additional information
TADH is a NAD(H)-dependent enzyme and shows a very broad substrate spectrum producing exclusively the (S)-enantiomer in high enantiomeric excess (more than 99%) during asymmetric reduction of ketones
695811
Thermus sp. ATN1
?
-
-
-
-
1.1.1.1
additional information
ADH exhibits a clear preference for primary alcohols and corresponding aldehydes for aliphatic substrates, in the oxidative direction activity steeply increases with chain length until 1-propanol and then decreases slightly again with growing chain length, alpha,beta-unsaturated ketones like 3-penten-2-one and cyclohexenone are not converted by ADH, almost no conversion of methanol (0.2%) and (+)-carvone (0.4%) is detected
695811
Thermus sp. ATN1
?
-
-
-
-
1.1.1.1
octanol + NAD+
-
695811
Thermus sp.
octanal + NADH + H+
178% activity compared to cyclohexanone
-
-
r
1.1.1.1
pentanol + NAD+
-
695811
Thermus sp.
valeraldehyde + NADH + H+
240% activity compared to cyclohexanone
-
-
r
1.1.1.1
propan-2-ol + NAD+
-
695811
Thermus sp.
acetone + NADH + H+
6% activity compared to cyclohexanone
-
-
r
1.1.1.1
tetrahydro-4H-pyran-4-one + NADH + H+
10% activity compared to cyclohexanone
695811
Thermus sp.
? + NAD+
-
-
-
?
1.1.1.144
(S)-perillylalcohol + NAD+
52% activity compared to cyclohexanol
695811
Thermus sp.
(S)-perillaldehyde + NADH + H+
-
-
-
?
1.1.1.144
(S)-perillylalcohol + NAD+
52% activity compared to cyclohexanol
695811
Thermus sp. ATN1
(S)-perillaldehyde + NADH + H+
-
-
-
?
pH Optimum (protein specific)
EC Number
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
1.1.1.1
6
-
the optimal pH for reduction is at a pH of 6.0
Thermus sp.
1.1.1.1
9
-
the optimal pH for oxidation is at a pH of 9.0
Thermus sp.