Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 3.6.4.13 extracted from

  • Leitao, A.L.; Costa, M.C.; Enguita, F.J.
    Unzippers, resolvers and sensors: a structural and functional biochemistry tale of RNA helicases (2015), Int. J. Mol. Sci., 16, 2269-2293.
    View publication on PubMedView publication on EuropePMC

Crystallization (Commentary)

Crystallization (Comment) Organism
crystal structure analysis Saccharomyces cerevisiae
crystal structure analysis of full length helicase-protease apo-enzyme, PDB ID 2JLQ, of helicase core complex with AMPPNP, PDB ID 2JLR, of helicase core complex with ADP, PDB ID 2JLS, of helicase core complex with ssRNA, PDB ID 2JLU, and of helicase core complex with ssRNA and ADP, PDB ID 2JLZ Dengue virus
crystal structure analysis of helicase core, PDB ID 1YKS, and of helicase core complex with ADP, PDB ID 1YMF Yellow fever virus
crystal structure analysis of helicase core, PDB ID 2QEQ Kunjin virus
crystal structure analysis of helicase core, PDB ID 2WV9 Murray Valley encephalitis virus
crystal structure analysis of helicase core, PDB ID 2Z83 Japanese encephalitis virus
crystal structure analysis of NS3, PDB ID 1A1V, of full length helicase-protease apo-enzyme, PDB ID 3O8C, of full length helicase-protease complex with ssRNA, PDB ID 3O8R, of full length helicase-protease complex with a protease inhibitor, PDB ID 4A92, and of helicase core complex with ssRNA, PDB ID 3KQU Hepacivirus C
crystal structure analysis of RIG-1, PDB ID 2YKG Homo sapiens
crystal structure analysis, PDB ID 2XGJ Neurospora crassa
crystal structure analysis, PDB ID 2XGJ Saccharomyces cerevisiae
crystal structure analysis, PDB ID 3G0H Homo sapiens
crystal structure analysis, PDB ID 4LJY Saccharomyces cerevisiae

Localization

Localization Comment Organism GeneOntology No. Textmining
mitochondrion
-
Neurospora crassa 5739
-

Metals/Ions

Metals/Ions Comment Organism Structure
Mg2+ required Saccharomyces cerevisiae
Mg2+ required Neurospora crassa
Mg2+ required Dengue virus
Mg2+ required Yellow fever virus
Mg2+ required Hepacivirus C
Mg2+ required Japanese encephalitis virus
Mg2+ required Homo sapiens
Mg2+ required Murray Valley encephalitis virus
Mg2+ required Kunjin virus

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
ATP + H2O Homo sapiens
-
ADP + phosphate
-
?
additional information Saccharomyces cerevisiae RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures ?
-
?
additional information Neurospora crassa RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures ?
-
?
additional information Dengue virus RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures ?
-
?
additional information Yellow fever virus RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures ?
-
?
additional information Hepacivirus C RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures ?
-
?
additional information Japanese encephalitis virus RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures ?
-
?
additional information Homo sapiens RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures ?
-
?
additional information Murray Valley encephalitis virus RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures ?
-
?
additional information Kunjin virus RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures ?
-
?

Organism

Organism UniProt Comment Textmining
Dengue virus
-
-
-
Hepacivirus C
-
isolate H
-
Homo sapiens O95786
-
-
Homo sapiens Q9UMR2
-
-
Japanese encephalitis virus P27395
-
-
Kunjin virus P14335
-
-
Murray Valley encephalitis virus P05769
-
-
Neurospora crassa
-
-
-
Saccharomyces cerevisiae
-
-
-
Saccharomyces cerevisiae P21372
-
-
Saccharomyces cerevisiae P47047
-
-
Yellow fever virus
-
-
-

