Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Noda, L.
    Adenylate kinase (1973), The Enzymes,3rd Ed. (Boyer,P. D. ,ed. ), 8, 279-305.
No PubMed abstract available

Crystallization (Commentary)

EC Number Crystallization (Comment) Organism
2.7.4.3 muscle Homo sapiens
2.7.4.3 muscle Sus scrofa
2.7.4.3 muscle Oryctolagus cuniculus

Inhibitors

EC Number Inhibitors Comment Organism Structure
2.7.4.3 5,5'-dithiobis(2-nitrobenzoic acid) not: liver enzyme Bos taurus
2.7.4.3 5,5'-dithiobis(2-nitrobenzoic acid)
-
Escherichia coli
2.7.4.3 5,5'-dithiobis(2-nitrobenzoic acid) muscle enzyme Homo sapiens
2.7.4.3 5,5'-dithiobis(2-nitrobenzoic acid) not: liver enzyme Rattus norvegicus
2.7.4.3 5,5'-dithiobis(2-nitrobenzoic acid)
-
Saccharomyces cerevisiae
2.7.4.3 5,5'-dithiobis(2-nitrobenzoic acid)
-
Sus scrofa

KM Value [mM]

EC Number KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
2.7.4.3 additional information
-
additional information kinetic constants of adenylate kinases from various sources Homo sapiens
2.7.4.3 additional information
-
additional information kinetic constants of adenylate kinases from various sources Rattus norvegicus
2.7.4.3 additional information
-
additional information kinetic constants of adenylate kinases from various sources Saccharomyces cerevisiae
2.7.4.3 additional information
-
additional information kinetic constants of adenylate kinases from various sources Bos taurus
2.7.4.3 additional information
-
additional information kinetic constants of adenylate kinases from various sources Oryctolagus cuniculus
2.7.4.3 additional information
-
additional information kinetic constants of adenylate kinases from various sources Blattidae

Localization

EC Number Localization Comment Organism GeneOntology No. Textmining
2.7.4.3 cytosol
-
Bacillus subtilis 5829
-
2.7.4.3 cytosol
-
Mus musculus 5829
-
2.7.4.3 cytosol
-
Escherichia coli 5829
-
2.7.4.3 cytosol
-
Homo sapiens 5829
-
2.7.4.3 cytosol
-
Sus scrofa 5829
-
2.7.4.3 cytosol
-
Saccharomyces cerevisiae 5829
-
2.7.4.3 cytosol
-
Bos taurus 5829
-
2.7.4.3 cytosol
-
Triticum aestivum 5829
-
2.7.4.3 cytosol
-
Oryctolagus cuniculus 5829
-
2.7.4.3 cytosol
-
Physarum polycephalum 5829
-
2.7.4.3 cytosol
-
Thiobacillus denitrificans 5829
-
2.7.4.3 cytosol
-
Citrus limon 5829
-
2.7.4.3 cytosol
-
Blattidae 5829
-
2.7.4.3 cytosol isozyme II Rattus norvegicus 5829
-
2.7.4.3 mitochondrion intermembrane space Homo sapiens 5739
-
2.7.4.3 mitochondrion intermembrane space Rattus norvegicus 5739
-
2.7.4.3 mitochondrion intermembrane space Sus scrofa 5739
-
2.7.4.3 mitochondrion intermembrane space Bos taurus 5739
-
2.7.4.3 mitochondrion intermembrane space Oryctolagus cuniculus 5739
-
2.7.4.3 mitochondrion intermembrane space Blattidae 5739
-
2.7.4.3 additional information
-
Bacillus subtilis
-
-
2.7.4.3 additional information
-
Mus musculus
-
-
2.7.4.3 additional information
-
Escherichia coli
-
-
2.7.4.3 additional information
-
Homo sapiens
-
-
2.7.4.3 additional information
-
Sus scrofa
-
-
2.7.4.3 additional information
-
Saccharomyces cerevisiae
-
-
2.7.4.3 additional information
-
Bos taurus
-
-
2.7.4.3 additional information
-
Triticum aestivum
-
-
2.7.4.3 additional information
-
Oryctolagus cuniculus
-
-
2.7.4.3 additional information
-
Physarum polycephalum
-
-
2.7.4.3 additional information
-
Thiobacillus denitrificans
-
-
2.7.4.3 additional information
-
Citrus limon
-
-
2.7.4.3 additional information
-
Blattidae
-
-
2.7.4.3 additional information particle-associated Rattus norvegicus
-
-
2.7.4.3 additional information subcellular distribution of 4 rat isozymes Rattus norvegicus
-
-
2.7.4.3 nucleus
-
Homo sapiens 5634
-
2.7.4.3 nucleus
-
Rattus norvegicus 5634
-

