Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
2'-dATP + L-leucine + tRNALeu
2'-dAMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
3'-dATP + L-leucine + tRNALeu
3'-dAMP + diphosphate + L-leucyl-tRNALeu
8-azaadenosine 5'-triphosphate + L-leucine + tRNALeu
8-azaadenosine 5'-monophosphate + diphosphate + L-leucyl-tRNALeu
-
-
-
?
8-bromoadenosine 5'-triphosphate + L-leucine + tRNALeu
8-bromoadenosine 5'-monophosphate + diphosphate + L-leucyl-tRNALeu
8-methylaminoadenosine 5'-triphosphate + L-leucine + tRNALeu
8-methylaminoadenosine 5'-monophosphate + diphosphate + L-leucyl-tRNALeu
-
-
-
?
Adenosine 5'-O-(3-thio)triphosphate + L-leucine + tRNALeu
adenosine 5'-monophosphate + thiodiphosphate + L-leucyl-tRNALeu
Adenylyl beta,gamma-imido diphosphonate + L-leucine + tRNALeu
Adenylic acid + imido-diphosphate + L-leucyl-tRNALeu
AMP + diphosphate + Ile-tRNALeu
ATP + L-isoleucine + tRNALeu
-
-
?
AMP + diphosphate + L-leucyl-Pyrococcus horikoshii tRNALeu(GAG)
ATP + L-leucine + Pyrococcus horikoshii tRNALeu(GAG)
ATP + 2-butynylalanine + tRNALeu
AMP + diphosphate + 2-butynylalanyl-tRNALeu
-
aminoacylation by mutant T252Y
-
?
ATP + allylglycine + tRNALeu
AMP + diphosphate + allylglycyl-tRNALeu
-
aminoacylation by mutant T252Y
-
?
ATP + homoallylglycine + tRNALeu
AMP + diphosphate + homoallylglycyl-tRNALeu
-
aminoacylation by mutant T252Y
-
?
ATP + homopropargylglycine + tRNALeu
AMP + diphosphate + homopropargylglycyl-tRNALeu
-
aminoacylation by mutant T252Y
-
?
ATP + L-didehydroleucine + tRNALeu
AMP + diphosphate + didehydroleucyl-tRNALeu
-
reaction is catalyzed by mutant T252Y, not by wild-type
-
?
ATP + L-isoleucine + 2'-deoxaadenosine-tRNALeu
AMP + ?
-
2'-deoxyadenosine-tRNA clearly stimulates AMP production in the presence of isoleucine, but not the cognate leucine substrate
-
?
ATP + L-isoleucine + tRNALeu
AMP + diphosphate + L-isoleucyl-tRNALeu
ATP + L-leucine + Natrialba magadii tRNALeu(CAA)
AMP + diphosphate + L-leucyl-Natrialba magadii tRNALeu(CAA)
ATP + L-leucine + Natrialba magadii tRNALeu(GAG)
AMP + diphosphate + L-leucyl-Natrialba magadii tRNALeu(GAG)
ATP + L-leucine + Pyrococcus horikoshii tRNALeu(GAG)
AMP + diphosphate + L-leucyl-Pyrococcus horikoshii tRNALeu(GAG)
ATP + L-leucine + tRNACAALeu
AMP + diphosphate + L-leucyl-tRNAUAALeu
ATP + L-leucine + tRNACAGLeu
AMP + diphosphate + L-leucyl-tRNACAGLeu
human cytoplasmic tRNACAGLeu (hctRNACAG)
-
?
ATP + L-leucine + tRNAGAGLeu
AMP + diphosphate + L-leucyl-tRNAGAGLeu
ATP + L-leucine + tRNAIle
AMP + diphosphate + L-leucyl-tRNALeu
-
-
?
ATP + L-leucine + tRNALeu
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
ATP + L-leucine + tRNALeu from Aquifex aeolicus
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu from Escherichia coli
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu(GAG)
AMP + diphosphate + L-leucyl-tRNALeu(GAG)
ATP + L-leucine + tRNALeu(UAA)
AMP + diphosphate + L-leucyl-tRNALeu(UAA)
-
-
-
?
ATP + L-leucine + tRNALeu(UAG)
AMP + diphosphate + L-leucyl-tRNALeu(UAG)
-
-
-
?
ATP + L-leucine + tRNALeu(UUR)
AMP + diphosphate + L-leucyl-tRNALeu(UUR)
-
leucyl-tRNA synthetase contacts tRNALeu(UUR) in the amino acid acid acceptor stem, the anticodon stem, and the D-loop
-
?
ATP + L-leucine + tRNALeuA35G
AMP + diphosphate + L-leucyl-tRNALeuA35G
-
-
-
?
ATP + L-leucine + tRNALeuA73
AMP + diphosphate + L-leucyl-tRNALeuA73
-
class II tRNALeu, recognition requires the discriminator base A73 and the long variable arm of appropriate stem length, especially the specific loop sequence A47CG47D and U47H at the base of the helix
-
?
ATP + L-leucine + tRNALeuA73G
AMP + diphosphate + L-leucyl-tRNALeuA73G
-
-
-
?
ATP + L-leucine + tRNALeuCUN
AMP + diphosphate + L-leucyl-tRNALeuCUN
ATP + L-leucine + tRNALeuGAG
AMP + diphosphate + L-leucyl-tRNALeuGAG
-
-
-
?
ATP + L-leucine + tRNALeuU73
AMP + diphosphate + L-leucyl-tRNALeuU73
-
class II tRNALeu isoacceptor, 17fold lower activity compared to tRNALeuA73
-
?
ATP + L-leucine + tRNALeuUUR
AMP + diphosphate + L-leucyl-tRNALeuUUR
ATP + L-leucine + tRNASer mutant
AMP + diphosphate + L-leucyl-tRNASer mutant
-
transplantation of both the discriminator base and the variable arm of tRNALeu are not sufficient to introduce leucylation activity to tRNASer, but additional insertion of additional a nucleotide into the D-loop, which is not involved in the direct interaction with the enzyme, converts tRNASer to an efficient leucine acceptor
-
?
ATP + L-leucine + tRNAUAALeu
AMP + diphosphate + L-leucyl-tRNACAALeu
ATP + L-leucine + tRNAUAALeu
AMP + diphosphate + L-leucyl-tRNAUAALeu
Mycoplasma mobile MmtRNAUAALeu (Mmt-RNAUAALeu)
-
?
ATP + L-methionine + tRNALeu
AMP + diphosphate + L-methionyl-tRNALeu
ATP + L-norisoleucine + tRNALeu
AMP + diphosphate + L-norisoleucyl-tRNALeu
-
aminoacylation by mutant T252Y
-
?
ATP + L-norvaline + tRNALeu
AMP + diphosphate + L-norvalyl-tRNALeu
ATP + L-oxonorvaline + tRNALeu
AMP + diphosphate + oxonorvalyl-tRNALeu
-
reaction is catalyzed by mutant T252Y, not by wild-type
-
?
L-isoleucyl-tRNALeu + H2O
t-RNALeu + isoleucine
-
-
editing activity
?
L-isoleucyl-tRNALeu + H2O
t-RNALeu + L-isoleucine
-
editing activity
?
tubercidin 5'-triphosphate + L-leucine + tRNALeu
tubercidin 5'-phosphate + diphosphate + L-leucyl-tRNALeu
additional information
?
-
3'-dATP + L-leucine + tRNALeu

3'-dAMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
3'-dATP + L-leucine + tRNALeu
3'-dAMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
3'-dATP + L-leucine + tRNALeu
3'-dAMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
8-bromoadenosine 5'-triphosphate + L-leucine + tRNALeu

8-bromoadenosine 5'-monophosphate + diphosphate + L-leucyl-tRNALeu
-
-
-
?
8-bromoadenosine 5'-triphosphate + L-leucine + tRNALeu
8-bromoadenosine 5'-monophosphate + diphosphate + L-leucyl-tRNALeu
-
-
-
?
Adenosine 5'-O-(3-thio)triphosphate + L-leucine + tRNALeu

adenosine 5'-monophosphate + thiodiphosphate + L-leucyl-tRNALeu
-
-
-
?
Adenosine 5'-O-(3-thio)triphosphate + L-leucine + tRNALeu
adenosine 5'-monophosphate + thiodiphosphate + L-leucyl-tRNALeu
-
-
-
?
Adenylyl beta,gamma-imido diphosphonate + L-leucine + tRNALeu

