Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Hoellrigl, V.; Hollmann, F.; Kleeb, A.C.; Buehler, K.; Schmid, A.
    TADH, the thermostable alcohol dehydrogenase from Thermus sp. ATN1: a versatile new biocatalyst for organic synthesis (2008), Appl. Microbiol. Biotechnol., 81, 263-273.
    View publication on PubMed

Activating Compound

EC Number Activating Compound Comment Organism Structure
1.1.1.1 Triton X-100 201% relative activity at 10% (v/v) Thermus sp.
1.1.1.1 Urea 130% relative activity at 1 M Thermus sp.

Cloned(Commentary)

EC Number Cloned (Comment) Organism
1.1.1.1 expressed in Escherichia coli BL21 (DE3) cells Thermus sp.

General Stability

EC Number General Stability Organism
1.1.1.1 the presence of a second phase of a water-insoluble solvent like hexane or octane has only minor effects on the enzyme, which retains 80% of its activity, allowing the use of these solvents in aqueous/organic mixtures to increase the availability of low-water soluble substrates Thermus sp.

Inhibitors

EC Number Inhibitors Comment Organism Structure
1.1.1.1 2,2'-bipyridyl 91% relative activity at 10 mM Thermus sp.
1.1.1.1 dithiothreitol 14% relative activity at 10 mM Thermus sp.
1.1.1.1 EDTA 2.3% relative activity at 10 mM Thermus sp.
1.1.1.1 SDS 0.4% relative activity at 10% (v/v) Thermus sp.
1.1.1.1 Tween 80 13% relative activity at 10% (v/v) Thermus sp.
1.1.1.1 Urea 1% relative activity at 5 M Thermus sp.
1.1.1.1 Zn2+ 91% relative activity at 10 mM Thermus sp.

KM Value [mM]

EC Number KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
1.1.1.1 0.01
-
NADH in 200 mM bicine, pH 6.0, at 60°C Thermus sp.
1.1.1.1 0.13
-
NAD+ in 200 mM bicine, pH 9.0, at 60°C Thermus sp.
1.1.1.1 2.09
-
Cyclohexanol in 200 mM bicine, pH 9.0, at 60°C Thermus sp.
1.1.1.1 3.68
-
cyclohexanone in 200 mM bicine, pH 6.0, at 60°C Thermus sp.

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
1.1.1.1 additional information not stimulated by 10 mM Li+, Mg2+, Co2+, and Ca2+ Thermus sp.

Molecular Weight [Da]

EC Number Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
1.1.1.1 37200
-
calculated molecular weight Thermus sp.
1.1.1.1 40000
-
SDS-PAGE Thermus sp.

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
1.1.1.1 additional information Thermus sp. TADH is a NAD(H)-dependent enzyme and shows a very broad substrate spectrum producing exclusively the (S)-enantiomer in high enantiomeric excess (more than 99%) during asymmetric reduction of ketones ?
-
?
1.1.1.1 additional information Thermus sp. ATN1 TADH is a NAD(H)-dependent enzyme and shows a very broad substrate spectrum producing exclusively the (S)-enantiomer in high enantiomeric excess (more than 99%) during asymmetric reduction of ketones ?
-
?

Organism

EC Number Organism UniProt Comment Textmining
1.1.1.1 Thermus sp. B2ZRE3
-
-
1.1.1.1 Thermus sp. ATN1 B2ZRE3
-
-
1.1.1.144 Thermus sp.
-
-
-
1.1.1.144 Thermus sp. ATN1
-
-
-

Purification (Commentary)

EC Number Purification (Comment) Organism
1.1.1.1 ultracentrifugation and Sepabeads EB-QA405 chromatography Thermus sp.

Specific Activity [micromol/min/mg]

EC Number Specific Activity Minimum [µmol/min/mg] Specific Activity Maximum [µmol/min/mg] Comment Organism
1.1.1.1 15
-
crude enzyme, after heat treatment at 75°C for 20 min Thermus sp.
1.1.1.1 20.6
-
after 1.4fold purifictaion Thermus sp.

Storage Stability

EC Number Storage Stability Organism
1.1.1.1 -20°C, several months, no loss of activity Thermus sp.