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
2.7.4.3 Ba2+ requirement Saccharomyces cerevisiae
2.7.4.3 Ba2+ requirement Oryctolagus cuniculus
2.7.4.3 Ba2+ in decreasing order of efficiency: Mg2+, Ca2+, Mn2+, Ba2+ Saccharomyces cerevisiae
2.7.4.3 Ba2+ in decreasing order of efficiency: Mg2+, Ca2+, Mn2+, Ba2+ Oryctolagus cuniculus
2.7.4.3 Ba2+ forms complex with di- or trinucleotide Bacillus subtilis
2.7.4.3 Ba2+ forms complex with di- or trinucleotide Mus musculus
2.7.4.3 Ba2+ forms complex with di- or trinucleotide Escherichia coli
2.7.4.3 Ba2+ forms complex with di- or trinucleotide Homo sapiens
2.7.4.3 Ba2+ forms complex with di- or trinucleotide Rattus norvegicus
2.7.4.3 Ba2+ forms complex with di- or trinucleotide Sus scrofa
2.7.4.3 Ba2+ forms complex with di- or trinucleotide Saccharomyces cerevisiae
2.7.4.3 Ba2+ forms complex with di- or trinucleotide Bos taurus
2.7.4.3 Ba2+ forms complex with di- or trinucleotide Triticum aestivum
2.7.4.3 Ba2+ forms complex with di- or trinucleotide Oryctolagus cuniculus
2.7.4.3 Ba2+ forms complex with di- or trinucleotide Physarum polycephalum
2.7.4.3 Ba2+ forms complex with di- or trinucleotide Thiobacillus denitrificans
2.7.4.3 Ba2+ forms complex with di- or trinucleotide Citrus limon
2.7.4.3 Ba2+ forms complex with di- or trinucleotide Blattidae
2.7.4.3 Ca2+ less effective than Mg2+ Saccharomyces cerevisiae
2.7.4.3 Ca2+ less effective than Mg2+ Bos taurus
2.7.4.3 Ca2+ in decreasing order of efficiency: Mg2+, Mn2+, Ca2+, Co2+ Bos taurus
2.7.4.3 Ca2+ requirement, as good as Mg2+ Saccharomyces cerevisiae
2.7.4.3 Ca2+ requirement, as good as Mg2+ Oryctolagus cuniculus
2.7.4.3 Ca2+ in decreasing order of efficiency: Mg2+, Ca2+ Mn2+, Ba2+ Saccharomyces cerevisiae
2.7.4.3 Ca2+ in decreasing order of efficiency: Mg2+, Ca2+ Mn2+, Ba2+ Oryctolagus cuniculus
2.7.4.3 Ca2+ metal ion forms complex with di- or trinucleotide Bacillus subtilis
2.7.4.3 Ca2+ metal ion forms complex with di- or trinucleotide Mus musculus
2.7.4.3 Ca2+ metal ion forms complex with di- or trinucleotide Escherichia coli
2.7.4.3 Ca2+ metal ion forms complex with di- or trinucleotide Homo sapiens
2.7.4.3 Ca2+ metal ion forms complex with di- or trinucleotide Rattus norvegicus
2.7.4.3 Ca2+ metal ion forms complex with di- or trinucleotide Sus scrofa
2.7.4.3 Ca2+ metal ion forms complex with di- or trinucleotide Saccharomyces cerevisiae
2.7.4.3 Ca2+ metal ion forms complex with di- or trinucleotide Bos taurus
2.7.4.3 Ca2+ metal ion forms complex with di- or trinucleotide Triticum aestivum
2.7.4.3 Ca2+ metal ion forms complex with di- or trinucleotide Oryctolagus cuniculus
2.7.4.3 Ca2+ metal ion forms complex with di- or trinucleotide Physarum polycephalum
2.7.4.3 Ca2+ metal ion forms complex with di- or trinucleotide Thiobacillus denitrificans
2.7.4.3 Ca2+ metal ion forms complex with di- or trinucleotide Citrus limon
2.7.4.3 Ca2+ metal ion forms complex with di- or trinucleotide Blattidae
2.7.4.3 Co2+ requirement Saccharomyces cerevisiae
2.7.4.3 Co2+ requirement Bos taurus
2.7.4.3 Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Bacillus subtilis
2.7.4.3 Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Mus musculus
2.7.4.3 Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Escherichia coli
2.7.4.3 Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Homo sapiens
