BRENDA - Enzyme Database show
show all sequences of 1.1.2.8

X-ray structure of the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: basis of substrate specificity

Keitel, T.; Diehl, A.; Knaute, T.; Stezowski, J.J.; Höhne, W.; Görisch, H.; J. Mol. Biol. 297, 961-974 (2000)

Data extracted from this reference:

Crystallization (Commentary)
Crystallization
Organism
to 2.6 A resolution, by molecular replacement. Eight W-shaped beta-sheet motifs are arranged circularly in a propeller-like fashion forming a disk-shaped superbarrel. The prosthetic group is located in the centre of the superbarrel and is coordinated to a calcium ion. Most amino acid residues found in close contact with the prosthetic group pyrroloquinoline quinone and the Ca2+ are conserved between the quinoprotein ethanol dehydrogenase structure and that of the methanol dehydrogenases from Methylobacterium extorquens or Methylophilus W3A1. The main differences in the active-site region are a bulky tryptophan residue in the active-site cavity of methanol dehydrogenase, which is replaced by a phenylalanine and a leucine side-chain in the ethanol dehydrogenase structure and a leucine residue right above the pyrrolquinoline quinone group in methanol dehydrogenase which is replaced by a tryptophan side-chain. Both amino acid exchanges contribute to different substrate specificities of these otherwise very similar enzymes. In addition to the Ca2+ in the active-site cavity, ethanol dehydrogenase contains a second Ca2+-binding site at the N-terminus, which contributes to the stability of the native enzyme
Pseudomonas aeruginosa
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Ca2+
the prosthetic group is located in the centre of the superbarrel and is coordinated to a calcium ion.In addition, enzyme contains a second Ca2+-binding site at the N-terminus, which contributes to the stability of the native enzyme
Pseudomonas aeruginosa
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Pseudomonas aeruginosa
-
-
-
Crystallization (Commentary) (protein specific)
Crystallization
Organism
to 2.6 A resolution, by molecular replacement. Eight W-shaped beta-sheet motifs are arranged circularly in a propeller-like fashion forming a disk-shaped superbarrel. The prosthetic group is located in the centre of the superbarrel and is coordinated to a calcium ion. Most amino acid residues found in close contact with the prosthetic group pyrroloquinoline quinone and the Ca2+ are conserved between the quinoprotein ethanol dehydrogenase structure and that of the methanol dehydrogenases from Methylobacterium extorquens or Methylophilus W3A1. The main differences in the active-site region are a bulky tryptophan residue in the active-site cavity of methanol dehydrogenase, which is replaced by a phenylalanine and a leucine side-chain in the ethanol dehydrogenase structure and a leucine residue right above the pyrrolquinoline quinone group in methanol dehydrogenase which is replaced by a tryptophan side-chain. Both amino acid exchanges contribute to different substrate specificities of these otherwise very similar enzymes. In addition to the Ca2+ in the active-site cavity, ethanol dehydrogenase contains a second Ca2+-binding site at the N-terminus, which contributes to the stability of the native enzyme
Pseudomonas aeruginosa
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Ca2+
the prosthetic group is located in the centre of the superbarrel and is coordinated to a calcium ion.In addition, enzyme contains a second Ca2+-binding site at the N-terminus, which contributes to the stability of the native enzyme
Pseudomonas aeruginosa
Other publictions for EC 1.1.2.8
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
742793
Good
