Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 1.17.98.4 extracted from

  • Raaijmakers, H.C.; Romao, M.J.
    Formate-reduced E. coli formate dehydrogenase H: The reinterpretation of the crystal structure suggests a new reaction mechanism (2006), J. Biol. Inorg. Chem., 11, 849-854.
    View publication on PubMed

Crystallization (Commentary)

Crystallization (Comment) Organism
reinterpretation of the crystal structure Escherichia coli

Metals/Ions

Metals/Ions Comment Organism Structure
Fe the reinterpretation of the crystal structure suggests a new reaction mechanism: In step I, formate binds directly to Mo, displacing Se-Cys140. In step II, the alpha-proton from formate may be transferred to the nearby His141 that acts as general base. In this step the CO2 molecule can be released and two electrons transferred to Mo. Alternatively, step II may involve a selenium-carboxylated intermediate. In step III, electrons from Mo(IV) are transferred via the [4Fe-4S] center to an external electron acceptor and the catalytic cycle is completed Escherichia coli
Mo the reinterpretation of the crystal structure suggests a new reaction mechanism: In step I, formate binds directly to Mo, displacing Se-Cys140. In step II, the alpha-proton from formate may be transferred to the nearby His141 that acts as general base. In this step the CO2 molecule can be released and two electrons transferred to Mo. Alternatively, step II may involve a selenium-carboxylated intermediate. In step III, electrons from Mo(IV) are transferred via the [4Fe-4S] center to an external electron acceptor and the catalytic cycle is completed Escherichia coli
Se the reinterpretation of the crystal structure suggests a new reaction mechanism: In step I, formate binds directly to Mo, displacing Se-Cys140. In step II, the alpha-proton from formate may be transferred to the nearby His141 that acts as general base. In this step the CO2 molecule can be released and two electrons transferred to Mo. Alternatively, step II may involve a selenium-carboxylated intermediate. In step III, electrons from Mo(IV) are transferred via the [4Fe-4S] center to an external electron acceptor and the catalytic cycle is completed Escherichia coli

Organism

Organism UniProt Comment Textmining
Escherichia coli
-
-
-

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
formate + acceptor the reinterpretation of the crystal structure suggests a new reaction mechanism: In step I, formate binds directly to Mo, displacing Se-Cys140. In step II, the alpha-proton from formate may be transferred to the nearby His141 that acts as general base. In this step the CO2 molecule can be released and two electrons transferred to Mo. Alternatively, step II may involve a selenium-carboxylated intermediate. In step III, electrons from Mo(IV) are transferred via the [4Fe-4S] center to an external electron acceptor and the catalytic cycle is completed Escherichia coli CO2 + reduced acceptor
-
?

Synonyms

Synonyms Comment Organism
formate dehydrogenase H
-
Escherichia coli