2.7.4.3 Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Rattus norvegicus
2.7.4.3 Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Sus scrofa
2.7.4.3 Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Saccharomyces cerevisiae
2.7.4.3 Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Bos taurus
2.7.4.3 Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Triticum aestivum
2.7.4.3 Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Oryctolagus cuniculus
2.7.4.3 Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Physarum polycephalum
2.7.4.3 Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Thiobacillus denitrificans
2.7.4.3 Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Citrus limon
2.7.4.3 Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Blattidae
2.7.4.3 Mg2+ requirement Bacillus subtilis
2.7.4.3 Mg2+ requirement Mus musculus
2.7.4.3 Mg2+ requirement Escherichia coli
2.7.4.3 Mg2+ requirement Homo sapiens
2.7.4.3 Mg2+ requirement Rattus norvegicus
2.7.4.3 Mg2+ requirement Sus scrofa
2.7.4.3 Mg2+ requirement Saccharomyces cerevisiae
2.7.4.3 Mg2+ requirement Bos taurus
2.7.4.3 Mg2+ requirement Triticum aestivum
2.7.4.3 Mg2+ requirement Oryctolagus cuniculus
2.7.4.3 Mg2+ requirement Physarum polycephalum
2.7.4.3 Mg2+ requirement Thiobacillus denitrificans
2.7.4.3 Mg2+ requirement Citrus limon
2.7.4.3 Mg2+ requirement Blattidae
2.7.4.3 Mg2+ in decreasing order of efficiency: Mg2+, Ca2+, Mn2+, Ba2+ Saccharomyces cerevisiae
2.7.4.3 Mg2+ in decreasing order of efficiency: Mg2+, Ca2+, Mn2+, Ba2+ Oryctolagus cuniculus
2.7.4.3 Mg2+ MgATP2- is true substrate Bacillus subtilis
2.7.4.3 Mg2+ MgATP2- is true substrate Mus musculus
2.7.4.3 Mg2+ MgATP2- is true substrate Escherichia coli
2.7.4.3 Mg2+ MgATP2- is true substrate Homo sapiens
2.7.4.3 Mg2+ MgATP2- is true substrate Rattus norvegicus
2.7.4.3 Mg2+ MgATP2- is true substrate Sus scrofa
2.7.4.3 Mg2+ MgATP2- is true substrate Saccharomyces cerevisiae
2.7.4.3 Mg2+ MgATP2- is true substrate Bos taurus
2.7.4.3 Mg2+ MgATP2- is true substrate Triticum aestivum
2.7.4.3 Mg2+ MgATP2- is true substrate Oryctolagus cuniculus
2.7.4.3 Mg2+ MgATP2- is true substrate Physarum polycephalum
2.7.4.3 Mg2+ MgATP2- is true substrate Thiobacillus denitrificans
2.7.4.3 Mg2+ MgATP2- is true substrate Citrus limon
2.7.4.3 Mg2+ MgATP2- is true substrate Blattidae
2.7.4.3 Mg2+ enzymatic reaction resembles inorganic metal catalysis Bacillus subtilis
2.7.4.3 Mg2+ enzymatic reaction resembles inorganic metal catalysis Mus musculus
2.7.4.3 Mg2+ enzymatic reaction resembles inorganic metal catalysis Escherichia coli
2.7.4.3 Mg2+ enzymatic reaction resembles inorganic metal catalysis Homo sapiens
2.7.4.3 Mg2+ enzymatic reaction resembles inorganic metal catalysis Rattus norvegicus
2.7.4.3 Mg2+ enzymatic reaction resembles inorganic metal catalysis Sus scrofa
2.7.4.3 Mg2+ enzymatic reaction resembles inorganic metal catalysis Saccharomyces cerevisiae
2.7.4.3 Mg2+ enzymatic reaction resembles inorganic metal catalysis Bos taurus
2.7.4.3 Mg2+ enzymatic reaction resembles inorganic metal catalysis Triticum aestivum
2.7.4.3 Mg2+ enzymatic reaction resembles inorganic metal catalysis Oryctolagus cuniculus
2.7.4.3 Mg2+ enzymatic reaction resembles inorganic metal catalysis Physarum polycephalum