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
1.1.1.1 (-)-carvone + NADH + H+ 1% activity compared to cyclohexanone Thermus sp. ? + NAD+
-
?
1.1.1.1 (1S,3S)-3-methylcyclohexanol + NAD+ 125% activity compared to cyclohexanol Thermus sp. (rac)-3-methylcyclohexanone + NADH + H+ 163% activity compared to cyclohexanone r
1.1.1.1 (R)-3-methylcyclohexanone + NADH + H+ 2% activity compared to cyclohexanone Thermus sp. ? + NAD+
-
?
1.1.1.1 (S)-1-phenyl-2-propanol + NAD+
-
Thermus sp. phenylacetone + NADH + H+ 9% activity compared to cyclohexanone r
1.1.1.1 (S)-4-phenylbutan-2-ol + NAD+
-
Thermus sp. benzylacetone + NADH + H+ 3% activity compared to cyclohexanone r
1.1.1.1 (S)-heptan-2-ol + NAD+
-
Thermus sp. 2-heptanone + NADH + H+
-
r
1.1.1.1 (S)-pentan-2-ol + NAD+
-
Thermus sp. 2-pentanone + NADH + H+
-
r
1.1.1.1 (S)-perillylalcohol + NAD+ 52% activity compared to cyclohexanol Thermus sp. (S)-perillaldehyde + NADH + H+
-
?
1.1.1.1 1-(p-tolyl)-ethanol + NAD+ 19% activity compared to cyclohexanol Thermus sp. 1-(4-methylphenyl)ethanone + NADH + H+ 26% activity compared to cyclohexanone ?
1.1.1.1 1-butanol + NAD+ 142% activity compared to cyclohexanol Thermus sp. butanal + NADH + H+
-
r
1.1.1.1 1-butanol + NAD+ 142% activity compared to cyclohexanol Thermus sp. ATN1 butanal + NADH + H+
-
r
1.1.1.1 1-heptanol + NAD+ 80% activity compared to cyclohexanol Thermus sp. heptanal + NADH + H+
-
r
1.1.1.1 1-heptanol + NAD+ 80% activity compared to cyclohexanol Thermus sp. ATN1 heptanal + NADH + H+
-
r
1.1.1.1 1-hexanol + NAD+ 109% activity compared to cyclohexanol Thermus sp. hexanal + NADH + H+
-
r
1.1.1.1 1-indanol + NAD+
-
Thermus sp. 1-indanone + NADH + H+ 1% activity compared to cyclohexanone r
1.1.1.1 1-octanol + NAD+ 57% activity compared to cyclohexanol Thermus sp. octanal + NADH + H+
-
r
1.1.1.1 1-pentanol + NAD+ 121% activity compared to cyclohexanol Thermus sp. pentanal + NADH + H+
-
r
1.1.1.1 1-phenyl-1,2-ethanediol + NAD+ 1% activity compared to cyclohexanol Thermus sp. 1-phenyl-2-propanone + NADH + H+
-
r
1.1.1.1 1-phenyl-2-propanol + NAD+ 3% activity compared to cyclohexanol Thermus sp. 1-phenyl-2-propanone + NADH + H+
-
r
1.1.1.1 1-phenylethanol + NAD+ 3% activity compared to cyclohexanol Thermus sp. 1-phenylethanone + NADH + H+
-
r
1.1.1.1 1-phenylethanol + NAD+
-
Thermus sp. acetophenone + NADH + H+ 1% activity compared to cyclohexanone ?
1.1.1.1 1-propanol + NAD+ 153% activity compared to cyclohexanol Thermus sp. propanal + NADH + H+
-
r
1.1.1.1 2,4-pentanediol + NAD+ 4% activity compared to cyclohexanol Thermus sp. ?
-
?
1.1.1.1 2-butanol + NAD+ 39% activity compared to cyclohexanol Thermus sp. 2-butanone + NADH + H+ 4% activity compared to cyclohexanone r
1.1.1.1 2-chlorocyclohexanone + NADH + H+ 3% activity compared to cyclohexanone Thermus sp. ? + NAD+
-
?
1.1.1.1 2-decalone + NADH + H+ 28% activity compared to cyclohexanone Thermus sp. ? + NAD+
-
?
1.1.1.1 2-heptanol + NAD+ 63% activity compared to cyclohexanol Thermus sp. 2-heptanone + NADH + H+ 5% activity compared to cyclohexanone r