Adenylic acid + imido-diphosphate + L-leucyl-tRNALeu
-
-
-
?
Adenylyl beta,gamma-imido diphosphonate + L-leucine + tRNALeu
Adenylic acid + imido-diphosphate + L-leucyl-tRNALeu
-
-
-
?
AMP + diphosphate + L-leucyl-Pyrococcus horikoshii tRNALeu(GAG)

ATP + L-leucine + Pyrococcus horikoshii tRNALeu(GAG)
-
-
-
r
AMP + diphosphate + L-leucyl-Pyrococcus horikoshii tRNALeu(GAG)
ATP + L-leucine + Pyrococcus horikoshii tRNALeu(GAG)
-
-
-
r
ATP + L-isoleucine + tRNALeu

AMP + diphosphate + L-isoleucyl-tRNALeu
-
-
-
?
ATP + L-isoleucine + tRNALeu
AMP + diphosphate + L-isoleucyl-tRNALeu
-
-
-
?
ATP + L-isoleucine + tRNALeu
AMP + diphosphate + L-isoleucyl-tRNALeu
-
mutant D345A, not the wild-type which performs only the misacetylation with isoleucine, but eliminates the incorrect isoleucyl-AMP
-
r
ATP + L-isoleucine + tRNALeu
AMP + diphosphate + L-isoleucyl-tRNALeu
-
wild-type and CP1 domain mutant enzyme, the mischarged product can be edited by the wild-type enzyme, but not by a recombinant isolated CP1 domain
-
?
ATP + L-isoleucine + tRNALeu
AMP + diphosphate + L-isoleucyl-tRNALeu
-
activity with mutant enzymes T252E and T252D, no activity with wild-type enzyme and with mutant enzyme T252G
-
?
ATP + L-isoleucine + tRNALeu
AMP + diphosphate + L-isoleucyl-tRNALeu
-
the ratio of turnover number to KM-value for L-leucine is 1600fold higher than the ratio observed for L-isoleucine
-
?
ATP + L-isoleucine + tRNALeu
AMP + diphosphate + L-isoleucyl-tRNALeu
-
-
-
?
ATP + L-isoleucine + tRNALeu
AMP + diphosphate + L-isoleucyl-tRNALeu
-
-
-
?
ATP + L-isoleucine + tRNALeu
AMP + diphosphate + L-isoleucyl-tRNALeu
-
-
?
ATP + L-isoleucine + tRNALeu
AMP + diphosphate + L-isoleucyl-tRNALeu
-
the ratio of turnover number to KM-value for L-leucine is 3000fold higher than the ratio observed for L-isoleucine
-
?
ATP + L-isoleucine + tRNALeu
AMP + diphosphate + L-isoleucyl-tRNALeu
-
-
-
?
ATP + L-isoleucine + tRNALeu
AMP + diphosphate + L-isoleucyl-tRNALeu
-
activity with mutant enzyme D332A, no activity with wild-type full-length enzyme
-
?
ATP + L-isoleucine + tRNALeu
AMP + diphosphate + L-isoleucyl-tRNALeu
-
-
?
ATP + L-isoleucine + tRNALeu
AMP + diphosphate + L-isoleucyl-tRNALeu
-
mutant D419A, not the wild-type, which performs only the misacetylation with isoleucine, but eliminates the incorrect isoleucyl-AMP
-
r
ATP + L-isoleucine + tRNALeu
AMP + diphosphate + L-isoleucyl-tRNALeu
mutant D345A, not the wild-type which performs only the misacetylation with isoleucine, but eliminates the incorrect isoleucyl-AMP
-
r
ATP + L-leucine + Natrialba magadii tRNALeu(CAA)

AMP + diphosphate + L-leucyl-Natrialba magadii tRNALeu(CAA)
-
-
-
?
ATP + L-leucine + Natrialba magadii tRNALeu(CAA)
AMP + diphosphate + L-leucyl-Natrialba magadii tRNALeu(CAA)
-
-
-
?
ATP + L-leucine + Natrialba magadii tRNALeu(GAG)

AMP + diphosphate + L-leucyl-Natrialba magadii tRNALeu(GAG)
-
highest activity
-
?
ATP + L-leucine + Natrialba magadii tRNALeu(GAG)
AMP + diphosphate + L-leucyl-Natrialba magadii tRNALeu(GAG)
-
highest activity
-
?
ATP + L-leucine + Pyrococcus horikoshii tRNALeu(GAG)

AMP + diphosphate + L-leucyl-Pyrococcus horikoshii tRNALeu(GAG)
-
100% activity
-
r
ATP + L-leucine + Pyrococcus horikoshii tRNALeu(GAG)
AMP + diphosphate + L-leucyl-Pyrococcus horikoshii tRNALeu(GAG)
-
100% activity
-
r
ATP + L-leucine + tRNACAALeu

AMP + diphosphate + L-leucyl-tRNAUAALeu
Mycoplasma mobile tRNACAALeu (MmtRNACAALeu) and mutat derivatives
-
?
ATP + L-leucine + tRNACAALeu
AMP + diphosphate + L-leucyl-tRNAUAALeu
Mycoplasma mobile tRNACAALeu (MmtRNACAALeu) and mutat derivatives
-
?
ATP + L-leucine + tRNAGAGLeu

AMP + diphosphate + L-leucyl-tRNAGAGLeu
Aquifex aeolicus tRNAGAGLeu (AatRNAGAGLeu)
-
?
ATP + L-leucine + tRNAGAGLeu
AMP + diphosphate + L-leucyl-tRNAGAGLeu
Escherichia coli tRNAGAGLeu (Ect-RNAGAGLeu)
-
?
ATP + L-leucine + tRNAGAGLeu
AMP + diphosphate + L-leucyl-tRNAGAGLeu
Pyrococcus horikoshii tRNAGAGLeu (PhtRNAGAGLeu)
-
?
ATP + L-leucine + tRNAGAGLeu
AMP + diphosphate + L-leucyl-tRNAGAGLeu
Pyrococcus horikoshii tRNAGAGLeu (PhtRNAGAGLeu)
-
?
ATP + L-leucine + tRNALeu

?
-
esterifies L-leucine to the cognate tRNA in the initial step of protein biosynthesis
-
?
ATP + L-leucine + tRNALeu
?
-
mitochondrial enzyme is involved in protein synthesis and mRNA splicing
-
?
ATP + L-leucine + tRNALeu

AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
enzyme activity only appears when both gene products, of leuS and leuS', coexist
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
the cross-species-specific recognition occurs at the alpha-subunit, tRNALeu substrates from Escherichia coli and Aquifex aeolicus
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
tRNALeu from Aquifex aeolicus and Escherichia coli, native and recombinant wild-type, the recombinant isolated beta-subunit is inactive in catalysis
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
two-step reaction, the beta-subunit alone is responsible for cognate tRNA recognition, enzyme activity requires both subunits
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
two distinct domains of the beta subunit of Aquifex aeolicus leucyl-tRNA synthetase are involved in tRNA binding as revealed by a three-hybrid selection
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
recombinant tRNALeu substrate, two peptides of eight and nine amino acid residues in the domain located in the alpha subunit are essential for the enzyme’s activity
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
the enzyme hydrolyzes mischarged tRNAs through a post-transfer editing mechanism, the enzyme from Aquifex aeolicus edits the complete set of aminoacylated tRNAs generated by the three enzymes, leucyl-, isoleucyl-, and valyl-tRNA synthetases: Ile-tRNAIle, Val-tRNAIle, ValtRNAVal, Thr-tRNAVal, and Ile-tRNALeu, model of a primitive editing system containing a composite minihelix carrying the triple leucine, isoleucine, and valine identity mimicking the primitive tRNA precursor, overview
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
recognition of tRNALeu by the leucyl-tRNA synthetase (LeuRS) is studied by RNA probing and mutagenesis. Results show that the base A73, the core structure of tRNA formed by the tertiary interactions U8-A14, G18-U55 and G19-C56, and the orientation of the variable arm are critical elements for tRNALeu aminoacylation. Although dispensable for aminoacylation, the anticodon arm carries discrete editing determinants that are required for stabilizing the conformation of the post-transfer editing state and for promoting translocation of the tRNA acceptor arm from the synthetic to the editing site
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
the reaction catalyzed by the enzyme plays an important role in the transport of aminoacylated tRNAs from the nucleus to the cytoplasm
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
apart from the homologous substrate the enzyme is able to aminoacylate pure E. coli tRNALeu
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
apart from the homologous substrate the enzyme is able to aminoacylate pure E. coli tRNALeu
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
r
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
r
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
mutant T252A edits correctly charged Leu-tRNALeu
-
r
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
the connecting peptide CP1 domain is crucial for the editing function
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
the peptide bond between Glu292 and Ala293 in the large connecting polypeptide CP1 is essential for activity
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
tRNALeu substrates from Escherichia coli and Aquifex aeolicus
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
two-step reaction, the connecting peptide CP1 domain is crucial for the editing function
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
two-step reaction, the first step is reversible, the second is not, tRNA discrimination by a double-sieve mechansim
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
it is proposed that the enzyme uses a lock-and-key mechanism to recognize and discriminate the amino acids
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
two functions of the enzyme in splicing and aminoacylation in vivo, overview
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
a two step reaction, the first of which is reversible, overview, the unique inserted leucine-specific domain of LeuRS is required for aminoacylation and not amino acid editing, the domain interacts with the tRNA during amino acid activation and/or tRNA aminoacylation, it might aid the dynamic translocation process that moves tRNA from the aminoacylation to the editing complex, overview
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
a two-step reaction, the first of which, the amino acid activation step, is reversible, while the second aminoacylation step is not, the amino acid editing site for LeuRS resides within the homologous CP1 domain, some positions are idiosyncratic to LeuRS including a conserved arginine conferring amino acid substrate recognition, it complements other sites in the amino acid binding pocket of the editing active site of Escherichia coli LeuRS, including Thr252 and Val338, the latter is second to the first, which collectively fine-tune amino acid specificity to confer fidelity, editing mechanism, residues Arg249, Asp251, Thr252, Met336, and Val338 are involved, overview
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
L570 strongly impacts aminoacylation in two ways: it affects both amino acid discrimination and tRNA binding, overview
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
the editing domain called CP1 is required for hydrolyzing the incorrectly misaminoacylated noncognate amino acids Ile and Val, the beta-strands, which link the CP1 domain to the aminoacylation core of LeuRS, are required for editing of mischarged tRNALeu, hydrolytic activity is also enhanced by inclusion of short flexible peptides, called hinges, at the end of both LeuRS beta-strands, overview
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
substrate is tRNALeuTAA, overexpressed in and purified from Escherichia coli
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
chloroplastic enzyme: high specificity towards tRNAs, in contrast the cytoplasmic enzyme recognizes tRNAs from the bleached mutant and from yeast, but also some tRNALeu isoacceptors from E. coli
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
tRNAs from Homo sapiens and Giardia lamblia
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
tRNALeu substrate from Escherichia coli, 2-step reaction, the first step is reversible, while the second step is not
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
human cytosolic leucyl-tRNA synthetase is one component of a macromolecular aminoacyl-tRNA synthetase complex. The C-terminal peptide of hcLeuRS is critical for the interaction with hcArgRS and the interaction in the multi-tRNA synthetase complex
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
human mitochondrial LeuRS achieves high aminoacylation fidelity without a functional editing active site, representing a rare example of a class I aminoacyl-tRNA synthetase that does not proofread its products, K600 strongly impacts aminoacylation in two ways: it affects both amino acid discrimination and tRNA binding, overview
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
a complex between prolyl-tRNA synthetase, ProRS, and LeuRS in Methanothermobacter thermautotrophicus enhances tRNAPro aminoacylation, overview
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
cytoplasmic enzyme shows less strict specificity towards tRNA than the chloroplastic enzyme
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
a two step reaction, the C-terminal domain recognizes the long variable arm of tRNALeu for aminoacylation, and the so-called editing domain deacylates incorrectly formed Ile-tRNALeu, structural superposition of tRNAIle onto the LeuRS-tRNALeu complex indicated that Ile911, Lys912, and Glu913 of the LeuRS C-terminal domain clash with U20 of tRNAIle, which is bulged out as compared to the corresponding nucleotide of tRNALeu, mechanism for prevention of misediting, overview
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
r
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
possibly the yeast mitochondria have evolved to tolerate lower levels of fidelity in protein synthesis or have developed alternate mechanisms to enhance discrimination of leucine from non-cognate amino acids that can be misactivated by leucyl-tRNA synthetase
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
two functions of the enzyme in splicing and aminoacylation in vivo, overview
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
a two step reaction, the first of which is reversible, aminoacylation and editing by LeuRS require migration of the tRNA acceptor stem end between the canonical aminoacylation core and a separate domain called CP1 that is responsible for amino acid editing, post-transfer editing mechanism., overview
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
LeuRS has a hydrolytic active site that resides in a discrete amino acid editing domain called CP1, LeuRS misactivates many non-leucine amino acids, including isoleucine, valine, methionine, and also structurally similar metabolic cellular intermediate, but the enzyme has an editing active site that is competent for post-transfer editing of mischarged tRNA
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
r
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
the editing active site hydrolytically cleaves the misactivated aminoacyl-adenylate, called pre-transfer editing, or the mischarged tRNA, called post-transfer editing
-
r
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
acceptor activity with Tritrichomonas augusta tRNA is 8-fold higher than with yeast tRNA and 25-fold higher than with E. coli tRNA
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu(GAG)

AMP + diphosphate + L-leucyl-tRNALeu(GAG)
-
-
-
?
ATP + L-leucine + tRNALeu(GAG)
AMP + diphosphate + L-leucyl-tRNALeu(GAG)
-
-
-
?
ATP + L-leucine + tRNALeuCUN

AMP + diphosphate + L-leucyl-tRNALeuCUN
-
-
-
?
ATP + L-leucine + tRNALeuCUN
AMP + diphosphate + L-leucyl-tRNALeuCUN
-
-
-
?
ATP + L-leucine + tRNALeuUUR

AMP + diphosphate + L-leucyl-tRNALeuUUR
-
-
-
?
ATP + L-leucine + tRNALeuUUR
AMP + diphosphate + L-leucyl-tRNALeuUUR
-
-
-
?
ATP + L-leucine + tRNAUAALeu

AMP + diphosphate + L-leucyl-tRNACAALeu
Mycoplasma mobile tRNAUAALeu (MmtRNAUAALeu) and mutat derivatives
-
?
ATP + L-leucine + tRNAUAALeu
AMP + diphosphate + L-leucyl-tRNACAALeu
Mycoplasma mobile tRNAUAALeu (MmtRNAUAALeu) and mutat derivatives
-
?
ATP + L-methionine + tRNALeu

AMP + diphosphate + L-methionyl-tRNALeu
-
-
-
?
ATP + L-methionine + tRNALeu
AMP + diphosphate + L-methionyl-tRNALeu
-
mutant D345A, not the wild-type enzyme
-
r
ATP + L-methionine + tRNALeu
AMP + diphosphate + L-methionyl-tRNALeu
-
wild-type and CP1 domain mutant enzyme, the mischarged product can be edited by the wild-type enzyme, but not by a recombinant isolated CP1 domain
-
?
ATP + L-methionine + tRNALeu
AMP + diphosphate + L-methionyl-tRNALeu
-
mutant D419A, not the wild-type enzyme
-
r
ATP + L-norvaline + tRNALeu

AMP + diphosphate + L-norvalyl-tRNALeu
-
-
-
?
ATP + L-norvaline + tRNALeu
AMP + diphosphate + L-norvalyl-tRNALeu
-
aminoacylation by mutant T252Y
-
?
ATP + L-norvaline + tRNALeu
AMP + diphosphate + L-norvalyl-tRNALeu
-
-
?
tubercidin 5'-triphosphate + L-leucine + tRNALeu

tubercidin 5'-phosphate + diphosphate + L-leucyl-tRNALeu
-
-
-
?
tubercidin 5'-triphosphate + L-leucine + tRNALeu
tubercidin 5'-phosphate + diphosphate + L-leucyl-tRNALeu
-
-
-
?
tubercidin 5'-triphosphate + L-leucine + tRNALeu
tubercidin 5'-phosphate + diphosphate + L-leucyl-tRNALeu
-
-
-
?
additional information