2.7.4.3 Mg2+ enzymatic reaction resembles inorganic metal catalysis Thiobacillus denitrificans
2.7.4.3 Mg2+ enzymatic reaction resembles inorganic metal catalysis Citrus limon
2.7.4.3 Mg2+ enzymatic reaction resembles inorganic metal catalysis Blattidae
2.7.4.3 Mg2+ MgADP- is true substrate Bacillus subtilis
2.7.4.3 Mg2+ MgADP- is true substrate Mus musculus
2.7.4.3 Mg2+ MgADP- is true substrate Escherichia coli
2.7.4.3 Mg2+ MgADP- is true substrate Homo sapiens
2.7.4.3 Mg2+ MgADP- is true substrate Rattus norvegicus
2.7.4.3 Mg2+ MgADP- is true substrate Sus scrofa
2.7.4.3 Mg2+ MgADP- is true substrate Saccharomyces cerevisiae
2.7.4.3 Mg2+ MgADP- is true substrate Bos taurus
2.7.4.3 Mg2+ MgADP- is true substrate Triticum aestivum
2.7.4.3 Mg2+ MgADP- is true substrate Oryctolagus cuniculus
2.7.4.3 Mg2+ MgADP- is true substrate Physarum polycephalum
2.7.4.3 Mg2+ MgADP- is true substrate Thiobacillus denitrificans
2.7.4.3 Mg2+ MgADP- is true substrate Citrus limon
2.7.4.3 Mg2+ MgADP- is true substrate Blattidae
2.7.4.3 Mg2+ in decreasing order of efficiency: Mg2+, Mn2+, Ca2+, Co2+ Bos taurus
2.7.4.3 Mg2+ forms complex with di- or trinucleotide Bacillus subtilis
2.7.4.3 Mg2+ forms complex with di- or trinucleotide Mus musculus
2.7.4.3 Mg2+ forms complex with di- or trinucleotide Escherichia coli
2.7.4.3 Mg2+ forms complex with di- or trinucleotide Homo sapiens
2.7.4.3 Mg2+ forms complex with di- or trinucleotide Rattus norvegicus
2.7.4.3 Mg2+ forms complex with di- or trinucleotide Sus scrofa
2.7.4.3 Mg2+ forms complex with di- or trinucleotide Saccharomyces cerevisiae
2.7.4.3 Mg2+ forms complex with di- or trinucleotide Bos taurus
2.7.4.3 Mg2+ forms complex with di- or trinucleotide Triticum aestivum
2.7.4.3 Mg2+ forms complex with di- or trinucleotide Oryctolagus cuniculus
2.7.4.3 Mg2+ forms complex with di- or trinucleotide Physarum polycephalum
2.7.4.3 Mg2+ forms complex with di- or trinucleotide Thiobacillus denitrificans
2.7.4.3 Mg2+ forms complex with di- or trinucleotide Citrus limon
2.7.4.3 Mg2+ forms complex with di- or trinucleotide Blattidae
2.7.4.3 Mn2+ in decreasing order of efficiency: Mg2+, Ca2+, Mn2+, Ba2+ Saccharomyces cerevisiae
2.7.4.3 Mn2+ in decreasing order of efficiency: Mg2+, Ca2+, Mn2+, Ba2+ Oryctolagus cuniculus
2.7.4.3 Mn2+ in decreasing order of efficiency: Mg2+, Mn2+, Ca2+, Co2+ Bos taurus
2.7.4.3 Mn2+ forms complex with di- or trinucleotide Bacillus subtilis
2.7.4.3 Mn2+ forms complex with di- or trinucleotide Mus musculus
2.7.4.3 Mn2+ forms complex with di- or trinucleotide Escherichia coli
2.7.4.3 Mn2+ forms complex with di- or trinucleotide Homo sapiens
2.7.4.3 Mn2+ forms complex with di- or trinucleotide Rattus norvegicus
2.7.4.3 Mn2+ forms complex with di- or trinucleotide Sus scrofa
2.7.4.3 Mn2+ forms complex with di- or trinucleotide Saccharomyces cerevisiae
2.7.4.3 Mn2+ forms complex with di- or trinucleotide Bos taurus
2.7.4.3 Mn2+ forms complex with di- or trinucleotide Triticum aestivum
2.7.4.3 Mn2+ forms complex with di- or trinucleotide Oryctolagus cuniculus
2.7.4.3 Mn2+ forms complex with di- or trinucleotide Physarum polycephalum
2.7.4.3 Mn2+ forms complex with di- or trinucleotide Thiobacillus denitrificans
2.7.4.3 Mn2+ forms complex with di- or trinucleotide Citrus limon
2.7.4.3 Mn2+ forms complex with di- or trinucleotide Blattidae

