The enzyme, which is involved in pyridine nucleotide recycling, can form β-nicotinate D-ribonucleotide and diphosphate from nicotinate and 5-phospho-α-D-ribose 1-diphosphate (PRPP) in the absence of ATP. However, when ATP is available the enzyme is phosphorylated resulting in a much lower Km for nicotinate. The phospho-enzyme is hydrolysed during the transferase reaction, regenerating the low affinity form. The presence of ATP shifts the products/substrates equilibrium from 0.67 to 1100 .
The taxonomic range for the selected organisms is: Pseudomonas aeruginosa The enzyme appears in selected viruses and cellular organisms
The enzyme, which is involved in pyridine nucleotide recycling, can form beta-nicotinate D-ribonucleotide and diphosphate from nicotinate and 5-phospho-alpha-D-ribose 1-diphosphate (PRPP) in the absence of ATP. However, when ATP is available the enzyme is phosphorylated resulting in a much lower Km for nicotinate. The phospho-enzyme is hydrolysed during the transferase reaction, regenerating the low affinity form. The presence of ATP shifts the products/substrates equilibrium from 0.67 to 1100 [4].