BRENDA - Enzyme Database show
show all sequences of 1.14.13.105

Purification and characterization of a Baeyer-Villiger mono-oxygenase from Rhodococcus erythropolis DCL14 involved in three different monocyclic monoterpene degradation pathways

van der Werf, M.J.; Biochem. J. 347 Pt 3, 693-701 (2000)

Data extracted from this reference:

Inhibitors
Inhibitors
Commentary
Organism
Structure
ATP
-
Rhodococcus erythropolis
HgCl2
1 mM, 85% inhibition
Rhodococcus erythropolis
additional information
no inhibition with 1 mM iodoacetate, iodoacetamide, EDTA, 2,2'-dipyridyl and DTT
Rhodococcus erythropolis
p-chloromercuriobenzoate
0.1 mM, 14% inhibition
Rhodococcus erythropolis
phenylhydrazine
1 mM, 10% inhibition
Rhodococcus erythropolis
SDS
1 mM, 97% inhibition
Rhodococcus erythropolis
ZnCl2
1 mM 33% inhibition
Rhodococcus erythropolis
KM Value [mM]
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
0.038
-
NADPH
-
Rhodococcus erythropolis
0.12
-
(1R,4S)-menthone
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
0.13
-
(1S,4R)-1-hydroxy-2-oxolimonene
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
0.13
-
(4R)-dihydrocarvone
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
Molecular Weight [Da]
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
57000
-
gel filtration
Rhodococcus erythropolis
60000
-
1 * 60000, SDS-PAGE
Rhodococcus erythropolis
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
additional information
Rhodococcus erythropolis
MMKMO is involved in the conversion of the monocyclic monoterpene ketone intermediates formed in the degradation pathways of all stereoisomers of three different monocyclic monoterpenes, i.e. limonene, (dihydro)carveol and menthol. MMKMO converts all enantiomers of the natural substrates with almost equal efficiency
?
-
-
-
additional information
Rhodococcus erythropolis DCL14
MMKMO is involved in the conversion of the monocyclic monoterpene ketone intermediates formed in the degradation pathways of all stereoisomers of three different monocyclic monoterpenes, i.e. limonene, (dihydro)carveol and menthol. MMKMO converts all enantiomers of the natural substrates with almost equal efficiency
?
-
-
-
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Rhodococcus erythropolis
-
-
-
Rhodococcus erythropolis DCL14
-
-
-
Purification (Commentary)
Commentary
Organism
-
Rhodococcus erythropolis
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
(1R)-pulegone + NADPH + H+ + O2
31% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
(1R)-pulegone + NADPH + H+ + O2
31% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis DCL14
?
-
-
-
?
(1R,4R)-dihydrocarvone + NADPH + H+ + O2
-
684953
Rhodococcus erythropolis
(4R,7R)-4-isopropenyl-7-methyl-2-oxo-oxepanone + NADP+ + H2O
-
-
-
?
(1R,4R)-dihydrocarvone + NADPH + H+ + O2
-
684953
Rhodococcus erythropolis DCL14
(4R,7R)-4-isopropenyl-7-methyl-2-oxo-oxepanone + NADP+ + H2O
-
-
-
?
(1R,4S)-1-hydroxy-2-oxolimonene + NADPH + H+ + O2
3-isopropenyl-6-oxoheptanoate is the spontaneous rearrangement product of the lactone formed by MMKMO. 133% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
3-isopropenyl-6-oxoheptanoate + NADP+ + H2O
-
-
-
?
(1R,4S)-1-hydroxy-2-oxolimonene + NADPH + H+ + O2
3-isopropenyl-6-oxoheptanoate is the spontaneous rearrangement product of the lactone formed by MMKMO. 133% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis DCL14
3-isopropenyl-6-oxoheptanoate + NADP+ + H2O
-
-
-
?
(1R,4S)-menthone + NADPH + H+ + O2
76% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
(4R,7S)-7-isopropyl-4-methyl-2-oxo-oxepanone + NADP+ + H2O
-
-
-
?
(1S)-pulegone + NADPH + H+ + O2
51% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
(1S,4R)-1-hydroxy-2-oxolimonene + NADPH + H+ + O2
3-isopropenyl-6-oxoheptanoate is the spontaneous rearrangement product of the lactone formed by MMKMO. 88% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
3-isopropenyl-6-oxoheptanoate + NADP+ + H2O
-
-
-
?
(1S,4R)-dihydrocarvone + NADPH + H+ + O2
-
684953
Rhodococcus erythropolis
?
-
-
-
?
(1S,4R)-menthone + NADPH + H+ + O2
82% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
(4S,7R)-7-isopropyl-4-methyl-2-oxo-oxepanone + NADP+ + H2O
-
-
-
?