Molecular Weight [Da]

EC Number Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
2.7.4.3 21000
-
muscle, sedimentation and diffusion Oryctolagus cuniculus
2.7.4.3 21000
-
eye lens Bos taurus
2.7.4.3 21300
-
-
Homo sapiens
2.7.4.3 21300
-
muscle Sus scrofa
2.7.4.3 21500
-
-
Homo sapiens
2.7.4.3 21500
-
liver mitochondria Bos taurus
2.7.4.3 23000
-
-
Homo sapiens
2.7.4.3 23000
-
isozyme III, at concentrations above 3 mg/ml, dimers and trimers of MW 46000 and 68000 are formed Rattus norvegicus
2.7.4.3 41000
-
-
Saccharomyces cerevisiae
2.7.4.3 46000 49000 isozyme II Rattus norvegicus

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
2.7.4.3 ADP + ADP Bacillus subtilis facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
2.7.4.3 ADP + ADP Mus musculus facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
2.7.4.3 ADP + ADP Escherichia coli facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
2.7.4.3 ADP + ADP Homo sapiens facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
2.7.4.3 ADP + ADP Rattus norvegicus facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
2.7.4.3 ADP + ADP Sus scrofa facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
2.7.4.3 ADP + ADP Saccharomyces cerevisiae facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
2.7.4.3 ADP + ADP Bos taurus facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
2.7.4.3 ADP + ADP Triticum aestivum facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
2.7.4.3 ADP + ADP Oryctolagus cuniculus facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
2.7.4.3 ADP + ADP Physarum polycephalum facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
2.7.4.3 ADP + ADP Thiobacillus denitrificans facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
2.7.4.3 ADP + ADP Citrus limon facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
2.7.4.3 ADP + ADP Blattidae facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r