?
-
-
the enzyme also performs the ATP-diphosphate exchange reaction
-
?
additional information
?
-
-
the enzymes forms also perform the reversible ATP-diphosphate exchange reaction, which corresponds to the first reaction step
-
?
additional information
?
-
-
aminoacylation of minihelices is strongly dependent on the presence of the A73 identity nucleotide and greatly stimulated by destabilization of the first base pair. Addition of RNA helices that mimic the anticodon domain stimulates minihelixLeu charging by alphabeta-LeuRS indicating possible domain-domain communication. MinihelixLeu cannot be misaminoacylated, perhaps because of the tRNA-independent pretransfer editing activity of alphabeta-LeuRS
-
?
additional information
?
-
-
isolated editing domain of leucyl-tRNA synthetase from the deep-rooted bacterium Aquifex aeolicus catalyzes the hydrolytic editing of both mischarged tRNALeu and minihelixLeu
-
?
additional information
?
-
-
aminoacyl-tRNA is channeled in vivo by probably direct transfer to elongation factor I
-
?
additional information
?
-
-
leucine-dependent ATP-diphosphate exchange, leucine + ATP + enzyme/Ile-AMP-enzyme + diphosphate
-
?
additional information
?
-
-
proteolytically derived 34 kDa peptide fragment has lost most of its aminoacylation activity, but retains the ATP-dihosphate exchnage activity, the enzyme also performs the ATP-diphosphate exchange reaction
-
?
additional information
?
-
-
the enzyme also performs the ATP-diphosphate exchange reaction
-
?
additional information
?
-
-
the enzyme also performs the ATP-diphosphate exchange reaction, the enzyme has an editing function to correct misaminoacylation of tRNALeu by isoleucine and methionine, T252 is involved
-
?
additional information
?
-
-
fidelity of translation is dependent on the specificity of the aminoacyl-tRNA synthetases
-
?
additional information
?
-
-
Thr247 and Thr248 are two key residues in the Escherichia coli LeuRS editing active site and appear to collaborate in the hydrolytic cleavage mechanism
-
?
additional information
?
-
-
isolated LeuRS CP1 domain requires idiosyncratic adaptations to confer editing activity independent of the full-length enzyme, overview
-
?
additional information
?
-
the enzyme has evolved both tRNA-dependent pre- and post-transfer editing capabilities to ensure catalytic specificity
-
?
additional information
?
-
kinetic origin of substrate specificity in post-transfer editing by leucyl-tRNA synthetase, overview. Binding and catalysis is analyzed independently using cognate leucyl- and non-cognate norvalyl-tRNALeu and their non-hydrolyzable analogues. The amino acid part (leucine versus norvaline) of (mis)aminoacyl-tRNAs can contribute approximately 10fold to ground-state discrimination at the editing site, while the rate of deacylation of leucyl- and norvalyl-tRNALeu differs by about 104fold. Critical role for the A76 3'-OH group of the tRNALeu in post-transfer editing. Molecular dynamics simulations reveals that the wild-type enzyme, but not the T252A mutant, enforces leucine to adopt the side-chain conformation that promotes the steric exclusion of a putative catalytic water. Editing can be distiguished from the synthetic site, which relies on ground-state discrimination in amino acid selection
-
?
additional information
?
-
-
kinetic origin of substrate specificity in post-transfer editing by leucyl-tRNA synthetase, overview. Binding and catalysis is analyzed independently using cognate leucyl- and non-cognate norvalyl-tRNALeu and their non-hydrolyzable analogues. The amino acid part (leucine versus norvaline) of (mis)aminoacyl-tRNAs can contribute approximately 10fold to ground-state discrimination at the editing site, while the rate of deacylation of leucyl- and norvalyl-tRNALeu differs by about 104fold. Critical role for the A76 3'-OH group of the tRNALeu in post-transfer editing. Molecular dynamics simulations reveals that the wild-type enzyme, but not the T252A mutant, enforces leucine to adopt the side-chain conformation that promotes the steric exclusion of a putative catalytic water. Editing can be distiguished from the synthetic site, which relies on ground-state discrimination in amino acid selection
-
?
additional information
?
-
-
residues Y515 and Y520 outside the editing active site of CP1 domain of Giardia lamblia LeuRS are crucial for post-transfer editing by influencing the binding affinity with mischarged tRNALeu
-
?
additional information
?
-
-
measurement of ATP-PPi exchange activity by wild-type and mutant enzymes
-
?
additional information
?
-
-
substrate specificty with diverse class II tRNALeu isoacceptors and mutants, overview, no activity with tRNALeuG73 and C73, no activity with tRNALeu, tRNASer and tRNATyr from Escherichia coli and Saccharomyces cerevisiae, differences in the tertiary structure of tRNALeu and tRNASer play a key role for inactivity and therefore elimination of native tRNASer as leucine acceptor
-
?
additional information
?
-
-
activity with mitochondrial tRNA mutants associated with some human mitochondrion-related neuromuscular disorders
-
?
additional information
?
-
enzyme also performs the ATP-diphosphate exchange reaction
-
?
additional information
?
-
-
enzyme also performs the ATP-diphosphate exchange reaction
-
?
additional information
?
-
-
LeuRS misactivates several non-cognate amino acids, e.g. Ile and Met as well as the non-standard amino acids norvaline and alpha-amino butyrate. It uses mainly pre-transfer editing to edit alpha-amino butyrate and a tRNA-dependent mechanism to edit norvaline, although both amino acids can be charged to tRNALeu, overview. Separation of the norvaline-editing pathways
-
?
additional information
?
-
-
the enzyme maintains weak pretransfer editing activities
-
?
additional information
?
-
-
the enzyme maintains weak pre-transfer editing activities
-
?
additional information
?
-
-
leucine-dependent ATP-diphosphate exchange, leucine + ATP + enzyme/Ile-AMP-enzyme + diphosphate
-
?
additional information
?
-
-
leucine-dependent ATP-diphosphate exchange, leucine + ATP + enzyme/Ile-AMP-enzyme + diphosphate
-
?
additional information
?
-
-
wild-type, full-length enzyme deacylates the pre-formed Ile-tRNALeu
-
?
additional information
?
-
-
measurement of ATP-PPi exchange activity by wild-type and mutant enzymes
-
?
additional information
?
-
-
no substrates: dATP, GTP, dGTP
-
?
additional information
?
-
-
the LeuRS CP1 domain can also support group I intron RNA splicing in the yeast mitochondria, overview, the RDW peptide, a highly conserved peptide within an RDW-containing motif, is important for enzyme interactions, the RDW peptide is dynamic and forms unique sets of interactions with the aminoacylation and editing complexes, overview
-
?
additional information
?
-
-
leucine-dependent ATP-diphosphate exchange, leucine + ATP + enzyme/Ile-AMP-enzyme + diphosphate
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
ATP + 2-butynylalanine + tRNALeu
AMP + diphosphate + 2-butynylalanyl-tRNALeu
-
aminoacylation by mutant T252Y
-
?
ATP + allylglycine + tRNALeu
AMP + diphosphate + allylglycyl-tRNALeu
-
aminoacylation by mutant T252Y
-
?
ATP + homoallylglycine + tRNALeu
AMP + diphosphate + homoallylglycyl-tRNALeu
-
aminoacylation by mutant T252Y
-
?
ATP + homopropargylglycine + tRNALeu
AMP + diphosphate + homopropargylglycyl-tRNALeu
-
aminoacylation by mutant T252Y
-
?
ATP + L-leucine + tRNAIle
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
ATP + L-norisoleucine + tRNALeu
AMP + diphosphate + L-norisoleucyl-tRNALeu
-
aminoacylation by mutant T252Y
-
?
ATP + L-norvaline + tRNALeu
AMP + diphosphate + L-norvalyl-tRNALeu
-
aminoacylation by mutant T252Y
-
?
additional information
?
-
ATP + L-leucine + tRNALeu