1.1.1.1 2-hexanol + NAD+ 64% activity compared to cyclohexanol Thermus sp. 2-hexanone + NADH + H+ 4% activity compared to cyclohexanone r
1.1.1.1 2-mercaptoethanol + NAD+ 11% activity compared to cyclohexanol Thermus sp. ?
-
?
1.1.1.1 2-methyl-2,4-pentanediol + NAD+ 1% activity compared to cyclohexanol Thermus sp. ?
-
?
1.1.1.1 2-methylcyclohexanone + NADH + H+ 46% activity compared to cyclohexanone Thermus sp. ? + NAD+
-
?
1.1.1.1 2-octanol + NAD+ 43% activity compared to cyclohexanol Thermus sp. 2-octanone + NADH + H+ 4% activity compared to cyclohexanone r
1.1.1.1 2-pentanone + NADH + H+ 6% activity compared to cyclohexanol Thermus sp. 2-pentanol + NAD+
-
r
1.1.1.1 2-phenylcyclohexanone + NADH + H+ 2% activity compared to cyclohexanone Thermus sp. ? + NAD+
-
?
1.1.1.1 2-phenylethanol + NAD+ 57% activity compared to cyclohexanol Thermus sp. 2-phenylethanone + NADH + H+
-
r
1.1.1.1 2-propanol + NAD+ 6% activity compared to cyclohexanol Thermus sp. 2-propanone + NADH + H+
-
r
1.1.1.1 3,3,5-trimethylcyclohexanone + NADH + H+ 2% activity compared to cyclohexanone Thermus sp. ? + NAD+
-
?
1.1.1.1 3,4-dimethylbenzyl alcohol + NAD+ 45% activity compared to cyclohexanol Thermus sp. 3,4-dimethylbenzaldehyde + NADH + H+
-
r
1.1.1.1 3,4-dimethylbenzyl alcohol + NAD+ 45% activity compared to cyclohexanol Thermus sp. ATN1 3,4-dimethylbenzaldehyde + NADH + H+
-
r
1.1.1.1 3,5-dimethylcyclohexanol + NAD+ 1% activity compared to cyclohexanol Thermus sp. 3,5-dimethylcyclohexanone + NADH + H+
-
r
1.1.1.1 3-aminobenzyl alcohol + NAD+ 8% activity compared to cyclohexanol Thermus sp. 3-aminobenzaldehyde + NADH + H+
-
r
1.1.1.1 3-methyl-2-cyclohexenone + NADH + H+ 1% activity compared to cyclohexanone Thermus sp. ? + NAD+
-
?
1.1.1.1 3-methylbutanol + NAD+ 133% activity compared to cyclohexanol Thermus sp. 3-methylbutanone + NADH + H+
-
r
1.1.1.1 3-methylphenylethyl alcohol + NAD+ 64% activity compared to cyclohexanol Thermus sp. ?
-
?
1.1.1.1 3-pentanol + NAD+ 2% activity compared to cyclohexanol Thermus sp. 3-pentanone + NADH + H+ 2% activity compared to cyclohexanone r
1.1.1.1 3-penten-2-one + NADH + H+ 2% activity compared to cyclohexanone Thermus sp. ? + NAD+
-
?
1.1.1.1 4-ethylcyclohexanol + NAD+ 60% activity compared to cyclohexanol Thermus sp. 4-ethylcyclohexanone + NADH + H+
-
r
1.1.1.1 4-ethylcyclohexanone + NADH + H+ 22% activity compared to cyclohexanone Thermus sp. ? + NAD+
-
?
1.1.1.1 4-methylcyclohexanol + NAD+ 56% activity compared to cyclohexanol Thermus sp. 4-methylcyclohexanone + NADH + H+
-
r
1.1.1.1 4-methylcyclohexanone + NADH + H+ 25% activity compared to cyclohexanone Thermus sp. ? + NAD+
-
?
1.1.1.1 acetylacetone + NADH + H+ 1% activity compared to cyclohexanone Thermus sp. 4-hydroxypentan-2-one + NAD+ 1% activity compared to cyclohexanone r
1.1.1.1 benzyl alcohol + NAD+
-
Thermus sp. benzaldehyde + NADH + H+ 178% activity compared to cyclohexanone r
1.1.1.1 benzyl alcohol + NAD+ 47% activity compared to cyclohexanol Thermus sp. benzaldehyde + NADH + H+ 154% activity compared to cyclohexanone r
1.1.1.1 butanol + NAD+
-
