Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 1.13.11.11 extracted from

  • Yuasa, H.J.; Ball, H.J.
    Efficient tryptophan-catabolizing activity is consistently conserved through evolution of TDO enzymes, but not IDO enzymes (2015), J. Exp. Zool. B, 324, 128-140 .
    View publication on PubMed

Cloned(Commentary)

Cloned (Comment) Organism
gene 33737, DNA and amino acid sequence determination and analysis, sequence and genetic structure comparisons, and phylogenetic analysis, functional complementation of the enzyme-deficient Saccharomyces cerevisiae Monosiga brevicollis
gene BRAFLDRAFT_210874, DNA and amino acid sequence determination and analysis, sequence and genetic structure comparisons, and phylogenetic analysis, functional complementation of the enzyme-deficient Saccharomyces cerevisiae Branchiostoma floridae
gene C28H8.11, DNA and amino acid sequence determination and analysis, sequence and genetic structure comparisons, and phylogenetic analysis, functional complementation of the enzyme-deficient Saccharomyces cerevisiae Caenorhabditis elegans
gene TDO, DNA and amino acid sequence determination and analysis, sequence and genetic structure comparisons, and phylogenetic analysis, functional complementation of the enzyme-deficient Saccharomyces cerevisiae Rattus norvegicus
gene TDO, DNA and amino acid sequence determination and analysis, sequence and genetic structure comparisons, and phylogenetic analysis, functional complementation of the enzyme-deficient Saccharomyces cerevisiae Homo sapiens
gene TDOa, DNA and amino acid sequence determination and analysis, sequence and genetic structure comparisons, and phylogenetic analysis, functional complementation of the enzyme-deficient Saccharomyces cerevisiae Strongylocentrotus purpuratus
gene v1g157887, DNA and amino acid sequence determination and analysis, sequence and genetic structure comparisons, and phylogenetic analysis, recombinant expression of His6-tagged enzyme in Escherichia coli strain KRX, functional complementation of the enzyme-deficient Saccharomyces cerevisiae Nematostella vectensis
gene vCG5163, DNA and amino acid sequence determination and analysis, sequence and genetic structure comparisons, and phylogenetic analysis, functional complementation of the enzyme-deficient Saccharomyces cerevisiae Drosophila melanogaster

KM Value [mM]

KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
additional information
-
additional information Michaelis-Menten kinetics Strongylocentrotus purpuratus
additional information
-
additional information Michaelis-Menten kinetics Rattus norvegicus
additional information
-
additional information Michaelis-Menten kinetics Homo sapiens
additional information
-
additional information Michaelis-Menten kinetics Drosophila melanogaster
additional information
-
additional information Michaelis-Menten kinetics Nematostella vectensis
additional information
-
additional information Michaelis-Menten kinetics Monosiga brevicollis
additional information
-
additional information Michaelis-Menten kinetics Branchiostoma floridae
additional information
-
additional information Michaelis-Menten kinetics Caenorhabditis elegans
0.0825
-
L-tryptophan pH 8.0, 37°C Homo sapiens
0.221
-
L-tryptophan pH 7.0, 37°C Rattus norvegicus
0.277
-
L-tryptophan pH 8.0, 37°C Monosiga brevicollis

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
L-tryptophan + O2 Strongylocentrotus purpuratus
-
N-formyl-L-kynurenine
-
?
L-tryptophan + O2 Rattus norvegicus
-
N-formyl-L-kynurenine
-
?
L-tryptophan + O2 Homo sapiens
-
N-formyl-L-kynurenine
-
?
L-tryptophan + O2 Drosophila melanogaster
-
N-formyl-L-kynurenine
-
?
L-tryptophan + O2 Nematostella vectensis
-
N-formyl-L-kynurenine
-
?
L-tryptophan + O2 Monosiga brevicollis
-
N-formyl-L-kynurenine
-
?
L-tryptophan + O2 Branchiostoma floridae
-
N-formyl-L-kynurenine
-
?
L-tryptophan + O2 Caenorhabditis elegans
-
N-formyl-L-kynurenine
-
?

Organism

Organism UniProt Comment Textmining
Branchiostoma floridae C3XXE6
-
-
Caenorhabditis elegans Q09474
-
-
Drosophila melanogaster P20351
-
-
Homo sapiens P48775
-
-
Monosiga brevicollis A9V766
-
-
Nematostella vectensis A7RFF0
-
-
no activity in Brugia malayi
-
-
-
no activity in Saccharomyces cerevisiae
-
-
-
no activity in Schistosoma mansoni
-
-
-
Rattus norvegicus P21643
-
-
Strongylocentrotus purpuratus
-
-
-

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
L-tryptophan + O2
-
Strongylocentrotus purpuratus N-formyl-L-kynurenine
-
?
L-tryptophan + O2
-
Rattus norvegicus N-formyl-L-kynurenine
-
?
L-tryptophan + O2
-
Homo sapiens N-formyl-L-kynurenine
-
?
L-tryptophan + O2
-
Drosophila melanogaster N-formyl-L-kynurenine
-
?
L-tryptophan + O2
-
Nematostella vectensis N-formyl-L-kynurenine
-
?
L-tryptophan + O2
-
Monosiga brevicollis N-formyl-L-kynurenine
-
?
L-tryptophan + O2
-
Branchiostoma floridae N-formyl-L-kynurenine
-
?
L-tryptophan + O2
-
Caenorhabditis elegans N-formyl-L-kynurenine
-
?

