Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Sukdeo, N.; Honek, J.F.
    Microbial glyoxalase enzymes: metalloenzymes controlling cellular levels of methylglyoxal (2008), Drug Metabol. Drug Interact., 23, 29-50.
    View publication on PubMed

Activating Compound

EC Number Activating Compound Comment Organism Structure
4.4.1.5 Zn2+ activates Plasmodium falciparum

Cloned(Commentary)

EC Number Cloned (Comment) Organism
4.4.1.5 isolation and overproduction of glxI enzymes from Pseudomonas aeruginosa using Escherichia coli expression systems Pseudomonas aeruginosa
4.4.1.5 isolation and overproduction of glxI enzymes from using Escherichia coli expression systems Pseudomonas aeruginosa
4.4.1.5 recombinant overproduction of gly1 in Escherichia coli in the presence of Ni2+ in the growth medium results in the formation of active enzyme, overproduction of in the presence of Zn2+ in the growth medium results in the formation of inactive enzyme Escherichia coli

Crystallization (Commentary)

EC Number Crystallization (Comment) Organism
4.4.1.5 a comparison of the X-ray structures of the Escherichia coli GlxI reconstituted with Zn2+ (inactive) and with the activating metals Co2+, Cd2+, Ni2+ reveals that all activating metals have an octahedral environment, but the Zn2+-bound form of the enzyme results in antrigonal bipyramidal five-coordinate environment around the metal. GlxI, containing activating metals all have two water molecules bound to the active site metal along with four protein side chains making up the homodimer of the enzyme: His5 A-subunit, Glu56 A-subunit, His74 B-subunit, Glu122 B-subunit. The inactive Zn2+-bound enzyme has the same four protein side chains bound to the metal, but only one water molecule is coordinated to the Zn2+ Escherichia coli

Inhibitors

EC Number Inhibitors Comment Organism Structure
4.4.1.5 Co2+ apo form reactivated Homo sapiens
4.4.1.5 Mg2+ apo form reactivated Homo sapiens
4.4.1.5 additional information inactive with Zn2+ Leishmania major
4.4.1.5 Ni2+ apo form reactivated Homo sapiens
4.4.1.5 Ni2+ activates Leishmania major
4.4.1.5 Zn2+ inactivation of gly I, metal can bind to the enzyme gly I, but the resulting enzyme is inactive Escherichia coli
4.4.1.5 Zn2+ apo form reactivated Homo sapiens
4.4.1.5 Zn2+ inactivation of gly I Neisseria meningitidis
4.4.1.5 Zn2+ inactivation of gloA1; inactivation of gly I Pseudomonas aeruginosa
4.4.1.5 Zn2+ inactivation of gly I Yersinia pestis

KM Value [mM]

EC Number KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
4.4.1.5 additional information
-
additional information the KM value of Pseudomonas aeruginosa gloaA1 with Ni2+ is 0.032 mM Pseudomonas aeruginosa
4.4.1.5 additional information
-
additional information the KM value of Pseudomonas aeruginosa gloaA2 with Ni2+ is 0.021 mM Pseudomonas aeruginosa
4.4.1.5 additional information
-
additional information the KM value of Pseudomonas aeruginosa gloaA3 with Zn2+ is 0.287 mM Pseudomonas aeruginosa
4.4.1.5 additional information
-
additional information the KM value with Cd2+ is 0.0089 mM Escherichia coli
4.4.1.5 additional information
-
additional information the KM value with Co2+ is 0.012 mM Escherichia coli
4.4.1.5 additional information
-
additional information the KM value with Fe2+ is 0.01 mM Escherichia coli
4.4.1.5 additional information
-
additional information the KM value with Mn2+ is 0.01 mM Escherichia coli
4.4.1.5 additional information
-
additional information the KM value with Ni2+ is 0.027 mM Escherichia coli

Localization

EC Number Localization Comment Organism GeneOntology No. Textmining
3.1.2.6 cytosol
-
Escherichia coli 5829
-
3.1.2.6 cytosol
-
Arabidopsis thaliana 5829
-
3.1.2.6 mitochondrion
-
Arabidopsis thaliana 5739
-
4.4.1.5 cytosol
-
Plasmodium falciparum 5829
-
4.4.1.5 cytosol
-
Yersinia pestis 5829
-
4.4.1.5 cytosol
-
Leishmania sp. 5829
-
4.4.1.5 cytosol
-
Homo sapiens 5829
-
4.4.1.5 cytosol
-
Escherichia coli 5829
-
4.4.1.5 cytosol
-
Neisseria meningitidis 5829
-
4.4.1.5 cytosol
-
Pseudomonas aeruginosa 5829
-
4.4.1.5 cytosol
-
Pseudomonas putida 5829
-
4.4.1.5 mitochondrion
-
Plasmodium falciparum 5739
-
4.4.1.5 mitochondrion
-
Pseudomonas aeruginosa 5739
-