Pyrroloquinoline quinone etha ...
Methylorubrum extorquens, Methylorubrum extorquens ATCC 14718 / DSM 1338 / JCM 2805 / NCIMB 9133 / AM1
J. Bacteriol.
198
3109-3118
2016
2
-
1
-
1
-
-
-
-
3
1
6
-
16
-
-
1
-
-
1
-
-
8
1
1
-
-
-
1
-
-
3
-
-
-
2
-
1
3
-
1
-
-
-
-
-
-
3
1
6
-
-
-
1
-
1
-
-
8
1
1
-
-
-
1
-
-
-
-
3
3
-
-
-
743174
Simon
Analysis of the molecular res ...
Pseudomonas putida, Pseudomonas putida KT 2240
J. Proteomics
122
11-25
2015
-
-
-
-
1
-
-
-
1
-
-
8
-
4
-
-
-
-
-
-
-
-
8
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
4
-
2
-
-
-
-
-
2
-
-
8
-
-
-
-
-
-
-
-
8
-
-
-
-
-
-
-
-
-
-
2
4
-
-
-
742110
Takeda
Effect of amines as activator ...
Pseudomonas putida, Pseudomonas putida KT 2240
Biosci. Biotechnol. Biochem.
78
1195-1198
2014
15
-
-
-
-
-
2
4
1
1
-
-
-
44
-
-
-
-
-
-
-
-
6
-
1
-
-
4
1
-
-
3
2
-
-
15
-
-
3
-
-
-
-
2
2
4
1
1
-
-
-
-
-
-
-
-
-
-
6
-
1
-
-
4
1
-
-
-
-
1
1
-
4
4
741733
Zhang
Isolation and characterizatio ...
Pseudomonas mendocina, Pseudomonas mendocina YMP, Pseudomonas sp., Pseudomonas sp. J51, Pseudomonas stutzeri, Pseudomonas stutzeri ATCC 14405
Appl. Microbiol. Biotechnol.
97
4095-4104
2013
-
1
3
-
-
-
-
-
-
-
-
6
-
8
-
-
-
-
-
-
-
-
6
2
-
-
-
-
-
-
-
3
-
2
-
-
1
3
3
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
6
2
-
-
-
-
-
-
-
2
1
6
6
1
-
-
725041
Gomez-Manzo
The active (ADHa) and inactive ...
Gluconacetobacter diazotrophicus, Gluconacetobacter diazotrophicus PAL5
FEMS Microbiol. Lett.
328
106-113
2012
-
-
-
-
-
-
-
-
1
1
6
-
-
3
-
-
1
-
-
1
-
-
-
2
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
-
-
-
-
-
-
-
1
1
6
-
-
-
-
1
-
1
-
-
-
2
-
-
-
-
-
-
-
-
-
1
1
-
-
-
724042
Kanchanarach
Characterization of thermotole ...
Acetobacter pasteurianus, Acetobacter pasteurianus IFO3191, Acetobacter pasteurianus MSU10, Acetobacter pasteurianus SKU1108
Appl. Microbiol. Biotechnol.
85
741-751
2010
-
-
1
-
-
-
-
-
-
-
-
16
1
16
-
-
1
-
-
1
-
-
16
-
2
-
-
-
1
-
-
1
-
-
-
-
-
5
8
-
-
-
-
-
-
-
-
-
-
16
8
-
-
8
-
8
-
-
16
-
8
-
-
-
8
-
-
-
-
1
8
-
-
-
725154
Masud
Cloning and functional analysi ...
Acetobacter pasteurianus, Acetobacter pasteurianus SKU1108
Int. J. Food Microbiol.
138
39-49
2010
1
-
-
-
9
-
-
-
1
1
-
2
-
6
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
1
-
-
-
1
-
-
1
-
9
-
-
-
-
-
1
1
-
2
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
1
1
1
1
-
-
674560
Kay
Structure of the pyrroloquinol ...
Pseudomonas aeruginosa
J. Biol. Chem.
281
1470-1476
2006
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676857
Kay
Substrate binding in quinoprot ...
Pseudomonas aeruginosa
Proc. Natl. Acad. Sci. USA
103
5267-5272
2006
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
389959
Keitel
X-ray structure of the quinopr ...
Pseudomonas aeruginosa
J. Mol. Biol.
297
961-974
2000
-
-
-
1
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
389964
Diehl
Quinoprotein ethanol dehydroge ...
Pseudomonas aeruginosa
Eur. J. Biochem.
257
409-419
1998
-
-
1
1
1
-
-
-
-
-
2
-
-
1
-
1
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
1
1
-
-
-
-
-
-
-
2
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
702114
Schrover
Quaternary structure of quinop ...
Pseudomonas aeruginosa
Biochem. J.
290 (Pt 1)
123-127
1993
-
-
-
-
-
-
-
-
-
1
3
-
-
1
-
-
1
-
-
-
1
-
1
2
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
3
-
-
-
-
1
-
-
1
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
701600
Mutzel
-
Quinoprotein ethanol dehydroge ...
Pseudomonas aeruginosa
Agric. Biol. Chem.
55
1721-1726
1991
-
-
-
-
-
-
-
-
-
2
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
705106
Stezowski
Preliminary X-ray crystallogra ...
Pseudomonas aeruginosa
J. Mol. Biol.
205
617-618
1989
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-