Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 1.3.99.28 extracted from

  • Ding, B.Y.; Niu, J.; Shang, F.; Yang, L.; Chang, T.Y.; Wang, J.J.
    Characterization of the geranylgeranyl diphosphate synthase gene in Acyrthosiphon pisum (Hemiptera Aphididae) and its association with carotenoid biosynthesis (2019), Front. Physiol., 10, 1398 .
    View publication on PubMedView publication on EuropePMC

Cloned(Commentary)

Cloned (Comment) Organism
gene crtI, sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli Cereibacter sphaeroides
sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli Rhodobacter capsulatus

Protein Variants

Protein Variants Comment Organism
additional information competition between lycopene cyclase and the phytoene desaturases modified the distribution between carotene intermediates when expressed in yeast in the context of the full beta-carotene production pathway Rhodobacter capsulatus
additional information competition between lycopene cyclase and the phytoene desaturases modified the distribution between carotene intermediates when expressed in yeast in the context of the full beta-carotene production pathway Cereibacter sphaeroides

KM Value [mM]

KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
additional information
-
additional information classical Michaelis-Menten kinetic model Rhodobacter capsulatus
additional information
-
additional information classical Michaelis-Menten kinetic model Cereibacter sphaeroides

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
15-cis-phytoene + acceptor Rhodobacter capsulatus
-
all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor Cereibacter sphaeroides
-
all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor Rhodobacter capsulatus NBRC 16581
-
all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor Cereibacter sphaeroides ATCC 17023
-
all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor Cereibacter sphaeroides JCM 6121
-
all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor Cereibacter sphaeroides CCUG 31486
-
all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor Rhodobacter capsulatus ATCC BAA-309
-
all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor Cereibacter sphaeroides LMG 2827
-
all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor Cereibacter sphaeroides NBRC 12203
-
all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor Cereibacter sphaeroides ATH 2.4.1.
-
all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor Rhodobacter capsulatus SB1003
-
all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor Cereibacter sphaeroides DSM 158
-
all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor Cereibacter sphaeroides NCIMB 8253
-
all-trans-phytofluene + reduced acceptor
-
?
all-trans-phytofluene + acceptor Rhodobacter capsulatus
-
all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor Cereibacter sphaeroides
-
all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor Rhodobacter capsulatus NBRC 16581
-
all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor Cereibacter sphaeroides ATCC 17023
-
all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor Cereibacter sphaeroides JCM 6121
-
all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor Cereibacter sphaeroides CCUG 31486
-
all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor Rhodobacter capsulatus ATCC BAA-309
-
all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor Cereibacter sphaeroides LMG 2827
-
all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor Cereibacter sphaeroides NBRC 12203
-
all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor Cereibacter sphaeroides ATH 2.4.1.
-
all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor Rhodobacter capsulatus SB1003
-
all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor Cereibacter sphaeroides DSM 158
-
all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor Cereibacter sphaeroides NCIMB 8253
-
all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor Rhodobacter capsulatus
-
all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor Cereibacter sphaeroides
-
all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor Rhodobacter capsulatus NBRC 16581
-
all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor Cereibacter sphaeroides ATCC 17023
-
all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor Cereibacter sphaeroides JCM 6121
-
all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor Cereibacter sphaeroides CCUG 31486
-
all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor Rhodobacter capsulatus ATCC BAA-309
-
all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor Cereibacter sphaeroides LMG 2827
-
all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor Cereibacter sphaeroides NBRC 12203
-
all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor Cereibacter sphaeroides ATH 2.4.1.
-
all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor Rhodobacter capsulatus SB1003
-
all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor Cereibacter sphaeroides DSM 158
-
all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor Cereibacter sphaeroides NCIMB 8253
-
all-trans-neurosporene + reduced acceptor
-
?