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
ATP + H2O
-
Saccharomyces cerevisiae ADP + phosphate
-
?
ATP + H2O
-
Neurospora crassa ADP + phosphate
-
?
ATP + H2O
-
Dengue virus ADP + phosphate
-
?
ATP + H2O
-
Yellow fever virus ADP + phosphate
-
?
ATP + H2O
-
Hepacivirus C ADP + phosphate
-
?
ATP + H2O
-
Japanese encephalitis virus ADP + phosphate
-
?
ATP + H2O
-
Homo sapiens ADP + phosphate
-
?
ATP + H2O
-
Murray Valley encephalitis virus ADP + phosphate
-
?
ATP + H2O
-
Kunjin virus ADP + phosphate
-
?
additional information RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures Saccharomyces cerevisiae ?
-
?
additional information RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures Neurospora crassa ?
-
?
additional information RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures Dengue virus ?
-
?
additional information RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures Yellow fever virus ?
-
?
additional information RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures Hepacivirus C ?
-
?
additional information RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures Japanese encephalitis virus ?
-
?
additional information RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures Homo sapiens ?
-
?
additional information RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures Murray Valley encephalitis virus ?
-
?
additional information RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. Upon enzyme loading, the RNA helicase is able to locally open the RNA duplex facilitating the formation of a single-stranded structure. The proposed model for the catalytic activity of this group of RNA helicases suggests that the hydrolysis of ATP occurs before the strand separation. ATP hydrolysis is essential for the efficient release of the free enzyme from the RNA. The process is performed locally without any displacement of the enzyme along the RNA strands. Some proteins harboring helicase domains are able to recognize specific patterns in RNA molecules, bind to them and act as a skeleton to build ribonucleoprotein complexes without a specific catalytic activity over the RNA secondary structures Kunjin virus ?
-
?

Synonyms

Synonyms Comment Organism
DDX19
-
Homo sapiens
DDX19B
-
Homo sapiens
DDX58
-
Homo sapiens
DEAD-box helicase
-
Saccharomyces cerevisiae
DEAD-box RNA helicase
-
Homo sapiens
dexh helicase
-
Saccharomyces cerevisiae
mitochondrial DEAD-box RNA helicase
-
Neurospora crassa
Mss116p
-
Saccharomyces cerevisiae
mtr4
-
Saccharomyces cerevisiae
NA-helicase
-
Saccharomyces cerevisiae
NS3
-
Dengue virus
NS3
-
Yellow fever virus
NS3
-
Hepacivirus C
NS3
-
Japanese encephalitis virus
NS3
-
Murray Valley encephalitis virus
NS3
-
Kunjin virus
Prp5
-
Saccharomyces cerevisiae
RIG-I
-
Homo sapiens
RNA splicing effector
-
Saccharomyces cerevisiae
RNA-helicase
-
Dengue virus
RNA-helicase
-
Yellow fever virus
RNA-helicase
-
Hepacivirus C
RNA-helicase
-
Japanese encephalitis virus
RNA-helicase
-
Homo sapiens
RNA-helicase
-
Murray Valley encephalitis virus
RNA-helicase
-
Kunjin virus