Thermus sp. butyraldehyde + NADH + H+ 359% activity compared to cyclohexanone r
1.1.1.1 cyclohexanol + NAD+ 100% activity Thermus sp. cyclohexanone + NADH + H+ 100% activity r
1.1.1.1 cyclopentanone + NADH + H+ 1% activity compared to cyclohexanone Thermus sp. ? + NAD+
-
?
1.1.1.1 decahydro-2-naphthol + NAD+ 37% activity compared to cyclohexanol Thermus sp. ?
-
?
1.1.1.1 ethanol + NAD+ 88% activity compared to cyclohexanol Thermus sp. acetaldehyde + NADH + H+
-
r
1.1.1.1 isopropanol + NAD+
-
Thermus sp. 2-propanone + NADH + H+
-
r
1.1.1.1 additional information TADH is a NAD(H)-dependent enzyme and shows a very broad substrate spectrum producing exclusively the (S)-enantiomer in high enantiomeric excess (more than 99%) during asymmetric reduction of ketones Thermus sp. ?
-
?
1.1.1.1 additional information ADH exhibits a clear preference for primary alcohols and corresponding aldehydes for aliphatic substrates, in the oxidative direction activity steeply increases with chain length until 1-propanol and then decreases slightly again with growing chain length, alpha,beta-unsaturated ketones like 3-penten-2-one and cyclohexenone are not converted by ADH, almost no conversion of methanol (0.2%) and (+)-carvone (0.4%) is detected Thermus sp. ?
-
?
1.1.1.1 additional information TADH is a NAD(H)-dependent enzyme and shows a very broad substrate spectrum producing exclusively the (S)-enantiomer in high enantiomeric excess (more than 99%) during asymmetric reduction of ketones Thermus sp. ATN1 ?
-
?
1.1.1.1 additional information ADH exhibits a clear preference for primary alcohols and corresponding aldehydes for aliphatic substrates, in the oxidative direction activity steeply increases with chain length until 1-propanol and then decreases slightly again with growing chain length, alpha,beta-unsaturated ketones like 3-penten-2-one and cyclohexenone are not converted by ADH, almost no conversion of methanol (0.2%) and (+)-carvone (0.4%) is detected Thermus sp. ATN1 ?
-
?
1.1.1.1 octanol + NAD+
-
Thermus sp. octanal + NADH + H+ 178% activity compared to cyclohexanone r
1.1.1.1 pentanol + NAD+
-
Thermus sp. valeraldehyde + NADH + H+ 240% activity compared to cyclohexanone r
1.1.1.1 propan-2-ol + NAD+
-
Thermus sp. acetone + NADH + H+ 6% activity compared to cyclohexanone r
1.1.1.1 tetrahydro-4H-pyran-4-one + NADH + H+ 10% activity compared to cyclohexanone Thermus sp. ? + NAD+
-
?
1.1.1.144 (S)-perillylalcohol + NAD+ 52% activity compared to cyclohexanol Thermus sp. (S)-perillaldehyde + NADH + H+
-
?
1.1.1.144 (S)-perillylalcohol + NAD+ 52% activity compared to cyclohexanol Thermus sp. ATN1 (S)-perillaldehyde + NADH + H+
-
?

Synonyms

EC Number Synonyms Comment Organism
1.1.1.1 ADH
-
Thermus sp.
1.1.1.144 ADH
-
Thermus sp.

pH Optimum

EC Number pH Optimum Minimum pH Optimum Maximum Comment Organism
1.1.1.1 6
-
the optimal pH for reduction is at a pH of 6.0 Thermus sp.
1.1.1.1 9
-
the optimal pH for oxidation is at a pH of 9.0 Thermus sp.

Cofactor

EC Number Cofactor Comment Organism Structure
1.1.1.1 NAD+ dependent on Thermus sp.
1.1.1.144 NAD+ dependent on Thermus sp.