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
3.1.2.6 Co2+ glxII apoenzyme activity is regained Escherichia coli
3.1.2.6 Mn2+ glxII apoenzyme activity is regained Escherichia coli
3.1.2.6 additional information the cytosolic and mitochondrial glxII from Arabidopsis thaliana contain varying ratios of Zn2+, Fe2+ and Mn2+ and exhibit broad metal activation Arabidopsis thaliana
3.1.2.6 Ni2+ no activity of glxII, re-addition of Zn2+ results in a further inhibition of the residual enzyme activity of the incompletely demetalled apo-GlxII Escherichia coli
3.1.2.6 Zn2+ glxII is a binuclear metalloenzyme with Zn2+ as the probable active site metal ion Arabidopsis thaliana
3.1.2.6 Zn2+ glxII is a binuclear metalloenzyme with Zn2+ as the probable active site metal ion, glxII is isolated with approximately two mol of Zn2+ bound per mole of glxII Escherichia coli
4.4.1.5 Cd2+ activation of gly I Escherichia coli
4.4.1.5 Cd2+ activation, Km: 0.0089 mM, Vmax: 0.043 mmol/min/mg, kcat: 21 1/s Escherichia coli
4.4.1.5 Co2+ activated by Ni2+ and Co2+ Neisseria meningitidis
4.4.1.5 Co2+ activated by Ni2+ and Co2+ Yersinia pestis
4.4.1.5 Co2+ activation of gloA1 Pseudomonas aeruginosa
4.4.1.5 Co2+ activation of gly I Yersinia pestis
4.4.1.5 Co2+ activation of gly I Escherichia coli
4.4.1.5 Co2+ activation of gly I Neisseria meningitidis
4.4.1.5 Co2+ activation of gly I Pseudomonas aeruginosa
4.4.1.5 Co2+ activation, Km: 0.012 mM, Vmax: 0.213 mmol/min/mg, kcat: 106 1/s Escherichia coli
4.4.1.5 Co2+ apo form reactivated Pseudomonas putida
4.4.1.5 Co2+ major activation by Ni2+ and Co2+ but also exhibits some measureable activation by Zn2+ Trypanosoma cruzi
4.4.1.5 Co2+ reactivation of apo gly I Homo sapiens
4.4.1.5 Co2+ reactivation of apo gly I Pseudomonas putida
4.4.1.5 Fe2+ activation, Km: 0.010 mM, Vmax: 0.112 mmol/min/mg, kcat: 56 1/s Escherichia coli
4.4.1.5 Fe3+ activation of gly I Escherichia coli
4.4.1.5 Mg2+ apo form reactivated Pseudomonas putida
4.4.1.5 Mg2+ reactivation of gly I Homo sapiens
4.4.1.5 Mg2+ reactivation of gly I Pseudomonas putida
4.4.1.5 Mn2+ activation of gly I Escherichia coli
4.4.1.5 Mn2+ activation, Km: 0.010 mM, Vmax: 0.121 mmol/min/mg, kcat: 60 1/s Escherichia coli
4.4.1.5 additional information not activated by Zn2+ Neisseria meningitidis
4.4.1.5 additional information not activated by Zn2+ Yersinia pestis
4.4.1.5 additional information inactive with Zn2+ Leishmania major
4.4.1.5 additional information inactive with Zn2+ Pseudomonas aeruginosa
4.4.1.5 additional information not activated by Zn2+, Zn2+ can bind to the enzyme, but the resulting enzyme is inactive. Mg2+ does not bind to the apoGlxI as determined by isothermal titration calorimetry Escherichia coli
4.4.1.5 Ni2+ activates Leishmania donovani
4.4.1.5 Ni2+ activated by Ni2+ and Co2+ Neisseria meningitidis
4.4.1.5 Ni2+ activated by Ni2+ and Co2+ Yersinia pestis
4.4.1.5 Ni2+ activation of gloA1 Pseudomonas aeruginosa
4.4.1.5 Ni2+ activation of gly I Yersinia pestis
4.4.1.5 Ni2+ activation of gly I Escherichia coli
4.4.1.5 Ni2+ activation of gly I Neisseria meningitidis
4.4.1.5 Ni2+ activation of gly I Pseudomonas aeruginosa
4.4.1.5 Ni2+ activation, Km: 0.021 mM, Vmax: 0.497 mmol/min/mg, kcat: 247 1/s, kcat/Km: 12000000 1/M * s Pseudomonas aeruginosa
4.4.1.5 Ni2+ activation, Km: 0.032 mM, vmax: 0.571 mmol/min/mg, kcat: 271 1/s, kcat/Km: 8500000 1/M * s Pseudomonas aeruginosa
4.4.1.5 Ni2+ apo form reactivated Pseudomonas putida
4.4.1.5 Ni2+ highest reactivation activity, Km: 0.027 mM, Vmax: 0.676 mmol/min/mg, kcat: 338 1/s Escherichia coli
4.4.1.5 Ni2+ major activation by Ni2+ and Co2+ but also exhibits some measureable activation by Zn2+ Trypanosoma cruzi
4.4.1.5 Ni2+ reactivation of apo gly I Homo sapiens
4.4.1.5 Ni2+ reactivation of apo gly I Pseudomonas putida
4.4.1.5 Zn2+ activation of gloA3, metal ion binds tightly to the enzyme so that removal of metall ion requires more forceful conditions Pseudomonas aeruginosa
4.4.1.5 Zn2+ activation of glxI Plasmodium falciparum
4.4.1.5 Zn2+ activation, Zn2+ is tightly bound to GloA3, Km: 0.287 mM, Vmax: 1.176 mmol/min/mg, kcat: 787 1/s, kcat/Km: 2800000 1/M * s Pseudomonas aeruginosa
4.4.1.5 Zn2+ apo form reactivated Pseudomonas putida
4.4.1.5 Zn2+ major activation by Ni2+ and Co2+ but also exhibits some measureable activation by Zn2+ Trypanosoma cruzi
4.4.1.5 Zn2+ reactivation of gly I Pseudomonas putida