General Information

General Information Comment Organism
evolution the RNA helicase ubiquitous group of proteins is found in all the kingdoms of life, ranging from viruses to mammals, and it is closely related to DNA helicases. RNA helicases are included in five of the six nucleic acid helicase superfamilies. RNA helicases belonging to superfamilies SF3, SF4, and SF5 are oligomeric proteins (mostly hexamers), being typically encoded by genomes of viruses or bacteria. Superfamilies SF1 and SF2 of RNA helicases are non-oligomeric proteins, containing a conserved bi-lobular core composed by two RecA-like domains as a central structure. Several sub-families of RNA helicases are also defined on the basis of their sequence conservation and biological activity. Human RNA helicases are included in five different sub-families: Upf1-like, DEAD-box, DEAH-RHA, RIG-I like and Ski2-like proteins. The Upf1-like sub-family belongs to the SF1 superfamily, and includes a group of enzymes involved in RNA metabolism centered in processes like splicing or nonsense-mediated decay. The SF2 superfamily includes five different sub-families of RNA helicases: DEAD-box helicases, DEAH-RHA helicases, RIG-I like proteins, Ski2-like proteins and the NS3/NPH-II subfamily. SF1 and SF2 RNA helicases have other variable accessory domains located around their structural cores which frequently contain specific additional functionalities such as DNA-binding, protein-binding or oligomerization. Structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes, overview. Enzyme NS3 falls within NS3/NPH-II subfamily of SF2 helicase superfamily Dengue virus
evolution the RNA helicase ubiquitous group of proteins is found in all the kingdoms of life, ranging from viruses to mammals, and it is closely related to DNA helicases. RNA helicases are included in five of the six nucleic acid helicase superfamilies. RNA helicases belonging to superfamilies SF3, SF4, and SF5 are oligomeric proteins (mostly hexamers), being typically encoded by genomes of viruses or bacteria. Superfamilies SF1 and SF2 of RNA helicases are non-oligomeric proteins, containing a conserved bi-lobular core composed by two RecA-like domains as a central structure. Several sub-families of RNA helicases are also defined on the basis of their sequence conservation and biological activity. Human RNA helicases are included in five different sub-families: Upf1-like, DEAD-box, DEAH-RHA, RIG-I like and Ski2-like proteins. The Upf1-like sub-family belongs to the SF1 superfamily, and includes a group of enzymes involved in RNA metabolism centered in processes like splicing or nonsense-mediated decay. The SF2 superfamily includes five different sub-families of RNA helicases: DEAD-box helicases, DEAH-RHA helicases, RIG-I like proteins, Ski2-like proteins and the NS3/NPH-II subfamily. SF1 and SF2 RNA helicases have other variable accessory domains located around their structural cores which frequently contain specific additional functionalities such as DNA-binding, protein-binding or oligomerization. Structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes, overview. Enzyme NS3 falls within NS3/NPH-II subfamily of SF2 helicase superfamily Yellow fever virus
evolution the RNA helicase ubiquitous group of proteins is found in all the kingdoms of life, ranging from viruses to mammals, and it is closely related to DNA helicases. RNA helicases are included in five of the six nucleic acid helicase superfamilies. RNA helicases belonging to superfamilies SF3, SF4, and SF5 are oligomeric proteins (mostly hexamers), being typically encoded by genomes of viruses or bacteria. Superfamilies SF1 and SF2 of RNA helicases are non-oligomeric proteins, containing a conserved bi-lobular core composed by two RecA-like domains as a central structure. Several sub-families of RNA helicases are also defined on the basis of their sequence conservation and biological activity. Human RNA helicases are included in five different sub-families: Upf1-like, DEAD-box, DEAH-RHA, RIG-I like and Ski2-like proteins. The Upf1-like sub-family belongs to the SF1 superfamily, and includes a group of enzymes involved in RNA metabolism centered in processes like splicing or nonsense-mediated decay. The SF2 superfamily includes five different sub-families of RNA helicases: DEAD-box helicases, DEAH-RHA helicases, RIG-I like proteins, Ski2-like proteins and the NS3/NPH-II subfamily. SF1 and SF2 RNA helicases have other variable accessory domains located around their structural cores which frequently contain specific additional functionalities such as DNA-binding, protein-binding or oligomerization. Structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes, overview. Enzyme NS3 falls within NS3/NPH-II subfamily of SF2 helicase superfamily Hepacivirus C