Organism

EC Number Organism UniProt Comment Textmining
2.7.4.3 Bacillus subtilis
-
-
-
2.7.4.3 Blattidae
-
-
-
2.7.4.3 Bos taurus
-
-
-
2.7.4.3 Citrus limon
-
lemon, sweet and sour
-
2.7.4.3 Escherichia coli
-
-
-
2.7.4.3 Homo sapiens
-
-
-
2.7.4.3 Mus musculus
-
normal or with genetically induced muscular dystrophy
-
2.7.4.3 Oryctolagus cuniculus
-
-
-
2.7.4.3 Physarum polycephalum
-
slime mold
-
2.7.4.3 Rattus norvegicus
-
adult or neonatal
-
2.7.4.3 Saccharomyces cerevisiae
-
-
-
2.7.4.3 Sus scrofa
-
-
-
2.7.4.3 Thiobacillus denitrificans
-
-
-
2.7.4.3 Triticum aestivum
-
-
-

Purification (Commentary)

EC Number Purification (Comment) Organism
2.7.4.3
-
Bacillus subtilis
2.7.4.3
-
Saccharomyces cerevisiae
2.7.4.3
-
Blattidae
2.7.4.3 liver enzyme, 4 isozymes Rattus norvegicus
2.7.4.3 liver mitochondria, eye lens Bos taurus
2.7.4.3 muscle Homo sapiens
2.7.4.3 muscle Sus scrofa
2.7.4.3 muscle Oryctolagus cuniculus

Reaction

EC Number Reaction Comment Organism Reaction ID
2.7.4.3 ATP + AMP = 2 ADP mechanism Mus musculus
2.7.4.3 ATP + AMP = 2 ADP mechanism Rattus norvegicus
2.7.4.3 ATP + AMP = 2 ADP mechanism Sus scrofa
2.7.4.3 ATP + AMP = 2 ADP mechanism Bos taurus
2.7.4.3 ATP + AMP = 2 ADP mechanism Oryctolagus cuniculus