Organism

Organism UniProt Comment Textmining
Cereibacter sphaeroides P54980 Rhodobacter sphaeroides
-
Cereibacter sphaeroides ATCC 17023 P54980 Rhodobacter sphaeroides
-
Cereibacter sphaeroides ATH 2.4.1. P54980 Rhodobacter sphaeroides
-
Cereibacter sphaeroides CCUG 31486 P54980 Rhodobacter sphaeroides
-
Cereibacter sphaeroides DSM 158 P54980 Rhodobacter sphaeroides
-
Cereibacter sphaeroides JCM 6121 P54980 Rhodobacter sphaeroides
-
Cereibacter sphaeroides LMG 2827 P54980 Rhodobacter sphaeroides
-
Cereibacter sphaeroides NBRC 12203 P54980 Rhodobacter sphaeroides
-
Cereibacter sphaeroides NCIMB 8253 P54980 Rhodobacter sphaeroides
-
Rhodobacter capsulatus P17054
-
-
Rhodobacter capsulatus ATCC BAA-309 P17054
-
-
Rhodobacter capsulatus NBRC 16581 P17054
-
-
Rhodobacter capsulatus SB1003 P17054
-
-

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
15-cis-phytoene + acceptor
-
Rhodobacter capsulatus all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor
-
Cereibacter sphaeroides all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor
-
Rhodobacter capsulatus NBRC 16581 all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor
-
Cereibacter sphaeroides ATCC 17023 all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor
-
Cereibacter sphaeroides JCM 6121 all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor
-
Cereibacter sphaeroides CCUG 31486 all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor
-
Rhodobacter capsulatus ATCC BAA-309 all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor
-
Cereibacter sphaeroides LMG 2827 all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor
-
Cereibacter sphaeroides NBRC 12203 all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor
-
Cereibacter sphaeroides ATH 2.4.1. all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor
-
Rhodobacter capsulatus SB1003 all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor
-
Cereibacter sphaeroides DSM 158 all-trans-phytofluene + reduced acceptor
-
?
15-cis-phytoene + acceptor
-
Cereibacter sphaeroides NCIMB 8253 all-trans-phytofluene + reduced acceptor
-
?
all-trans-phytofluene + acceptor
-
Rhodobacter capsulatus all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor
-
Rhodobacter capsulatus NBRC 16581 all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides ATCC 17023 all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides JCM 6121 all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides CCUG 31486 all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor
-
Rhodobacter capsulatus ATCC BAA-309 all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides LMG 2827 all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides NBRC 12203 all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides ATH 2.4.1. all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor
-
Rhodobacter capsulatus SB1003 all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides DSM 158 all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-phytofluene + acceptor
-
Cereibacter sphaeroides NCIMB 8253 all-trans-zeta-carotene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor
-
Rhodobacter capsulatus all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor
-
Rhodobacter capsulatus NBRC 16581 all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides ATCC 17023 all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides JCM 6121 all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides CCUG 31486 all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor
-
Rhodobacter capsulatus ATCC BAA-309 all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides LMG 2827 all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides NBRC 12203 all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides ATH 2.4.1. all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor
-
Rhodobacter capsulatus SB1003 all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides DSM 158 all-trans-neurosporene + reduced acceptor
-
?
all-trans-zeta-carotene + acceptor
-
Cereibacter sphaeroides NCIMB 8253 all-trans-neurosporene + reduced acceptor
-
?

Synonyms

Synonyms Comment Organism
CrtI
-
Rhodobacter capsulatus
CrtI
-
Cereibacter sphaeroides
PDS
-
Rhodobacter capsulatus
PDS
-
Cereibacter sphaeroides
phytoene desaturase
-
Rhodobacter capsulatus
phytoene desaturase
-
Cereibacter sphaeroides