evolution the RNA helicase ubiquitous group of proteins is found in all the kingdoms of life, ranging from viruses to mammals, and it is closely related to DNA helicases. RNA helicases are included in five of the six nucleic acid helicase superfamilies. RNA helicases belonging to superfamilies SF3, SF4, and SF5 are oligomeric proteins (mostly hexamers), being typically encoded by genomes of viruses or bacteria. Superfamilies SF1 and SF2 of RNA helicases are non-oligomeric proteins, containing a conserved bi-lobular core composed by two RecA-like domains as a central structure. Several sub-families of RNA helicases are also defined on the basis of their sequence conservation and biological activity. Human RNA helicases are included in five different sub-families: Upf1-like, DEAD-box, DEAH-RHA, RIG-I like and Ski2-like proteins. The Upf1-like sub-family belongs to the SF1 superfamily, and includes a group of enzymes involved in RNA metabolism centered in processes like splicing or nonsense-mediated decay. The SF2 superfamily includes five different sub-families of RNA helicases: DEAD-box helicases, DEAH-RHA helicases, RIG-I like proteins, Ski2-like proteins and the NS3/NPH-II subfamily. SF1 and SF2 RNA helicases have other variable accessory domains located around their structural cores which frequently contain specific additional functionalities such as DNA-binding, protein-binding or oligomerization. Structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes, overview. Enzyme NS3 falls within NS3/NPH-II subfamily of SF2 helicase superfamily Japanese encephalitis virus
evolution the RNA helicase ubiquitous group of proteins is found in all the kingdoms of life, ranging from viruses to mammals, and it is closely related to DNA helicases. RNA helicases are included in five of the six nucleic acid helicase superfamilies. RNA helicases belonging to superfamilies SF3, SF4, and SF5 are oligomeric proteins (mostly hexamers), being typically encoded by genomes of viruses or bacteria. Superfamilies SF1 and SF2 of RNA helicases are non-oligomeric proteins, containing a conserved bi-lobular core composed by two RecA-like domains as a central structure. Several sub-families of RNA helicases are also defined on the basis of their sequence conservation and biological activity. Human RNA helicases are included in five different sub-families: Upf1-like, DEAD-box, DEAH-RHA, RIG-I like and Ski2-like proteins. The Upf1-like sub-family belongs to the SF1 superfamily, and includes a group of enzymes involved in RNA metabolism centered in processes like splicing or nonsense-mediated decay. The SF2 superfamily includes five different sub-families of RNA helicases: DEAD-box helicases, DEAH-RHA helicases, RIG-I like proteins, Ski2-like proteins and the NS3/NPH-II subfamily. SF1 and SF2 RNA helicases have other variable accessory domains located around their structural cores which frequently contain specific additional functionalities such as DNA-binding, protein-binding or oligomerization. Structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes, overview. Enzyme NS3 falls within NS3/NPH-II subfamily of SF2 helicase superfamily Murray Valley encephalitis virus
evolution the RNA helicase ubiquitous group of proteins is found in all the kingdoms of life, ranging from viruses to mammals, and it is closely related to DNA helicases. RNA helicases are included in five of the six nucleic acid helicase superfamilies. RNA helicases belonging to superfamilies SF3, SF4, and SF5 are oligomeric proteins (mostly hexamers), being typically encoded by genomes of viruses or bacteria. Superfamilies SF1 and SF2 of RNA helicases are non-oligomeric proteins, containing a conserved bi-lobular core composed by two RecA-like domains as a central structure. Several sub-families of RNA helicases are also defined on the basis of their sequence conservation and biological activity. Human RNA helicases are included in five different sub-families: Upf1-like, DEAD-box, DEAH-RHA, RIG-I like and Ski2-like proteins. The Upf1-like sub-family belongs to the SF1 superfamily, and includes a group of enzymes involved in RNA metabolism centered in processes like splicing or nonsense-mediated decay. The SF2 superfamily includes five different sub-families of RNA helicases: DEAD-box helicases, DEAH-RHA helicases, RIG-I like proteins, Ski2-like proteins and the NS3/NPH-II subfamily. SF1 and SF2 RNA helicases have other variable accessory domains located around their structural cores which frequently contain specific additional functionalities such as DNA-binding, protein-binding or oligomerization. Structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes, overview. Enzyme NS3 falls within NS3/NPH-II subfamily of SF2 helicase superfamily Kunjin virus
evolution the RNA helicase ubiquitous group of proteins is found in all the kingdoms of life, ranging from viruses to mammals, and it is closely related to DNA helicases. RNA helicases are included in five of the six nucleic acid helicase superfamilies. RNA helicases belonging to superfamilies SF3, SF4, and SF5 are oligomeric proteins (mostly hexamers), being typically encoded by genomes of viruses or bacteria. Superfamilies SF1 and SF2 of RNA helicases are non-oligomeric proteins, containing a conserved bi-lobular core composed by two RecA-like domains as a central structure. Several sub-families of RNA helicases are also defined on the basis of their sequence conservation and biological activity. Human RNA helicases are included in five different sub-families: Upf1-like, DEAD-box, DEAH-RHA, RIG-I like and Ski2-like proteins. The Upf1-like sub-family belongs to the SF1 superfamily, and includes a group of enzymes involved in RNA metabolism centered in processes like splicing or nonsense-mediated decay. The SF2 superfamily includes five different sub-families of RNA helicases: DEAD-box helicases, DEAH-RHA helicases, RIG-I like proteins, Ski2-like proteins and the NS3/NPH-II subfamily. SF1 and SF2 RNA helicases have other variable accessory domains located around their structural cores which frequently contain specific additional functionalities such as DNA-binding, protein-binding or oligomerization. Structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes, overview Homo sapiens