Source Tissue

EC Number Source Tissue Comment Organism Textmining
2.7.4.3 brain
-
Mus musculus
-
2.7.4.3 brain
-
Homo sapiens
-
2.7.4.3 brain
-
Rattus norvegicus
-
2.7.4.3 brain
-
Sus scrofa
-
2.7.4.3 brain
-
Bos taurus
-
2.7.4.3 brain
-
Oryctolagus cuniculus
-
2.7.4.3 erythrocyte
-
Homo sapiens
-
2.7.4.3 erythrocyte
-
Oryctolagus cuniculus
-
2.7.4.3 fruit
-
Citrus limon
-
2.7.4.3 heart
-
Mus musculus
-
2.7.4.3 heart
-
Homo sapiens
-
2.7.4.3 heart
-
Rattus norvegicus
-
2.7.4.3 heart
-
Sus scrofa
-
2.7.4.3 heart
-
Bos taurus
-
2.7.4.3 heart
-
Oryctolagus cuniculus
-
2.7.4.3 kidney
-
Homo sapiens
-
2.7.4.3 kidney
-
Rattus norvegicus
-
2.7.4.3 kidney
-
Oryctolagus cuniculus
-
2.7.4.3 leaf
-
Triticum aestivum
-
2.7.4.3 leaf
-
Citrus limon
-
2.7.4.3 leukocyte
-
Homo sapiens
-
2.7.4.3 liver
-
Homo sapiens
-
2.7.4.3 liver
-
Rattus norvegicus
-
2.7.4.3 liver
-
Bos taurus
-
2.7.4.3 liver
-
Oryctolagus cuniculus
-
2.7.4.3 lung
-
Homo sapiens
-
2.7.4.3 additional information
-
Bacillus subtilis
-
2.7.4.3 additional information
-
Escherichia coli
-
2.7.4.3 additional information
-
Saccharomyces cerevisiae
-
2.7.4.3 additional information
-
Physarum polycephalum
-
2.7.4.3 additional information
-
Thiobacillus denitrificans
-
2.7.4.3 additional information tissue distribution Mus musculus
-
2.7.4.3 additional information tissue distribution Homo sapiens
-
2.7.4.3 additional information tissue distribution Rattus norvegicus
-
2.7.4.3 additional information tissue distribution Sus scrofa
-
2.7.4.3 additional information tissue distribution Bos taurus
-
2.7.4.3 additional information tissue distribution Triticum aestivum
-
2.7.4.3 additional information tissue distribution Oryctolagus cuniculus
-
2.7.4.3 additional information tissue distribution Citrus limon
-
2.7.4.3 additional information tissue distribution Blattidae
-
2.7.4.3 additional information rabbit and human carry a minimum of 2 sets of isozymes within an individual: one set in muscle, erythrocytes, brain and another in liver, kidney and spleen Homo sapiens
-
2.7.4.3 additional information rabbit and human carry a minimum of 2 sets of isozymes within an individual: one set in muscle, erythrocytes, brain and another in liver, kidney and spleen Oryctolagus cuniculus
-
2.7.4.3 additional information high activities in tissues where turnover of energy from adenine nucleotides is great, e. g. muscle Homo sapiens
-
2.7.4.3 additional information high activities in tissues where turnover of energy from adenine nucleotides is great, e. g. muscle Sus scrofa
-
2.7.4.3 additional information high activities in tissues where turnover of energy from adenine nucleotides is great, e. g. muscle Oryctolagus cuniculus
-
2.7.4.3 muscle
-
Mus musculus
-
2.7.4.3 muscle
-
Homo sapiens
-
2.7.4.3 muscle
-
Rattus norvegicus
-
2.7.4.3 muscle
-
Sus scrofa
-
2.7.4.3 muscle
-
Bos taurus
-
2.7.4.3 muscle
-
Oryctolagus cuniculus
-
2.7.4.3 muscle
-
Blattidae
-
2.7.4.3 skin neonatal rats Rattus norvegicus
-
2.7.4.3 spleen
-
Homo sapiens
-
2.7.4.3 spleen
-
Oryctolagus cuniculus
-
2.7.4.3 spore
-
Bacillus subtilis
-

Specific Activity [micromol/min/mg]

EC Number Specific Activity Minimum [µmol/min/mg] Specific Activity Maximum [µmol/min/mg] Comment Organism
2.7.4.3 60
-
isozyme II Rattus norvegicus
2.7.4.3 1000
-
liver isozyme III Rattus norvegicus
2.7.4.3 1062
-
liver, mitochondria Bos taurus
2.7.4.3 1810
-
muscle Sus scrofa
2.7.4.3 1900
-
-
Rattus norvegicus
2.7.4.3 1900
-
-
Saccharomyces cerevisiae
2.7.4.3 1920
-
muscle Homo sapiens
2.7.4.3 2200
-
muscle Oryctolagus cuniculus