?
-
esterifies L-leucine to the cognate tRNA in the initial step of protein biosynthesis
-
-
?
ATP + L-leucine + tRNALeu
?
-
mitochondrial enzyme is involved in protein synthesis and mRNA splicing
-
-
?
ATP + L-leucine + tRNALeu

AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
the reaction catalyzed by the enzyme plays an important role in the transport of aminoacylated tRNAs from the nucleus to the cytoplasm
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
r
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
two functions of the enzyme in splicing and aminoacylation in vivo, overview
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
human cytosolic leucyl-tRNA synthetase is one component of a macromolecular aminoacyl-tRNA synthetase complex. The C-terminal peptide of hcLeuRS is critical for the interaction with hcArgRS and the interaction in the multi-tRNA synthetase complex
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
a complex between prolyl-tRNA synthetase, ProRS, and LeuRS in Methanothermobacter thermautotrophicus enhances tRNAPro aminoacylation, overview
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
r
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
possibly the yeast mitochondria have evolved to tolerate lower levels of fidelity in protein synthesis or have developed alternate mechanisms to enhance discrimination of leucine from non-cognate amino acids that can be misactivated by leucyl-tRNA synthetase
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
two functions of the enzyme in splicing and aminoacylation in vivo, overview
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
r
ATP + L-leucine + tRNALeu
AMP + diphosphate + L-leucyl-tRNALeu
-
-
-
-
?
additional information