evolution the RNA helicase ubiquitous group of proteins is found in all the kingdoms of life, ranging from viruses to mammals, and it is closely related to DNA helicases. RNA helicases are included in five of the six nucleic acid helicase superfamilies. RNA helicases belonging to superfamilies SF3, SF4, and SF5 are oligomeric proteins (mostly hexamers), being typically encoded by genomes of viruses or bacteria. Superfamilies SF1 and SF2 of RNA helicases are non-oligomeric proteins, containing a conserved bi-lobular core composed by two RecA-like domains as a central structure. Several sub-families of RNA helicases are also defined on the basis of their sequence conservation and biological activity. Human RNA helicases are included in five different sub-families: Upf1-like, DEAD-box, DEAH-RHA, RIG-I like and Ski2-like proteins. The Upf1-like sub-family belongs to the SF1 superfamily, and includes a group of enzymes involved in RNA metabolism centered in processes like splicing or nonsense-mediated decay. The SF2 superfamily includes five different sub-families of RNA helicases: DEAD-box helicases, DEAH-RHA helicases, RIG-I like proteins, Ski2-like proteins and the NS3/NPH-II subfamily. SF1 and SF2 RNA helicases have other variable accessory domains located around their structural cores which frequently contain specific additional functionalities such as DNA-binding, protein-binding or oligomerization. Structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes, overview. RIG-I falls within the Dicer-RIG-I clade of the superfamily 2 helicases Homo sapiens
evolution the RNA helicase ubiquitous group of proteins is found in all the kingdoms of life, ranging from viruses to mammals, and it is closely related to DNA helicases. RNA helicases are included in five of the six nucleic acid helicase superfamilies. RNA helicases belonging to superfamilies SF3, SF4, and SF5 are oligomeric proteins (mostly hexamers), being typically encoded by genomes of viruses or bacteria. Superfamilies SF1 and SF2 of RNA helicases are non-oligomeric proteins, containing a conserved bi-lobular core composed by two RecA-like domains as a central structure. Several sub-families of RNA helicases are also defined on the basis of their sequence conservation and biological activity. The Upf1-like sub-family belongs to the SF1 superfamily, and includes a group of enzymes involved in RNA metabolism centered in processes like splicing or nonsense-mediated decay. The SF2 superfamily includes five different sub-families of RNA helicases: DEAD-box helicases, DEAH-RHA helicases, RIG-I like proteins, Ski2-like proteins and the NS3/NPH-II subfamily. SF1 and SF2 RNA helicases have other variable accessory domains located around their structural cores which frequently contain specific additional functionalities such as DNA-binding, protein-binding or oligomerization. Structure-function relationships of the most widely studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes, detailed overview Saccharomyces cerevisiae
evolution the RNA helicase ubiquitous group of proteins is found in all the kingdoms of life, ranging from viruses to mammals, and it is closely related to DNA helicases. RNA helicases are included in five of the six nucleic acid helicase superfamilies. RNA helicases belonging to superfamilies SF3, SF4, and SF5 are oligomeric proteins (mostly hexamers), being typically encoded by genomes of viruses or bacteria. Superfamilies SF1 and SF2 of RNA helicases are non-oligomeric proteins, containing a conserved bi-lobular core composed by two RecA-like domains as a central structure. Several sub-families of RNA helicases are also defined on the basis of their sequence conservation and biological activity. The Upf1-like sub-family belongs to the SF1 superfamily, and includes a group of enzymes involved in RNA metabolism centered in processes like splicing or nonsense-mediated decay. The SF2 superfamily includes five different sub-families of RNA helicases: DEAD-box helicases, DEAH-RHA helicases, RIG-I like proteins, Ski2-like proteins and the NS3/NPH-II subfamily. SF1 and SF2 RNA helicases have other variable accessory domains located around their structural cores which frequently contain specific additional functionalities such as DNA-binding, protein-binding or oligomerization. Structure-function relationships of the most widely studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes, detailed overview Neurospora crassa
additional information molecular mechanism of dsRNA unwinding by yeast Mss116p helicase, overview Saccharomyces cerevisiae
physiological function RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Cells require either the presence of controlled chemical environments or the assistance of specialized proteins to ensure the stabilization and proper RNA folding. RNA chaperones or RNA helicases help RNA to reach and maintain its functional conformational state. Some of these RNA helicases are chaperone-like proteins that prevent RNA to reach energy minima characterized by an incorrect conformational state during folding. Others are correctors of misfolded RNAs, able to resolve incorrect structural elements and to produce single stranded RNA Saccharomyces cerevisiae
