BRENDA - Enzyme Database
show all sequences of 2.1.1.224

Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria

Kaminska, K.H.; Purta, E.; Hansen, L.H.; Bujnicki, J.M.; Vester, B.; Long, K.S.; Nucleic Acids Res. 38, 1652-1663 (2009)

Data extracted from this reference:

Cloned(Commentary)
Cloned (Commentary)
Organism
-
Escherichia coli
Engineering
Protein Variants
Commentary
Organism
C105A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
C110A
mutation does not affect Cfr activity
Escherichia coli
C112A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
C116A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
C119A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
C338A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
E91A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
F118A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
H214A
moderately decreased resistance to both florfenicol and tiamulin
Escherichia coli
Q28A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
R25A
mutation lowers the resistance to both florfenicol and tiamulin considerably
Escherichia coli
S189A
mutation lowers the resistance to both florfenicol and tiamulin considerably
Escherichia coli
S212A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Fe-S-clusters
contains a 4Fe-4S cluster. Radical-SAM enzymes contain a [4Fe-4S]+ cluster that is coordinated by the three conserved cysteine thiolate side chains in the CX3CX2C motif and one molecule of S-adenosyl-L-methionine
Escherichia coli
Organism
Organism
UniProt
Commentary
Textmining
Escherichia coli
-
Cfr is plasmid-encoded, the Escherichia coli JW2501-1 strain, that does not contain the RlmN MTase that normally mediates the m2A2503 modification, is used as the host for plasmids expressing the mutated Cfr proteins and isolation of total RNA. This is done to avoid the weak primer extension stop from the m2A2503 methylation that overlaps the Cfr-mediated m8A2503 stop and therefore interferes with assessment of the activity of the mutated Cfr proteins
-
Synonyms
Synonyms
Commentary
Organism
Cfr methyltransferase
-
Escherichia coli
Cloned(Commentary) (protein specific)
Commentary
Organism
-
Escherichia coli
Engineering (protein specific)
Protein Variants
Commentary
Organism
C105A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
C110A
mutation does not affect Cfr activity
Escherichia coli
C112A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
C116A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
C119A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
C338A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
E91A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
F118A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
H214A
moderately decreased resistance to both florfenicol and tiamulin
Escherichia coli
Q28A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
R25A
mutation lowers the resistance to both florfenicol and tiamulin considerably
Escherichia coli
S189A
mutation lowers the resistance to both florfenicol and tiamulin considerably
Escherichia coli
S212A
mutation eliminates the resistance to both florfenicol and tiamulin
Escherichia coli
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Fe-S-clusters
contains a 4Fe-4S cluster. Radical-SAM enzymes contain a [4Fe-4S]+ cluster that is coordinated by the three conserved cysteine thiolate side chains in the CX3CX2C motif and one molecule of S-adenosyl-L-methionine
Escherichia coli
General Information
General Information
Commentary
Organism
evolution
bioinformatics analysis of the Cfr/RlmN family establishes their significant evolutionary link with radical-S-adenosyl-L-methionine enzymes. The RlmN subfamily is likely the ancestral form, whereas the Cfr subfamily arose via duplication and horizontal gene transfer
Escherichia coli
General Information (protein specific)
General Information
Commentary
Organism
evolution