(1S,4R)iso-dihydrocarvone + NADPH + H+ + O2
-
684953
Rhodococcus erythropolis
(3S,4R)-6-isopropenyl-3-methyl-2-oxo-oxepanone + NADP+ + H2O
-
-
-
?
(4S)-carvone + NADPH + H+ + O2
14% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
1,2-cyclohexanedione + NADPH + H+ + O2
95% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
1,4-cyclohexanedione + NADPH + H+ + O2
92% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
2,2-dimethylcyclohexanone + NADPH + H+ + O2
161% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
2,6-dimethylcyclohexanone + NADPH + H+ + O2
108% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
2-allylcyclohexanone + NADPH + H+ + O2
145% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
2-chlorocyclohexanone + NADPH + H+ + O2
112% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
2-methoxycyclohexanone + NADPH + H+ + O2
168% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
2-methylcyclohexanone + NADPH + H+ + O2
155% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
2-phenylcyclohexanone + NADPH + O2
148% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
3-methylcyclohexanone + NADPH + H+ + O2
151% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
4-methylcyclohexanone + NADPH + H+ + O2
40% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
8-mercaptomenthone + NADPH + H+ + O2
14% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
cycloheptanone + NADPH + H+ + O2
10% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
cyclohexanone + NADPH + H+ + O2
151% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
cyclopentanone + NADPH + H+ + O2
12% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
additional information
MMKMO is involved in the conversion of the monocyclic monoterpene ketone intermediates formed in the degradation pathways of all stereoisomers of three different monocyclic monoterpenes, i.e. limonene, (dihydro)carveol and menthol. MMKMO converts all enantiomers of the natural substrates with almost equal efficiency
684953
Rhodococcus erythropolis
?
-
-
-
-
additional information
MMKMO converts all enantiomers of the natural substrates with almost equal efficiency. No activity with NADH
684953
Rhodococcus erythropolis
?
-
-
-
-
additional information
MMKMO is involved in the conversion of the monocyclic monoterpene ketone intermediates formed in the degradation pathways of all stereoisomers of three different monocyclic monoterpenes, i.e. limonene, (dihydro)carveol and menthol. MMKMO converts all enantiomers of the natural substrates with almost equal efficiency
684953
Rhodococcus erythropolis DCL14
?
-
-
-
-
additional information
MMKMO converts all enantiomers of the natural substrates with almost equal efficiency. No activity with NADH
684953
Rhodococcus erythropolis DCL14
?
-
-
-
-
norcamphor + NADPH + H+ + O2
145% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
Subunits
Subunits
Commentary
Organism
monomer
1 * 60000, SDS-PAGE
Rhodococcus erythropolis
Temperature Optimum [°C]
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
36
-
-
Rhodococcus erythropolis
Temperature Stability [°C]
Temperature Stability Minimum [°C]
Temperature Stability Maximum [°C]
Commentary
Organism
40
-
inactivation above
Rhodococcus erythropolis
Turnover Number [1/s]
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
3.6
-
(1R,4S)-menthone
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
3.9
-
(1S,4R)-1-hydroxy-2-oxolimonene
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
3.9
-
(4R)-dihydrocarvone
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
4.9
-
(1R,4S)-1-hydroxy-2-oxolimonene
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
6
-
(1S,4R)-menthone
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
8.3
-
pH-optimum in Tris/HCl buffer
Rhodococcus erythropolis
9.5
-
pH-optimum in glycine/NaOH buffer
Rhodococcus erythropolis
pH Stability
pH Stability
pH Stability Maximum
Commentary
Organism
8.5
-
4 min, inactivation of MMKMO in Tris/HCl buffer is observed above pH 8.5
Rhodococcus erythropolis
10
-
4 min, inactivation of MMKMO in glycine/NaOH buffer is observed above pH 8.5
Rhodococcus erythropolis
Cofactor
Cofactor
Commentary
Organism
Structure
FAD
contains 1 mol FAD per monomer as prosthetic group
Rhodococcus erythropolis
NADPH
no activity with NADH
Rhodococcus erythropolis
Ki Value [mM]
Ki Value [mM]
Ki Value maximum [mM]