General Information

General Information Comment Organism
evolution the enzyme belongs to the CrtI family of enzymes, analysis of the phylogenetic tree of a subset of phytoene desaturases from the CrtI family, overview. Recombinant expression of eight codon optimized CrtI enzymes from different clades in a bacterial system reveals that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Existence of characteristic patterns of desaturated molecules associated with various CrtI clades. Variations in the reaction rates and binding constants can explain the various carotene patterns observed. Relationship between genetic and functional evolution of certain CrtI enzymes, overview Rhodobacter capsulatus
evolution the enzyme belongs to the CrtI family of enzymes, analysis of the phylogenetic tree of a subset of phytoene desaturases from the CrtI family, overview. Recombinant expression of eight codon optimized CrtI enzymes from different clades in a bacterial system reveals that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Existence of characteristic patterns of desaturated molecules associated with various CrtI clades. Variations in the reaction rates and binding constants can explain the various carotene patterns observed. Relationship between genetic and functional evolution of certain CrtI enzymes, overview Cereibacter sphaeroides
metabolism carotenoid biosynthesis starts with the symmetrical condensation of two geranylgeranyl diphosphate molecules, forming phytoene. A series of successive desaturation reactions convert phytoene into phytofluene, zeta-carotene, neurosporene, lycopene. These desaturation reactions can be accomplished by a single enzyme (poly-trans pathway) or through a cascade of different enzymes (poly-cis pathway). In algae and plants, four different enzymes are necessary to form the final product (all-trans-lycopene). The phytoene and the zeta-carotene desaturases (PDS and ZDS, respectively) add double bonds in the cis-conformation. ZISO (zeta-carotene isomerase) and CRTISO (prolycopene isomerase) convert the cis-carotenes into di-cis-zeta-carotene and all-trans-lycopene, respectively. By contrast to other phytoene desaturases, CrtI are versatile enzymes classified into four enzymatic subgroups (EC 1.3.99.28, EC 1.3.99.29, EC 1.3.99.30, and EC 1.3.99.31) based on the last product they presumably produce (from zeta-carotene to didehydrolycopene). Carotene diversity can be further expanded in later steps with the addition of one or two rings by lycopene cyclases, thereby producing an extensive variety of symmetrical or asymmetrical cyclised carotenes, such as beta-zeacarotene, dehydro-beta-carotene, gamma-carotene, beta-carotene, and the fungi-specific torulene. When expressed in heterologous hosts, CrtI enzymes exhibit distinct desaturation patterns, CrtI enzyme activities may depend on the experimental conditions and thus be inconsistent with the patterns generated in the natural host. Rhodobacter capsulatus strain SB1003 also produces lycopene in vitro (cf. EC 1.3.99.31) Rhodobacter capsulatus
metabolism carotenoid biosynthesis starts with the symmetrical condensation of two geranylgeranyl diphosphate molecules, forming phytoene. A series of successive desaturation reactions convert phytoene into phytofluene, zeta-carotene, neurosporene, lycopene. These desaturation reactions can be accomplished by a single enzyme (poly-trans pathway) or through a cascade of different enzymes (poly-cis pathway). In algae and plants, four different enzymes are necessary to form the final product (all-trans-lycopene). The phytoene and the zeta-carotene desaturases (PDS and ZDS, respectively) add double bonds in the cis-conformation. ZISO (zeta-carotene isomerase) and CRTISO (prolycopene isomerase) convert the cis-carotenes into di-cis-zeta-carotene and all-trans-lycopene, respectively. By contrast to other phytoene desaturases, CrtI are versatile enzymes classified into four enzymatic subgroups (EC 1.3.99.28, EC 1.3.99.29, EC 1.3.99.30, and EC 1.3.99.31) based on the last product they presumably produce (from zeta-carotene to didehydrolycopene). Carotene diversity can be further expanded in later steps with the addition of one or two rings by lycopene cyclases, thereby producing an extensive variety of symmetrical or asymmetrical cyclised carotenes, such as beta-zeacarotene, dehydro-beta-carotene, gamma-carotene, beta-carotene, and the fungi-specific torulene. When expressed in heterologous hosts, CrtI enzymes exhibit distinct desaturation patterns, CrtI enzyme activities may depend on the experimental conditions and thus be inconsistent with the patterns generated in the natural host. CrtI from Rhodobacter sphaeroides produced neurosporene in vitro and in vivo Cereibacter sphaeroides
additional information comparison of the natural evolution and kinetic properties of selected CrtI enzymes expressed and assayed under standardised conditions. Potentially all CrtI enzymes can catalyse desaturation reactions that progress beyond the already observed end-products and the pattern of products formed originates from variations in the reaction rates rather than affinity constants Rhodobacter capsulatus
additional information comparison of the natural evolution and kinetic properties of selected CrtI enzymes expressed and assayed under standardised conditions. Potentially all CrtI enzymes can catalyse desaturation reactions that progress beyond the already observed end-products and the pattern of products formed originates from variations in the reaction rates rather than affinity constants Cereibacter sphaeroides