?
-
-
aminoacyl-tRNA is channeled in vivo by probably direct transfer to elongation factor I
-
?
additional information
?
-
-
fidelity of translation is dependent on the specificity of the aminoacyl-tRNA synthetases
-
?
additional information
?
-
the enzyme has evolved both tRNA-dependent pre- and post-transfer editing capabilities to ensure catalytic specificity
-
-
?
additional information
?
-
-
LeuRS misactivates several non-cognate amino acids, e.g. Ile and Met as well as the non-standard amino acids norvaline and alpha-amino butyrate. It uses mainly pre-transfer editing to edit alpha-amino butyrate and a tRNA-dependent mechanism to edit norvaline, although both amino acids can be charged to tRNALeu, overview. Separation of the norvaline-editing pathways
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(2E)-3-(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)-1-phenylprop-2-en-1-one
-
-
(2E)-3-(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-7-yl)-1-phenylprop-2-en-1-one
-
-
(E)-[3-(1,3-dihydro-1-hydroxy-2,1-benzoxaborol-7-yl)]acrylic acid ethyl ester
-
-
1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl cyclohexylcarbamate
-
-
1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl phenylcarbamate
-
-
1-hydroxy-1,3-dihydro-2,1-benzoxaborole-7-carbaldehyde
-
-
1-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]-4-methylpentan-2-one
-
-
1-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]butan-2-one
-
-
1-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]pentan-2-one
-
-
2,1-benzoxaborol-1(3H)-ol
-
-
2,1-benzoxaborole-1,6(3H)-diol
-
-
2-(2,5-dimethylanilino)-5,6,7,8-tetrahydroquinazolin-4(3H)-one
residual activity compared to wild-type enzyme is 71%
2-(2-hydroxy-5-methylanilino)-3,5,6,7-tetrahydro-4H-cyclopenta[d]pyrimidin-4-one
residual activity compared to wild-type enzyme is 40%
2-(2-hydroxy-5-methylanilino)-6-propylpyrimidin-4(3H)-one
residual activity compared to wild-type enzyme is 93%
2-(2-hydroxy-5-methylanilino)quinazolin-4(3H)-one
residual activity compared to wild-type enzyme is 26%
2-(2-hydroxyanilino)-6-methylpyrimidin-4(3H)-one
residual activity compared to wild-type enzyme is 42%
2-(2-hydroxyanilino)pyrimidin-4(3H)-one
residual activity compared to wild-type enzyme is 37%
2-(2-hydroxyanilino)quinazolin-4(3H)-one
residual activity compared to wild-type enzyme is 36%
2-(3-hydroxy-4-methylanilino)-6-propylpyrimidin-4(3H)-one
residual activity compared to wild-type enzyme is 36%
2-(3-hydroxyanilino)-6-methylpyrimidin-4(3H)-one
residual activity compared to wild-type enzyme is 39%
2-(3-hydroxyanilino)quinazolin-4(3H)-one
residual activity compared to wild-type enzyme is 26%
2-(4-hydroxy-2-methylanilino)-5,6,7,8-tetrahydroquinazolin-4(3H)-one
residual activity compared to wild-type enzyme is 70%
2-(4-hydroxy-2-methylanilino)-6-(propan-2-yl)pyrimidin-4(3H)-one
residual activity compared to wild-type enzyme is 29%
2-(4-hydroxy-2-methylanilino)-6-methylpyrimidin-4(3H)-one
residual activity compared to wild-type enzyme is 61%
2-(4-hydroxy-2-methylanilino)-6-phenylpyrimidin-4(3H)-one
residual activity compared to wild-type enzyme is 94%
2-(4-hydroxyanilino)-6-methylpyrimidin-4(3H)-one
residual activity compared to wild-type enzyme is 28%
2-(5-chloro-2-hydroxyanilino)-6-propylpyrimidin-4(3H)-one
residual activity compared to wild-type enzyme is 86%
2-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]pentan-3-one
-
-
2-[3-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]propyl]-1H-isoindole-1,3(2H)-dione
-
-
3'-Amino-3'-deoxy adenosine 5'-triphosphate
-
-
3-(2-hydroxy-5-methylanilino)-1,2,4-triazin-5(4H)-one
residual activity compared to wild-type enzyme is 70%
3-(2-hydroxy-5-methylanilino)-6-methyl-1,2,4-triazin-5(4H)-one
residual activity compared to wild-type enzyme is 44%
3-(2-hydroxy-5-methylanilino)-6-phenyl-1,2,4-triazin-5(4H)-one
residual activity compared to wild-type enzyme is 36%
3-(2-hydroxyanilino)-6-methyl-1,2,4-triazin-5(4H)-one
residual activity compared to wild-type enzyme is 38%
3-(3-hydroxy-4-methylanilino)-6-methyl-1,2,4-triazin-5(4H)-one
residual activity compared to wild-type enzyme is 83%
3-(3-hydroxyanilino)-6-methyl-1,2,4-triazin-5(4H)-one
residual activity compared to wild-type enzyme is 40%
3-(3-hydroxyanilino)-6-phenyl-1,2,4-triazin-5(4H)-one
residual activity compared to wild-type enzyme is 57%
3-(4-hydroxy-2-methylanilino)-1,2,4-triazin-5(4H)-one
residual activity compared to wild-type enzyme is 51%
3-(4-hydroxy-2-methylanilino)-6-methyl-1,2,4-triazin-5(4H)-one
residual activity compared to wild-type enzyme is 70%
3-(4-hydroxyanilino)-6-methyl-1,2,4-triazin-5(4H)-one
residual activity compared to wild-type enzyme is 55%
3-(4-hydroxyanilino)-6-phenyl-1,2,4-triazin-5(4H)-one
residual activity compared to wild-type enzyme is 36%
3-(5-chloro-2-hydroxyanilino)-1,2,4-triazin-5(4H)-one
residual activity compared to wild-type enzyme is 45%
3-(5-chloro-2-hydroxyanilino)-6-methyl-1,2,4-triazin-5(4H)-one
residual activity compared to wild-type enzyme is 42%
3-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]-3-methylbutan-2-one
-
-
3-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]-4-methylpentan-2-one
-
-
3-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]butan-2-one
-
-
3-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]heptan-4-one
-
-
3-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]hexan-2-one
-
-
3-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]pentan-2-one
-
-
3-[(3-oxo-2,3-dihydro-1,2,4-triazin-5-yl)amino]benzoic acid
residual activity compared to wild-type enzyme is 69%
3-[(4-oxo-3,4-dihydroquinazolin-2-yl)amino]benzoic acid
residual activity compared to wild-type enzyme is 36%
3-[(6-methyl-3-oxo-2,3-dihydro-1,2,4-triazin-5-yl)amino]benzoic acid
residual activity compared to wild-type enzyme is 57%
3-[4-(2-oxopropyl)anilino]-6-phenyl-1,2,4-triazin-5(4H)-one
residual activity compared to wild-type enzyme is 52%
4-methyl-3-[(3-oxo-2,3-dihydro-1,2,4-triazin-5-yl)amino]benzoic acid
residual activity compared to wild-type enzyme is 65%
4-methyl-3-[(4-methyl-6-oxo-1,6-dihydropyrimidin-2-yl)amino]benzoic acid
residual activity compared to wild-type enzyme is 56%
4-[(4-methyl-6-oxo-1,6-dihydropyrimidin-2-yl)amino]benzoic acid
residual activity compared to wild-type enzyme is 70%
4-[(5-methyl-6-oxo-1,6-dihydropyrimidin-2-yl)amino]benzoic acid