Inhibitor
Commentary
Organism
Structure
9.5
-
ATP
-
Rhodococcus erythropolis
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
FAD
contains 1 mol FAD per monomer as prosthetic group
Rhodococcus erythropolis
NADPH
no activity with NADH
Rhodococcus erythropolis
Inhibitors (protein specific)
Inhibitors
Commentary
Organism
Structure
ATP
-
Rhodococcus erythropolis
HgCl2
1 mM, 85% inhibition
Rhodococcus erythropolis
additional information
no inhibition with 1 mM iodoacetate, iodoacetamide, EDTA, 2,2'-dipyridyl and DTT
Rhodococcus erythropolis
p-chloromercuriobenzoate
0.1 mM, 14% inhibition
Rhodococcus erythropolis
phenylhydrazine
1 mM, 10% inhibition
Rhodococcus erythropolis
SDS
1 mM, 97% inhibition
Rhodococcus erythropolis
ZnCl2
1 mM 33% inhibition
Rhodococcus erythropolis
Ki Value [mM] (protein specific)
Ki Value [mM]
Ki Value maximum [mM]
Inhibitor
Commentary
Organism
Structure
9.5
-
ATP
-
Rhodococcus erythropolis
KM Value [mM] (protein specific)
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
0.038
-
NADPH
-
Rhodococcus erythropolis
0.12
-
(1R,4S)-menthone
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
0.13
-
(1S,4R)-1-hydroxy-2-oxolimonene
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
0.13
-
(4R)-dihydrocarvone
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
Molecular Weight [Da] (protein specific)
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
57000
-
gel filtration
Rhodococcus erythropolis
60000
-
1 * 60000, SDS-PAGE
Rhodococcus erythropolis
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
additional information
Rhodococcus erythropolis
MMKMO is involved in the conversion of the monocyclic monoterpene ketone intermediates formed in the degradation pathways of all stereoisomers of three different monocyclic monoterpenes, i.e. limonene, (dihydro)carveol and menthol. MMKMO converts all enantiomers of the natural substrates with almost equal efficiency
?
-
-
-
additional information
Rhodococcus erythropolis DCL14
MMKMO is involved in the conversion of the monocyclic monoterpene ketone intermediates formed in the degradation pathways of all stereoisomers of three different monocyclic monoterpenes, i.e. limonene, (dihydro)carveol and menthol. MMKMO converts all enantiomers of the natural substrates with almost equal efficiency
?
-
-
-
Purification (Commentary) (protein specific)
Commentary
Organism
-
Rhodococcus erythropolis
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
(1R)-pulegone + NADPH + H+ + O2
31% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
(1R)-pulegone + NADPH + H+ + O2
31% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis DCL14
?
-
-
-
?
(1R,4R)-dihydrocarvone + NADPH + H+ + O2
-
684953
Rhodococcus erythropolis
(4R,7R)-4-isopropenyl-7-methyl-2-oxo-oxepanone + NADP+ + H2O
-
-
-
?
(1R,4R)-dihydrocarvone + NADPH + H+ + O2
-
684953
Rhodococcus erythropolis DCL14
(4R,7R)-4-isopropenyl-7-methyl-2-oxo-oxepanone + NADP+ + H2O
-
-
-
?
(1R,4S)-1-hydroxy-2-oxolimonene + NADPH + H+ + O2
3-isopropenyl-6-oxoheptanoate is the spontaneous rearrangement product of the lactone formed by MMKMO. 133% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
3-isopropenyl-6-oxoheptanoate + NADP+ + H2O
-
-
-
?
(1R,4S)-1-hydroxy-2-oxolimonene + NADPH + H+ + O2
3-isopropenyl-6-oxoheptanoate is the spontaneous rearrangement product of the lactone formed by MMKMO. 133% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis DCL14
3-isopropenyl-6-oxoheptanoate + NADP+ + H2O
-
-
-
?
(1R,4S)-menthone + NADPH + H+ + O2
76% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
(4R,7S)-7-isopropyl-4-methyl-2-oxo-oxepanone + NADP+ + H2O
-
-
-
?
(1S)-pulegone + NADPH + H+ + O2
51% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
(1S,4R)-1-hydroxy-2-oxolimonene + NADPH + H+ + O2
3-isopropenyl-6-oxoheptanoate is the spontaneous rearrangement product of the lactone formed by MMKMO. 88% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
3-isopropenyl-6-oxoheptanoate + NADP+ + H2O
-
-
-
?
(1S,4R)-dihydrocarvone + NADPH + H+ + O2
-
684953
Rhodococcus erythropolis
?
-
-
-
?
(1S,4R)-menthone + NADPH + H+ + O2
82% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
(4S,7R)-7-isopropyl-4-methyl-2-oxo-oxepanone + NADP+ + H2O
-
-
-
?
(1S,4R)iso-dihydrocarvone + NADPH + H+ + O2
-
684953
Rhodococcus erythropolis
(3S,4R)-6-isopropenyl-3-methyl-2-oxo-oxepanone + NADP+ + H2O
-
-
-
?