Synonyms

Synonyms Comment Organism
33737
-
Monosiga brevicollis
BRAFLDRAFT_210874
-
Branchiostoma floridae
C28H8.11
-
Caenorhabditis elegans
TDO
-
Strongylocentrotus purpuratus
TDO
-
Rattus norvegicus
TDO
-
Homo sapiens
TDO
-
Drosophila melanogaster
TDO
-
Nematostella vectensis
TDO
-
Monosiga brevicollis
TDO
-
Branchiostoma floridae
TDO
-
Caenorhabditis elegans
TDOa
-
Strongylocentrotus purpuratus
v1g157887
-
Nematostella vectensis
vCG5163
-
Drosophila melanogaster

Temperature Optimum [°C]

Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
37
-
assay at Strongylocentrotus purpuratus
37
-
assay at Rattus norvegicus
37
-
assay at Homo sapiens
37
-
assay at Drosophila melanogaster
37
-
assay at Nematostella vectensis
37
-
assay at Monosiga brevicollis
37
-
assay at Branchiostoma floridae
37
-
assay at Caenorhabditis elegans

pH Optimum

pH Optimum Minimum pH Optimum Maximum Comment Organism
7
-
-
Rattus norvegicus
8
-
-
Homo sapiens
8
-
-
Monosiga brevicollis

Cofactor

Cofactor Comment Organism Structure
heme
-
Nematostella vectensis

General Information

General Information Comment Organism
evolution indoleamine 2,3-dioxygenase (IDO, EC 1.13.11.52) and tryptophan 2,3-dioxygenase (TDO) enzymes have independently evolved to catalyze the first step in the catabolism of tryptophan (L-Trp) through the kynurenine pathway. Enzyme TDO is found in almost all metazoan and many bacterial species, but not in fungi, distribution of IDO/TDO genes among invertebrates, overview Strongylocentrotus purpuratus
evolution indoleamine 2,3-dioxygenase (IDO, EC 1.13.11.52) and tryptophan 2,3-dioxygenase (TDO) enzymes have independently evolved to catalyze the first step in the catabolism of tryptophan (L-Trp) through the kynurenine pathway. Enzyme TDO is found in almost all metazoan and many bacterial species, but not in fungi, distribution of IDO/TDO genes among invertebrates, overview Rattus norvegicus
evolution indoleamine 2,3-dioxygenase (IDO, EC 1.13.11.52) and tryptophan 2,3-dioxygenase (TDO) enzymes have independently evolved to catalyze the first step in the catabolism of tryptophan (L-Trp) through the kynurenine pathway. Enzyme TDO is found in almost all metazoan and many bacterial species, but not in fungi, distribution of IDO/TDO genes among invertebrates, overview Homo sapiens
evolution indoleamine 2,3-dioxygenase (IDO, EC 1.13.11.52) and tryptophan 2,3-dioxygenase (TDO) enzymes have independently evolved to catalyze the first step in the catabolism of tryptophan (L-Trp) through the kynurenine pathway. Enzyme TDO is found in almost all metazoan and many bacterial species, but not in fungi, distribution of IDO/TDO genes among invertebrates, overview Drosophila melanogaster
evolution indoleamine 2,3-dioxygenase (IDO, EC 1.13.11.52) and tryptophan 2,3-dioxygenase (TDO) enzymes have independently evolved to catalyze the first step in the catabolism of tryptophan (L-Trp) through the kynurenine pathway. Enzyme TDO is found in almost all metazoan and many bacterial species, but not in fungi, distribution of IDO/TDO genes among invertebrates, overview Nematostella vectensis
evolution indoleamine 2,3-dioxygenase (IDO, EC 1.13.11.52) and tryptophan 2,3-dioxygenase (TDO) enzymes have independently evolved to catalyze the first step in the catabolism of tryptophan (L-Trp) through the kynurenine pathway. Enzyme TDO is found in almost all metazoan and many bacterial species, but not in fungi, distribution of IDO/TDO genes among invertebrates, overview Monosiga brevicollis
evolution indoleamine 2,3-dioxygenase (IDO, EC 1.13.11.52) and tryptophan 2,3-dioxygenase (TDO) enzymes have independently evolved to catalyze the first step in the catabolism of tryptophan (L-Trp) through the kynurenine pathway. Enzyme TDO is found in almost all metazoan and many bacterial species, but not in fungi, distribution of IDO/TDO genes among invertebrates, overview Branchiostoma floridae
evolution indoleamine 2,3-dioxygenase (IDO, EC 1.13.11.52) and tryptophan 2,3-dioxygenase (TDO) enzymes have independently evolved to catalyze the first step in the catabolism of tryptophan (L-Trp) through the kynurenine pathway. Enzyme TDO is found in almost all metazoan and many bacterial species, but not in fungi, distribution of IDO/TDO genes among invertebrates, overview Caenorhabditis elegans