Molecular Weight [Da]

EC Number Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
4.4.1.5 additional information
-
GlxI is longer than the Escherichia coli enzyme but similar to the Homo sapiens enzyme Pseudomonas aeruginosa
4.4.1.5 additional information
-
size is similar to the Escherichia coli enzyme and to Pseudomonas aeruginose Glx1 GloA1 Pseudomonas aeruginosa

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
3.1.2.6 additional information Escherichia coli the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
3.1.2.6 additional information Arabidopsis thaliana the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
3.1.2.6 S-D-lactoylglutathione + H2O Escherichia coli second step in the glyoxalase system, detoxification of methylglyoxal D-lactate + glutathione
-
?
3.1.2.6 S-D-lactoylglutathione + H2O Arabidopsis thaliana second step in the glyoxalase system, detoxification of methylglyoxal D-lactate + glutathione
-
?
4.4.1.5 glutathionylspermidine + methylglyoxal Leishmania sp.
-
?
-
?
4.4.1.5 methylglyoxal + glutathione Plasmodium falciparum first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
4.4.1.5 methylglyoxal + glutathione Yersinia pestis first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
4.4.1.5 methylglyoxal + glutathione Leishmania sp. first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
4.4.1.5 methylglyoxal + glutathione Homo sapiens first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
4.4.1.5 methylglyoxal + glutathione Escherichia coli first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
4.4.1.5 methylglyoxal + glutathione Neisseria meningitidis first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
4.4.1.5 methylglyoxal + glutathione Pseudomonas aeruginosa first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
4.4.1.5 methylglyoxal + glutathione Pseudomonas putida first step in the glyoxalase system, detoxification of methylglyoxal (R)-S-lactoylglutathione
-
r
4.4.1.5 additional information Plasmodium falciparum the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
4.4.1.5 additional information Yersinia pestis the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
4.4.1.5 additional information Leishmania sp. the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
4.4.1.5 additional information Homo sapiens the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
4.4.1.5 additional information Escherichia coli the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
4.4.1.5 additional information Neisseria meningitidis the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
4.4.1.5 additional information Pseudomonas aeruginosa the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
4.4.1.5 additional information Pseudomonas putida the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes ?
-
?
4.4.1.5 additional information Leishmania sp. the Leishmania sp. glxI preferentially utilizes the hemithioacetal formed between methylglyoxal and trypanothione as the substrate ?
-
?