bioinformatics analysis of the Cfr/RlmN family establishes their significant evolutionary link with radical-S-adenosyl-L-methionine enzymes. The RlmN subfamily is likely the ancestral form, whereas the Cfr subfamily arose via duplication and horizontal gene transfer
Escherichia coli
Other publictions for EC 2.1.1.224
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Synonyms
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
735450
Hansen
A cfr-like gene from Clostridi ...
Clostridioides difficile
Antimicrob. Agents Chemother.
59
5841-5843
2015
-
-
1
-
-
-
-
-
-
-
-
1
-
4
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
733111
Atkinson
Distinction between the Cfr me ...
Staphylococcus sciuri
Antimicrob. Agents Chemother.
57
4019-4026
2013
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
1
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
735095
Challand
Cysteine methylation controls ...
Staphylococcus aureus, Staphylococcus sciuri
PLoS ONE
8
e67979
2013
-
-
2
-
2
-
-
-
-
-
2
3
-
2
-
-
-
1
-
-
-
-
4
1
3
-
-
-
-
-
-
-
3
-
-
-
-
-
2
3
-
2
-
-
-
-
-
-
-
2
3
-
-
-
-
-
-
-
-
4
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
736280
Wang
-
Quantum chemistry studies of a ...
Staphylococcus aureus
Int. J. Quantum Chem.
113
1409-1415
2013
-
-
-
-
-
-
-
1
-
-
-
2
-
1
-
-
-
1
-
-
-
-
3
-
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
1
-
-
-
2
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
718598
Locke
Genetic environment and stabil ...
Staphylococcus aureus, Staphylococcus aureus CM05
Antimicrob. Agents Chemother.
56
332-340
2012
-
-
1
-
1
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
718601
Hansen
The order Bacillales hosts fun ...
Bacillus amyloliquefaciens, Bacillus amyloliquefaciens FZB42, Bacillus clausii, Brevibacillus brevis, Brevibacillus brevis NBRC 100599
Antimicrob. Agents Chemother.
56
3563-3567
2012
-
-
3
-
-
-
-
-
-
-
-
5
-
10
-
-
-
-
-
-
-
-
10
-
3
-
-
-
-
-
-
-
3
-
-
-
-
-
3
3
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
10
-
-
-
-
-
-
-
-
-
-
6
6
-
-
-
716783
Yan
RNA methylation by radical SAM ...
Escherichia coli
Proc. Natl. Acad. Sci. USA
108
3930-3934
2011
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
716926
Boal
Structural basis for methyl tr ...
Escherichia coli
Science
332
1089-1092
2011
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
716927
Grove
A radically different mechanis ...
Escherichia coli
Science
332
604-607
2011
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
718587
LaMarre
Low fitness cost of the multid ...
Staphylococcus aureus, Staphylococcus aureus RN4220
Antimicrob. Agents Chemother.
55
3714-3719
2011
-
-
1
-
1
-
-
-
-
1
-
2
-
21
-
-
-
-
-
1
-
-
2
-
1
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
1
-
-
2
-
1
-
-
-
1
-
-
-
-
2
2
-
-
-
704203
Yan
RlmN and Cfr are radical SAM e ...
Escherichia coli
J. Am. Chem. Soc.
132
3953-3964
2010
-
-
1
-
3
-
-
-
-
1
1
1
-
1
-
-
1
1
-
-
-
-
3
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
3
-
-
-
-
-
-
1
1
1
-
-
-
1
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
720968
Booth
High-level expression and reco ...
Azotobacter vinelandii
Protein Expr. Purif.
74
204-210
2010
1
-
1
-
-
-
-
-
-
1
-
1
-
3
-
-
1
-
-
-
-
-
2
1
4
1
-
-
-
1
-
-
1
-
-
-
1
-
1
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
2
1
1
-
-
-
1
-
-
-
-
1
1
-
-
-
705983
Kaminska
Insights into the structure, f ...
Escherichia coli
Nucleic Acids Res.
38
1652-1663
2009
-
-
1
-
13
-
-
-
-
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
13
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
706726
Giessing
Identification of 8-methyladen ...
Escherichia coli K-12
RNA
15
327-336
2009
-
-
-
-
4
-
-
-
-
-
-
1
-
3
-
-
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
701724
Long
The Cfr rRNA methyltransferase ...
Escherichia coli
Antimicrob. Agents Chemother.
50
2500-2505
2006
-
-
-
-
-
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
705766
Kehrenberg
A new mechanism for chloramphe ...
Escherichia coli
Mol. Microbiol.
57
1064-1073
2005
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-