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
2.7.4.3 ADP + ADP
-
Bacillus subtilis ATP + AMP
-
r
2.7.4.3 ADP + ADP
-
Mus musculus ATP + AMP
-
r
2.7.4.3 ADP + ADP
-
Escherichia coli ATP + AMP
-
r
2.7.4.3 ADP + ADP
-
Homo sapiens ATP + AMP
-
r
2.7.4.3 ADP + ADP
-
Rattus norvegicus ATP + AMP
-
r
2.7.4.3 ADP + ADP
-
Sus scrofa ATP + AMP
-
r
2.7.4.3 ADP + ADP
-
Saccharomyces cerevisiae ATP + AMP
-
r
2.7.4.3 ADP + ADP
-
Bos taurus ATP + AMP
-
r
2.7.4.3 ADP + ADP
-
Triticum aestivum ATP + AMP
-
r
2.7.4.3 ADP + ADP
-
Oryctolagus cuniculus ATP + AMP
-
r
2.7.4.3 ADP + ADP
-
Physarum polycephalum ATP + AMP
-
r
2.7.4.3 ADP + ADP
-
Thiobacillus denitrificans ATP + AMP
-
r
2.7.4.3 ADP + ADP
-
Citrus limon ATP + AMP
-
r
2.7.4.3 ADP + ADP
-
Blattidae ATP + AMP
-
r
2.7.4.3 ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Bacillus subtilis ?
-
r
2.7.4.3 ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Mus musculus ?
-
r
2.7.4.3 ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Escherichia coli ?
-
r
2.7.4.3 ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Homo sapiens ?
-
r
2.7.4.3 ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Rattus norvegicus ?
-
r
2.7.4.3 ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Sus scrofa ?
-
r
2.7.4.3 ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Saccharomyces cerevisiae ?
-
r
2.7.4.3 ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Bos taurus ?
-
r
2.7.4.3 ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Triticum aestivum ?
-
r
2.7.4.3 ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Oryctolagus cuniculus ?
-
r
2.7.4.3 ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Physarum polycephalum ?
-
r
2.7.4.3 ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Thiobacillus denitrificans ?
-
r
2.7.4.3 ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Citrus limon ?
-
r
2.7.4.3 ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Blattidae ?
-
r
2.7.4.3 ATP + AMP highly specific Rattus norvegicus ADP + ADP
-
r
2.7.4.3 ATP + AMP substrates in decreasing order of activity, in the presence of Mn2+: ATP, 2'-dATP, CTP, GTP, UTP, ITP Oryctolagus cuniculus ADP + ADP
-
r
2.7.4.3 ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Bacillus subtilis ADP + ADP
-
r
2.7.4.3 ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Mus musculus ADP + ADP
-
r
2.7.4.3 ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Escherichia coli ADP + ADP
-
r
2.7.4.3 ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Homo sapiens ADP + ADP
-
r
2.7.4.3 ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Rattus norvegicus ADP + ADP
-
r
2.7.4.3 ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Sus scrofa ADP + ADP
-
r
2.7.4.3 ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Saccharomyces cerevisiae ADP + ADP
-
r
2.7.4.3 ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Bos taurus ADP + ADP
-
r
2.7.4.3 ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Triticum aestivum ADP + ADP
-
r
2.7.4.3 ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Oryctolagus cuniculus ADP + ADP
-
r
2.7.4.3 ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Physarum polycephalum ADP + ADP
-
r
2.7.4.3 ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Thiobacillus denitrificans ADP + ADP
-
r
2.7.4.3 ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Citrus limon ADP + ADP
-
r
2.7.4.3 ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Blattidae ADP + ADP
-
r
2.7.4.3 ATP + AMP substrates in decreasing order of activity, in the presence of Mg2+: ATP, dATP, GTP, ITP Saccharomyces cerevisiae ADP + ADP
-
r
2.7.4.3 ITP + AMP
-
Bos taurus IDP + ADP
-
?
2.7.4.3 ITP + AMP poor substrate Saccharomyces cerevisiae IDP + ADP
-
?

Subunits

EC Number Subunits Comment Organism
2.7.4.3 dimer isozyme III, at concentrations above 3 mg/ml, dimers and trimers of MW 46000 and 68000 are formed Rattus norvegicus
2.7.4.3 trimer isozyme III, at concentrations above 3 mg/ml, dimers and trimers of MW 46000 and 68000 are formed Rattus norvegicus

pI Value

EC Number Organism Comment pI Value Maximum pI Value
2.7.4.3 Oryctolagus cuniculus muscle enzyme
-
6.1
2.7.4.3 Rattus norvegicus liver type enzymes
-
7.5
2.7.4.3 Bos taurus liver type enzymes
-
7.5