Organism

EC Number Organism UniProt Comment Textmining
3.1.2.6 Arabidopsis thaliana
-
-
-
3.1.2.6 Escherichia coli
-
-
-
4.4.1.5 Escherichia coli
-
-
-
4.4.1.5 Escherichia coli P0AC81
-
-
4.4.1.5 Homo sapiens
-
-
-
4.4.1.5 Homo sapiens Q04760
-
-
4.4.1.5 Leishmania braziliensis
-
-
-
4.4.1.5 Leishmania donovani
-
-
-
4.4.1.5 Leishmania major
-
-
-
4.4.1.5 Leishmania sp.
-
-
-
4.4.1.5 Neisseria meningitidis
-
-
-
4.4.1.5 Neisseria meningitidis P0A0T3
-
-
4.4.1.5 Plasmodium falciparum
-
-
-
4.4.1.5 Pseudomonas aeruginosa
-
PAO1
-
4.4.1.5 Pseudomonas aeruginosa Q9HU72 gloA3
-
4.4.1.5 Pseudomonas aeruginosa Q9HY85 gloA1
-
4.4.1.5 Pseudomonas aeruginosa Q9I5L8 PAO1
-
4.4.1.5 Pseudomonas aeruginosa Q9I5L8 gloA2
-
4.4.1.5 Pseudomonas putida
-
-
-
4.4.1.5 Pseudomonas putida Q88GF8
-
-
4.4.1.5 Trypanosoma cruzi
-
-
-
4.4.1.5 Yersinia pestis
-
-
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
3.1.2.6 additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Escherichia coli ?
-
?
3.1.2.6 additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Arabidopsis thaliana ?
-
?
3.1.2.6 S-D-lactoylglutathione + H2O second step in the glyoxalase system, detoxification of methylglyoxal Escherichia coli D-lactate + glutathione
-
?
3.1.2.6 S-D-lactoylglutathione + H2O second step in the glyoxalase system, detoxification of methylglyoxal Arabidopsis thaliana D-lactate + glutathione
-
?
4.4.1.5 glutathionylspermidine + methylglyoxal
-
Leishmania sp. ?
-
?
4.4.1.5 methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Plasmodium falciparum (R)-S-lactoylglutathione
-
r
4.4.1.5 methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Yersinia pestis (R)-S-lactoylglutathione
-
r
4.4.1.5 methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Leishmania sp. (R)-S-lactoylglutathione
-
r
4.4.1.5 methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Homo sapiens (R)-S-lactoylglutathione
-
r
4.4.1.5 methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Escherichia coli (R)-S-lactoylglutathione
-
r
4.4.1.5 methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Neisseria meningitidis (R)-S-lactoylglutathione
-
r
4.4.1.5 methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Pseudomonas aeruginosa (R)-S-lactoylglutathione
-
r
4.4.1.5 methylglyoxal + glutathione first step in the glyoxalase system, detoxification of methylglyoxal Pseudomonas putida (R)-S-lactoylglutathione
-
r
4.4.1.5 methylglyoxal + glutathione two major intracelluar thiols are used, glutathione and trypanothione Leishmania donovani S-((R)-lactoyl)glutathione
-
?
4.4.1.5 methylglyoxal + glutathione two major intracelluar thiols are used, glutathione and trypanothione Trypanosoma cruzi S-((R)-lactoyl)glutathione
-
?
4.4.1.5 methylglyoxal + glutathione two major intracelluar thiols are used, glutathione and trypanothione Leishmania major S-((R)-lactoyl)glutathione
-
?
4.4.1.5 methylglyoxal + glutathione two major intracelluar thiols are used, glutathione and trypanothione Leishmania braziliensis S-((R)-lactoyl)glutathione
-
?
4.4.1.5 methylglyoxal + trypanothione two major intracelluar thiols are used, glutathione and trypanothione Leishmania donovani S,S'-bis((R)-lactoyl)trypanothione
-
?
4.4.1.5 methylglyoxal + trypanothione two major intracelluar thiols are used, glutathione and trypanothione Trypanosoma cruzi S,S'-bis((R)-lactoyl)trypanothione
-
?
4.4.1.5 methylglyoxal + trypanothione two major intracelluar thiols are used, glutathione and trypanothione Leishmania braziliensis S,S'-bis((R)-lactoyl)trypanothione
-
?
4.4.1.5 methylglyoxal + trypanothione two major intracelluar thiols are used, glutathione and trypanothione, preferentially utilizes the hemithioacetal formed between methylglyoxal and trypanothione as the substrate Leishmania major S,S'-bis((R)-lactoyl)trypanothione
-
?
4.4.1.5 additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Plasmodium falciparum ?
-
?
4.4.1.5 additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Yersinia pestis ?
-
?
4.4.1.5 additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Leishmania sp. ?
-
?
4.4.1.5 additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Homo sapiens ?
-
?
4.4.1.5 additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Escherichia coli ?
-
?
4.4.1.5 additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Neisseria meningitidis ?
-
?
4.4.1.5 additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Pseudomonas aeruginosa ?
-
?
4.4.1.5 additional information the glyoxalase system is an ubiquitous pathway for the detoxification of highly reactive ketoaldehydes Pseudomonas putida ?
-
?
4.4.1.5 additional information the Leishmania sp. glxI preferentially utilizes the hemithioacetal formed between methylglyoxal and trypanothione as the substrate Leishmania sp. ?
-
?