(4S)-carvone + NADPH + H+ + O2
14% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
1,2-cyclohexanedione + NADPH + H+ + O2
95% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
1,4-cyclohexanedione + NADPH + H+ + O2
92% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
2,2-dimethylcyclohexanone + NADPH + H+ + O2
161% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
2,6-dimethylcyclohexanone + NADPH + H+ + O2
108% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
2-allylcyclohexanone + NADPH + H+ + O2
145% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
2-chlorocyclohexanone + NADPH + H+ + O2
112% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
2-methoxycyclohexanone + NADPH + H+ + O2
168% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
2-methylcyclohexanone + NADPH + H+ + O2
155% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
2-phenylcyclohexanone + NADPH + O2
148% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
3-methylcyclohexanone + NADPH + H+ + O2
151% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
4-methylcyclohexanone + NADPH + H+ + O2
40% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
8-mercaptomenthone + NADPH + H+ + O2
14% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
cycloheptanone + NADPH + H+ + O2
10% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
cyclohexanone + NADPH + H+ + O2
151% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
cyclopentanone + NADPH + H+ + O2
12% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
additional information
MMKMO is involved in the conversion of the monocyclic monoterpene ketone intermediates formed in the degradation pathways of all stereoisomers of three different monocyclic monoterpenes, i.e. limonene, (dihydro)carveol and menthol. MMKMO converts all enantiomers of the natural substrates with almost equal efficiency
684953
Rhodococcus erythropolis
?
-
-
-
-
additional information
MMKMO converts all enantiomers of the natural substrates with almost equal efficiency. No activity with NADH
684953
Rhodococcus erythropolis
?
-
-
-
-
additional information
MMKMO is involved in the conversion of the monocyclic monoterpene ketone intermediates formed in the degradation pathways of all stereoisomers of three different monocyclic monoterpenes, i.e. limonene, (dihydro)carveol and menthol. MMKMO converts all enantiomers of the natural substrates with almost equal efficiency
684953
Rhodococcus erythropolis DCL14
?
-
-
-
-
additional information
MMKMO converts all enantiomers of the natural substrates with almost equal efficiency. No activity with NADH
684953
Rhodococcus erythropolis DCL14
?
-
-
-
-
norcamphor + NADPH + H+ + O2
145% of the activity with (1R,4R)-dihydrocarvone
684953
Rhodococcus erythropolis
?
-
-
-
?
Subunits (protein specific)
Subunits
Commentary
Organism
monomer
1 * 60000, SDS-PAGE
Rhodococcus erythropolis
Temperature Optimum [°C] (protein specific)
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
36
-
-
Rhodococcus erythropolis
Temperature Stability [°C] (protein specific)
Temperature Stability Minimum [°C]
Temperature Stability Maximum [°C]
Commentary
Organism
40
-
inactivation above
Rhodococcus erythropolis
Turnover Number [1/s] (protein specific)
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
3.6
-
(1R,4S)-menthone
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
3.9
-
(1S,4R)-1-hydroxy-2-oxolimonene
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
3.9
-
(4R)-dihydrocarvone
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
4.9
-
(1R,4S)-1-hydroxy-2-oxolimonene
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
6
-
(1S,4R)-menthone
30°C and glyine/NaOH buffer, pH 9.5
Rhodococcus erythropolis
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
8.3
-
pH-optimum in Tris/HCl buffer
Rhodococcus erythropolis
9.5
-
pH-optimum in glycine/NaOH buffer
Rhodococcus erythropolis
pH Stability (protein specific)
pH Stability
pH Stability Maximum
Commentary
Organism
8.5
-
4 min, inactivation of MMKMO in Tris/HCl buffer is observed above pH 8.5
Rhodococcus erythropolis
10
-
4 min, inactivation of MMKMO in glycine/NaOH buffer is observed above pH 8.5
Rhodococcus erythropolis
Other publictions for EC 1.14.13.105
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
684953
van der Werf
Purification and characterizat ...
Rhodococcus erythropolis, Rhodococcus erythropolis DCL14
Biochem. J.
347 Pt 3
693-701
2000
-
-
-
-
-
-
7
4
-
-
2
2
-
8
-
-
1
-
-
-
-
-
33
1
1
-
1
5
2
-
2
2
1
-
-
-
-
-
2
-
-
-
-
7
1
4
-
-
2
2
-
-
-
1
-
-
-
-
33
1
1
-
1
5
2
-
2
-
-
-
-
-
-
-
684540
van der Werf
Rhodococcus erythropolis DCL14 ...
Rhodococcus erythropolis, Rhodococcus erythropolis DCL14
Appl. Environ. Microbiol.
65
2092-2102
1999
-
-
-
-
-
-
-
-
-
-
-
2
-
9
-
-
-
-
-
1
-
-
6
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
6
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-