physiological function RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Cells require either the presence of controlled chemical environments or the assistance of specialized proteins to ensure the stabilization and proper RNA folding. RNA chaperones or RNA helicases help RNA to reach and maintain its functional conformational state. Some of these RNA helicases are chaperone-like proteins that prevent RNA to reach energy minima characterized by an incorrect conformational state during folding. Others are correctors of misfolded RNAs, able to resolve incorrect structural elements and to produce single stranded RNA Neurospora crassa
physiological function RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Cells require either the presence of controlled chemical environments or the assistance of specialized proteins to ensure the stabilization and proper RNA folding. RNA chaperones or RNA helicases help RNA to reach and maintain its functional conformational state. Some of these RNA helicases are chaperone-like proteins that prevent RNA to reach energy minima characterized by an incorrect conformational state during folding. Others are correctors of misfolded RNAs, able to resolve incorrect structural elements and to produce single stranded RNA Dengue virus
physiological function RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Cells require either the presence of controlled chemical environments or the assistance of specialized proteins to ensure the stabilization and proper RNA folding. RNA chaperones or RNA helicases help RNA to reach and maintain its functional conformational state. Some of these RNA helicases are chaperone-like proteins that prevent RNA to reach energy minima characterized by an incorrect conformational state during folding. Others are correctors of misfolded RNAs, able to resolve incorrect structural elements and to produce single stranded RNA Yellow fever virus
physiological function RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Cells require either the presence of controlled chemical environments or the assistance of specialized proteins to ensure the stabilization and proper RNA folding. RNA chaperones or RNA helicases help RNA to reach and maintain its functional conformational state. Some of these RNA helicases are chaperone-like proteins that prevent RNA to reach energy minima characterized by an incorrect conformational state during folding. Others are correctors of misfolded RNAs, able to resolve incorrect structural elements and to produce single stranded RNA Hepacivirus C
physiological function RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Cells require either the presence of controlled chemical environments or the assistance of specialized proteins to ensure the stabilization and proper RNA folding. RNA chaperones or RNA helicases help RNA to reach and maintain its functional conformational state. Some of these RNA helicases are chaperone-like proteins that prevent RNA to reach energy minima characterized by an incorrect conformational state during folding. Others are correctors of misfolded RNAs, able to resolve incorrect structural elements and to produce single stranded RNA Japanese encephalitis virus
physiological function RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Cells require either the presence of controlled chemical environments or the assistance of specialized proteins to ensure the stabilization and proper RNA folding. RNA chaperones or RNA helicases help RNA to reach and maintain its functional conformational state. Some of these RNA helicases are chaperone-like proteins that prevent RNA to reach energy minima characterized by an incorrect conformational state during folding. Others are correctors of misfolded RNAs, able to resolve incorrect structural elements and to produce single stranded RNA Murray Valley encephalitis virus
physiological function RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Cells require either the presence of controlled chemical environments or the assistance of specialized proteins to ensure the stabilization and proper RNA folding. RNA chaperones or RNA helicases help RNA to reach and maintain its functional conformational state. Some of these RNA helicases are chaperone-like proteins that prevent RNA to reach energy minima characterized by an incorrect conformational state during folding. Others are correctors of misfolded RNAs, able to resolve incorrect structural elements and to produce single stranded RNA Kunjin virus
physiological function RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Cells require either the presence of controlled chemical environments or the assistance of specialized proteins to ensure the stabilization and proper RNA folding. RNA chaperones or RNA helicases help RNA to reach and maintain its functional conformational state. Some of these RNA helicases are chaperone-like proteins that prevent RNA to reach energy minima characterized by an incorrect conformational state during folding. Others are correctors of misfolded RNAs, able to resolve incorrect structural elements and to produce single stranded RNA. In higher eukaryotes, the RNA helicase family has also evolved to perform more specific tasks often comprising heterogeneous interaction partners that are tethered to specific RNA locations. RNA helicases are RNA-binding proteins able to resolve secondary and tertiary RNA structures in an active manner, in some cases coupling this enzymatic activity to the hydrolysis of ATP. RNA helicases involved in viral infections, overview Homo sapiens