Subunits

EC Number Subunits Comment Organism
4.4.1.5 dimer
-
Homo sapiens
4.4.1.5 dimer gly1 Escherichia coli
4.4.1.5 homodimer GlxI, containing activating metals all have two water molecules bound to the active site metal along with four protein side chains making up the homodimer of the enzyme: His5 A-subunit, Glu56 A-subunit, His74 B-subunit, Glu122 B-subunit. The inactive Zn2+-bound enzyme has the same four protein side chains bound to the metal, but only one water molecule is coordinated to the Zn2+ Escherichia coli
4.4.1.5 More enzyme is composed of a single polypeptide chain containing two active sites. It has been shown that there is a allosteric coupling between the two active sites Plasmodium falciparum

Synonyms

EC Number Synonyms Comment Organism
3.1.2.6 GlxII
-
Escherichia coli
3.1.2.6 GlxII
-
Arabidopsis thaliana
3.1.2.6 glyoxalase II
-
Escherichia coli
3.1.2.6 glyoxalase II
-
Arabidopsis thaliana
3.1.2.6 hydroxyacylglutathione hydrolase
-
Escherichia coli
3.1.2.6 hydroxyacylglutathione hydrolase
-
Arabidopsis thaliana
4.4.1.5 GloA1
-
Pseudomonas aeruginosa
4.4.1.5 GloA2
-
Pseudomonas aeruginosa
4.4.1.5 GloA3
-
Pseudomonas aeruginosa
4.4.1.5 GLXI
-
Escherichia coli
4.4.1.5 GLXI
-
Pseudomonas putida
4.4.1.5 GLXI
-
Leishmania donovani
4.4.1.5 GLXI
-
Trypanosoma cruzi
4.4.1.5 GLXI
-
Plasmodium falciparum
4.4.1.5 GLXI
-
Yersinia pestis
4.4.1.5 GLXI
-
Leishmania sp.
4.4.1.5 GLXI
-
Leishmania major
4.4.1.5 GLXI
-
Leishmania braziliensis
4.4.1.5 GLXI
-
Homo sapiens
4.4.1.5 GLXI
-
Neisseria meningitidis
4.4.1.5 GLXI
-
Pseudomonas aeruginosa
4.4.1.5 glyoxalase I
-
Plasmodium falciparum
4.4.1.5 glyoxalase I
-
Yersinia pestis
4.4.1.5 glyoxalase I
-
Leishmania sp.
4.4.1.5 glyoxalase I
-
Homo sapiens
4.4.1.5 glyoxalase I
-
Escherichia coli
4.4.1.5 glyoxalase I
-
Neisseria meningitidis
4.4.1.5 glyoxalase I
-
Pseudomonas aeruginosa
4.4.1.5 glyoxalase I
-
Pseudomonas putida

Turnover Number [1/s]

EC Number Turnover Number Minimum [1/s] Turnover Number Maximum [1/s] Substrate Comment Organism Structure
4.4.1.5 additional information
-
additional information the turnover number of Pseudomonas aeruginosa gloaA1 with Ni2+ is 271 s Pseudomonas aeruginosa
4.4.1.5 additional information
-
additional information the turnover number of Pseudomonas aeruginosa gloaA2 with Ni2+ is 247 s Pseudomonas aeruginosa
4.4.1.5 additional information
-
additional information the turnover number of Pseudomonas aeruginosa gloaA3 with Zn2+ is 787 s Pseudomonas aeruginosa
4.4.1.5 additional information
-
additional information the turnover number with Cd2+ is 21 s Escherichia coli
4.4.1.5 additional information
-
additional information the turnover number with Co2+ is 106 s Escherichia coli
4.4.1.5 additional information
-
additional information the turnover number with Fe2+ is 56 s Escherichia coli
4.4.1.5 additional information
-
additional information the turnover number with Mn2+ is 60 s Escherichia coli
4.4.1.5 additional information
-
additional information the turnover number with Ni2+ is 338 s Escherichia coli