residual activity compared to wild-type enzyme is 71%
4-[(5-oxo-4,5-dihydro-1,2,4-triazin-3-yl)amino]benzoic acid
residual activity compared to wild-type enzyme is 70%
4-[(6-methyl-3-oxo-2,3-dihydro-1,2,4-triazin-5-yl)amino]benzoic acid
residual activity compared to wild-type enzyme is 64%
5-(2-hydroxy-4-methylanilino)-1,2,4-triazin-3(2H)-one
residual activity compared to wild-type enzyme is 73%
5-(2-hydroxy-5-methylanilino)-1,2,4-triazin-3(2H)-one
residual activity compared to wild-type enzyme is 70%
5-(2-hydroxyanilino)-1,2,4-triazin-3(2H)-one
residual activity compared to wild-type enzyme is 72%
5-(2-hydroxyanilino)-6-methyl-1,2,4-triazin-3(2H)-one
residual activity compared to wild-type enzyme is 67%
5-(4-hydroxy-2-methylanilino)-6-methyl-1,2,4-triazin-3(2H)-one
residual activity compared to wild-type enzyme is 72%
5-(4-hydroxyanilino)-1,2,4-triazin-3(2H)-one
residual activity compared to wild-type enzyme is 70%
5-(4-hydroxyanilino)-6-methyl-1,2,4-triazin-3(2H)-one
residual activity compared to wild-type enzyme is 55%
5-(5-chloro-2-hydroxy-phenylamino)-2H-[1,2,4]triazin-3-one
5-(5-chloro-2-hydroxy-phenylamino)-6-methyl-2H-[1,2,4]triazin-3-one
5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole
5-fluoro-2,1-benzoxaborol-1(3H)-ol
5-phenylamino-2H-[1,2,4]triazin-3-one
-
5-[(6-methyl-3-oxo-2,3-dihydro-1,2,4-triazin-5-yl)amino]benzene-1,3-dicarboxylic acid
residual activity compared to wild-type enzyme is 72%
6,8-dibenzyl-2-(4-methylphenyl)-4,7-dioxo-N-(prop-2-en-1-yl)hexahydro-2H-pyrazino[2,1-c][1,2,4]triazine-1(6H)-carboxamide
-
6-(2,2-dimethoxyethoxy)-2,1-benzoxaborol-1(3H)-ol
-
-
6-(2-methoxyethoxy)-2,1-benzoxaborol-1(3H)-ol
-
-
6-(3-hydroxypropyl)-2,1-benzoxaborol-1(3H)-ol
-
-
6-(benzyloxy)-2,1-benzoxaborol-1(3H)-ol
-
-
6-(cyclohexylmethoxy)-2,1-benzoxaborol-1(3H)-ol
-
-
6-(propan-2-yloxy)-2,1-benzoxaborol-1(3H)-ol
-
-
6-(pyridin-2-ylmethoxy)-2,1-benzoxaborol-1(3H)-ol
-
-
6-(quinolin-2-yloxy)-2,1-benzoxaborol-1(3H)-ol
-
-
6-butoxy-2,1-benzoxaborol-1(3H)-ol
-
-
6-dimethylaminopurine riboside 5'-triphosphate
-
-
6-ethoxy-2,1-benzoxaborol-1(3H)-ol
-
-
6-mercaptopurine riboside 5'-triphosphate
-
-
6-methylaminopurine riboside 5'-triphosphate
-
-
6-propoxy-2,1-benzoxaborol-1(3H)-ol
-
-
6-[(2-fluorobenzyl)oxy]-2,1-benzoxaborol-1(3H)-ol
-
-
6-[(3-hydroxypentan-2-yl)oxy]-2,1-benzoxaborol-1(3H)-ol
-
-
7-(3-hydroxypropyl)-2,1-benzoxaborol-1(3H)-ol
-
-
8-benzyl-6-[(4-chlorophenyl)methyl]-2-(4-methylphenyl)-4,7-dioxo-N-(prop-2-en-1-yl)hexahydro-2H-pyrazino[2,1-c][1,2,4]triazine-1(6H)-carboxamide
-
8-benzyl-N-([1,1'-biphenyl]-2-yl)-2-methyl-4,7-dioxo-6-(propan-2-yl)hexahydro-2H-pyrazino[2,1-c][1,2,4]triazine-1(6H)-carboxamide
-
adenine arabinoside 5'-triphosphate
-
-
adenyl(alpha,beta-methylene)triphosphonate
-
-
adenylyl(beta,gamma-imido)triphosphonate
-
-
adenylyl(beta,gamma-methylene)diphosphonate
-
-
Al3+
-
in vitro the enzyme is inhibited by 40% at 0.04 mM, Al3+ inhibits the enzyme in vivo and in vitro, quantitative analysis, in vivo acceptor activity of tRNALeu is decreased by 23% thereby the leucyl-tRNA synthetase activity is increased by 20%, overview
BC-LI-0186
-
the interaction between RagD and LRS is disrupted by compound BC-LI-0186 inhibitong the translocation of the enzyme to the lysosome
Cd2+
-
in presence of 0.1 mM Mg2+
ethyl (2E)-3-(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)prop-2-enoate
-
-
ethyl 2-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]-2-methylpropanoate
-
-
ethyl 2-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]butanoate
-
-
ethyl 2-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]propanoate
-
-
ethyl 3-(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)propanoate
-
-
ethyl 3-(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-7-yl)propanoate
-
-
ethyl [(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy](phenyl)acetate
-
-
ethyl [(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]acetate
-
-
methyl [(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]acetate
-
-
N,8-dibenzyl-6-[(4-hydroxyphenyl)methyl]-2-methyl-4,7-dioxohexahydro-2H-pyrazino[2,1-c][1,2,4]triazine-1(6H)-carboxamide
-
N-(4-fluorophenyl)-8-[(furan-2-yl)methyl]-2-methyl-4,7-dioxo-6-[3-[N'-(2,2,4,6,7-pentamethyl-2,3-dihydro-1-benzofuran-5-yl)carbamimidamido]propyl]hexahydro-2H-pyrazino[2,1-c][1,2,4]triazine-1(6H)-carboxamide
-
-
N-benzyl-8-butyl-2-(4-methylphenyl)-4,7-dioxo-6-(propan-2-yl)hexahydro-2H-pyrazino[2,1-c][1,2,4]triazine-1(6H)-carboxamide
-
N-benzyl-8-butyl-6-[(4-chlorophenyl)methyl]-2-(4-methylphenyl)-4,7-dioxohexahydro-2H-pyrazino[2,1-c][1,2,4]triazine-1(6H)-carboxamide
-
N-benzyl-8-[(furan-2-yl)methyl]-2-(4-methylphenyl)-4,7-dioxo-6-(propan-2-yl)hexahydro-2H-pyrazino[2,1-c][1,2,4]triazine-1(6H)-carboxamide
-
N-ethyl-2-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]acetamide
-
-
N-tert-butyl-2-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]acetamide
-
-
NaCl
-
no activity of isoform LeuRS1 is detected in NaCl solutions
O-[N-(L-norvalyl)sulfamoyl]adenosine
analogue to the reaction intermediate, non-hydrolyzable
Purine riboside 5'-triphosphate
-
-
tert-butyl [(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]acetate
-
-
tert-butyl [2-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]ethyl]carbamate
-
-
Zn2+
-
in presence of 0.1 mM Mg2+
[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]acetaldehyde
-
-
[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-6-yl)oxy]acetic acid
-
-
[4-[(4-oxo-3,4-dihydroquinazolin-2-yl)amino]phenyl]acetic acid
residual activity compared to wild-type enzyme is 37%
[4-[(5-oxo-4,5-dihydro-1,2,4-triazin-3-yl)amino]phenyl]acetic acid
residual activity compared to wild-type enzyme is 72%
[4-[(6-methyl-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl)amino]phenyl]acetic acid
residual activity compared to wild-type enzyme is 71%
5-(5-chloro-2-hydroxy-phenylamino)-2H-[1,2,4]triazin-3-one

binding mode, overview
5-(5-chloro-2-hydroxy-phenylamino)-2H-[1,2,4]triazin-3-one
residual activity compared to wild-type enzyme is 18%, binding mode, overview
5-(5-chloro-2-hydroxy-phenylamino)-6-methyl-2H-[1,2,4]triazin-3-one

binding mode, overview
5-(5-chloro-2-hydroxy-phenylamino)-6-methyl-2H-[1,2,4]triazin-3-one
residual activity compared to wild-type enzyme is 2.3%, binding mode, overview
5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole

-
i.e. AN2690, 0.1 mM, 5fold decrease in aminoacylation activity
5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole
-
i.e. AN2690, the editing active site is the proven target for the broad-spectrum drug. But the post-transfer editing by LeuRS is resistant to the broad-spectrum drug AN2690, AN2690 resistance and its possible mechanism, overview
5-fluoro-2,1-benzoxaborol-1(3H)-ol

-
AN-2690, antibiotic which specifically targets the editing active site of LeuRS
5-fluoro-2,1-benzoxaborol-1(3H)-ol
AN-2690, antibiotic which specifically targets the editing active site of LeuRS
AMP

-
-
ATP

-
at high concentration, the A293 mutants are ore sensitive
ATP
-
at high concentration, the mutants are more sensisitve than the wild-type enzyme
p-chloromercuribenzoate

-
-
p-chloromercuribenzoate
-
-
additional information

-
aminoacylation and editing reaction are resistant to inactivation by compound AN2690
-
additional information
-
development of a GlLeuRS-specific inhibitor for the treatment of giardiasis
-
additional information
inhibition by high levels of mono- and divalent cations
-
additional information
-
inhibition by high levels of mono- and divalent cations
-
additional information
design and synthesis of tetra-substituted hexahydro-4H-pyrazino[2,1-c][1,2,4]triazine-4,7(6H)-diones as beta-turn mimetics via tandem N-acyliminium cyclization using a parallel synthetic strategy involving both solid and solution-phase reactions. Construction of a 162-member library of tetra-substituted pyrazinotriazinediones with an average purity of 90% using a solid-phase parallel synthesis platform, and screening for the LRS-RagD interaction inhibition by the compounds, overview
-
additional information
derivatives of 5-phenylamino-2H-[1,2,4]triazin-3-one as leucyl-tRNA synthetase (LeuRS) inhibitors, docking study, overview. The inhibitory activity of some compounds against pathogenic LeuRS is 10fold higher compared to the human enzyme. Hydrogen bond-foming amino acids in active site of LeuRS are Phe97, Tyr99, Glu103, His109, Tyr113, Asp137, Ser631, Gly678, Glu680, His681, Gln714, Ile717, Lys759, and Ile760
-
additional information
-
derivatives of 5-phenylamino-2H-[1,2,4]triazin-3-one as leucyl-tRNA synthetase (LeuRS) inhibitors, docking study, overview. The inhibitory activity of some compounds against pathogenic LeuRS is 10fold higher compared to the human enzyme. Hydrogen bond-foming amino acids in active site of LeuRS are Phe97, Tyr99, Glu103, His109, Tyr113, Asp137, Ser631, Gly678, Glu680, His681, Gln714, Ile717, Lys759, and Ile760
-
additional information
derivatives of 5-phenylamino-2H-[1,2,4]triazin-3-one as leucyl-tRNA synthetase (LeuRS) inhibitors, docking study, overview. The inhibitory activity of some compounds against pathogenic LeuRS is 10fold higher compared to the human enzyme. Hydrogen bond-foming amino acids in active site of LeuRS are Phe97, Tyr99, Glu103, His109, Tyr113, Asp137, Ser631, Gly678, Glu680, His681, Gln714, Ile717, Lys759, and Ile760. No inhibition by 5-[(6-methyl-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl)amino]cyclohexa-2,4-diene-1-carboxylic acid, 4-[(4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)amino]benzoic acid, 2-(2-hydroxyanilino)-5,6,7,8-tetrahydroquinazolin-4(3H)-one, 4-[(6-oxo-4-propyl-1,6-dihydropyrimidin-2-yl)amino]benzoic acid, 2-(4-hydroxyanilino)-6-propylpyrimidin-4(3H)-one, 2-(2-hydroxyanilino)-6-propylpyrimidin-4(3H)-one, 2-(4-hydroxy-2-methylanilino)-6-propylpyrimidin-4(3H)-one, 2-(3-hydroxy-4-methylanilino)-6-propylpyrimidin-4(3H)-one, 3-(2-hydroxyanilino)-1,2,4-triazin-5(4H)-one, 3-(4-hydroxyanilino)-1,2,4-triazin-5(4H)-one, and 2-(2-hydroxyanilino)-3,5,6,7-tetrahydro-4H-cyclopenta[d]pyrimidin-4-one
-
additional information
-
derivatives of 5-phenylamino-2H-[1,2,4]triazin-3-one as leucyl-tRNA synthetase (LeuRS) inhibitors, docking study, overview. The inhibitory activity of some compounds against pathogenic LeuRS is 10fold higher compared to the human enzyme. Hydrogen bond-foming amino acids in active site of LeuRS are Phe97, Tyr99, Glu103, His109, Tyr113, Asp137, Ser631, Gly678, Glu680, His681, Gln714, Ile717, Lys759, and Ile760. No inhibition by 5-[(6-methyl-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl)amino]cyclohexa-2,4-diene-1-carboxylic acid, 4-[(4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)amino]benzoic acid, 2-(2-hydroxyanilino)-5,6,7,8-tetrahydroquinazolin-4(3H)-one, 4-[(6-oxo-4-propyl-1,6-dihydropyrimidin-2-yl)amino]benzoic acid, 2-(4-hydroxyanilino)-6-propylpyrimidin-4(3H)-one, 2-(2-hydroxyanilino)-6-propylpyrimidin-4(3H)-one, 2-(4-hydroxy-2-methylanilino)-6-propylpyrimidin-4(3H)-one, 2-(3-hydroxy-4-methylanilino)-6-propylpyrimidin-4(3H)-one, 3-(2-hydroxyanilino)-1,2,4-triazin-5(4H)-one, 3-(4-hydroxyanilino)-1,2,4-triazin-5(4H)-one, and 2-(2-hydroxyanilino)-3,5,6,7-tetrahydro-4H-cyclopenta[d]pyrimidin-4-one
-
additional information
-
enzyme drug inhibitor design and development based on the benzoxaborole structure, inhibitory potencies and effectiveness a anti-trypanosomal drugs, ligand, i.e. benzoxaborole-AMP, docking in the LeuRS homology model, overview
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Acidosis, Lactic
Correction for Li and Guan, "Human Mitochondrial Leucyl-tRNA Synthetase Corrects Mitochondrial Dysfunctions Due to the tRNA(Leu(UUR)) A3243G Mutation, Associated with Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Symptoms and Diabetes".
Acidosis, Lactic
Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes.
Acidosis, Lactic
LARS2 Variants Associated with Hydrops, Lactic Acidosis, Sideroblastic Anemia, and Multisystem Failure.
Acidosis, Lactic
The expanding LARS2 phenotypic spectrum: HLASA, Perrault syndrome with leukodystrophy, and mitochondrial myopathy.
Anemia, Sideroblastic
LARS2 Variants Associated with Hydrops, Lactic Acidosis, Sideroblastic Anemia, and Multisystem Failure.
Anemia, Sideroblastic
The expanding LARS2 phenotypic spectrum: HLASA, Perrault syndrome with leukodystrophy, and mitochondrial myopathy.
Carcinogenesis
Implication of leucyl-tRNA synthetase 1 (LARS1) over-expression in growth and migration of lung cancer cells detected by siRNA targeted knock-down analysis.
Carcinogenesis
Inactivation of LARS2, located at the commonly deleted region 3p21.3, by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma.
Carcinoma, Non-Small-Cell Lung
Therapeutic effects of the novel Leucyl-tRNA synthetase inhibitor BC-LI-0186 in non-small cell lung cancer.
CHARGE Syndrome
Laser-capture micro dissection combined with next-generation sequencing analysis of cell type-specific deafness gene expression in the mouse cochlea.
Coma
Prognostic value of time-related Glasgow Coma Scale components in severe traumatic brain injury: a prospective evaluation with respect to 1-year survival and functional outcome.
Deafness
Biallelic variants in LARS2 and KARS cause deafness and (ovario)leukodystrophy.
Deafness
Characterization of a knock-in mouse model of the homozygous p.V37I variant in Gjb2.
Deafness
The expanding LARS2 phenotypic spectrum: HLASA, Perrault syndrome with leukodystrophy, and mitochondrial myopathy.
Diabetes Mellitus, Type 2
Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene.
Diabetes Mellitus, Type 2
Genetic association analysis of LARS2 with type 2 diabetes.
Gram-Negative Bacterial Infections
An assessment of the genetic toxicology of novel boron-containing therapeutic agents.
Hearing Loss
LARS2 Variants Associated with Hydrops, Lactic Acidosis, Sideroblastic Anemia, and Multisystem Failure.
Hearing Loss
Laser-capture micro dissection combined with next-generation sequencing analysis of cell type-specific deafness gene expression in the mouse cochlea.
Hearing Loss
Mutations in LARS2, Encoding Mitochondrial Leucyl-tRNA Synthetase, Lead to Premature Ovarian Failure and Hearing Loss in Perrault Syndrome.
Hearing Loss
Novel Mutations in CLPP, LARS2, CDH23, and COL4A5 Identified in Familial Cases of Prelingual Hearing Loss.
Hearing Loss
The expanding LARS2 phenotypic spectrum: HLASA, Perrault syndrome with leukodystrophy, and mitochondrial myopathy.
Hearing Loss, Sensorineural
Marfanoid habitus is a nonspecific feature of Perrault syndrome.
Infections
Bacterial resistance to leucyl-tRNA synthetase inhibitor GSK2251052 develops during treatment of complicated urinary tract infections.
Infections
Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase.
Infections
Recent development of leucyl-tRNA synthetase inhibitors as antimicrobial agents.
Kallmann Syndrome
Laser-capture micro dissection combined with next-generation sequencing analysis of cell type-specific deafness gene expression in the mouse cochlea.
Liver Failure
Genotypic diversity and phenotypic spectrum of infantile liver failure syndrome type 1 due to variants in LARS1.
Liver Failure
[Clinical feature and molecular diagnostic analysis of the first non-caucasian child with infantile liver failure syndrome type 1].
Lung Neoplasms
Implication of leucyl-tRNA synthetase 1 (LARS1) over-expression in growth and migration of lung cancer cells detected by siRNA targeted knock-down analysis.
Lung Neoplasms
Therapeutic effects of the novel Leucyl-tRNA synthetase inhibitor BC-LI-0186 in non-small cell lung cancer.
Malaria
Recent development of leucyl-tRNA synthetase inhibitors as antimicrobial agents.
Mandibulofacial Dysostosis
Laser-capture micro dissection combined with next-generation sequencing analysis of cell type-specific deafness gene expression in the mouse cochlea.
MELAS Syndrome
Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria.
Migraine Disorders
Samuel Auguste Tissot (1728-1797). His research on migraine.
Mitochondrial Diseases
Biallelic variants in LARS2 and KARS cause deafness and (ovario)leukodystrophy.
Mitochondrial Encephalomyopathies
Correction for Li and Guan, "Human Mitochondrial Leucyl-tRNA Synthetase Corrects Mitochondrial Dysfunctions Due to the tRNA(Leu(UUR)) A3243G Mutation, Associated with Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Symptoms and Diabetes".
Mitochondrial Encephalomyopathies
Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes.
Mitochondrial Myopathies
The expanding LARS2 phenotypic spectrum: HLASA, Perrault syndrome with leukodystrophy, and mitochondrial myopathy.
Muscular Diseases
The expanding LARS2 phenotypic spectrum: HLASA, Perrault syndrome with leukodystrophy, and mitochondrial myopathy.
Mycoses
Recent development of leucyl-tRNA synthetase inhibitors as antimicrobial agents.
Nasopharyngeal Carcinoma
Inactivation of LARS2, located at the commonly deleted region 3p21.3, by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma.
Nasopharyngitis
Inactivation of LARS2, located at the commonly deleted region 3p21.3, by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma.
Neoplasms
An In Vivo Gain-of-Function Screen Identifies the Williams-Beuren Syndrome Gene GTF2IRD1 as a Mammary Tumor Promoter.
Neoplasms
Degrés de collaboration perçus entre les patients atteints de cancer et leurs prestataires de soins pendant la radiothérapie.
Neoplasms
Implication of leucyl-tRNA synthetase 1 (LARS1) over-expression in growth and migration of lung cancer cells detected by siRNA targeted knock-down analysis.
Neoplasms
Plant tumour biocontrol agent employs a tRNA-dependent mechanism to inhibit leucyl-tRNA synthetase.
Nephritis, Hereditary
Laser-capture micro dissection combined with next-generation sequencing analysis of cell type-specific deafness gene expression in the mouse cochlea.
Neurologic Manifestations
Biallelic mutations in LARS2 can cause Perrault syndrome type 2 with neurologic symptoms.
Onychomycosis
An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site.
Pediatric Obesity
Prendre le virage des partenariats.
Primary Ovarian Insufficiency
Biallelic variants in LARS2 and KARS cause deafness and (ovario)leukodystrophy.
Primary Ovarian Insufficiency
LARS2 Variants Associated with Hydrops, Lactic Acidosis, Sideroblastic Anemia, and Multisystem Failure.
Primary Ovarian Insufficiency
Marfanoid habitus is a nonspecific feature of Perrault syndrome.
Primary Ovarian Insufficiency
Mutations in LARS2, Encoding Mitochondrial Leucyl-tRNA Synthetase, Lead to Premature Ovarian Failure and Hearing Loss in Perrault Syndrome.
Primary Ovarian Insufficiency
The expanding LARS2 phenotypic spectrum: HLASA, Perrault syndrome with leukodystrophy, and mitochondrial myopathy.
Starvation
Glucose Starvation Blocks Translation at Multiple Levels.
Starvation
Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1.
Starvation
In vivo regulatory responses of four Escherichia coli operons which encode leucyl-tRNAs.
Starvation
Membrane association of leucyl-tRNA synthetase during leucine starvation in Escherichia coli.
Starvation
Mitochondrial leucine tRNA level and PTCD1 are regulated in response to leucine starvation.
Starvation
Regulation of the nuclear genes encoding the cytoplasmic and mitochondrial leucyl-tRNA synthetases of Neurospora crassa.
Starvation
Yeast proteinase yscB inactivates the leucyl tRNA synthetase in extracts of Saccharomyces cerevisiae.
Stroke
A video-game group intervention: Experiences and perceptions of adults with chronic stroke and their therapists: Intervention de groupe à l'aide de jeux vidéo : Expériences et perceptions d'adultes en phase chronique d'un accident vasculaire cérébral et de leurs ergothérapeutes.
Tuberculosis
A prokaryote and human tRNA synthetase provide an essential RNA splicing function in yeast mitochondria.
Tuberculosis
Crucial role of the C-terminal domain of Mycobacterium tuberculosis leucyl-tRNA synthetase in aminoacylation and editing.
Tuberculosis
Discovery of a Potent and Specific M. tuberculosis Leucyl-tRNA Synthetase Inhibitor: (S)-3-(Aminomethyl)-4-chloro-7-(2-hydroxyethoxy)benzo[c][1,2]oxaborol-1(3H)-ol (GSK656).
Tuberculosis
Discovery of novel oral protein synthesis inhibitors of Mycobacterium tuberculosis that target leucyl-tRNA synthetase.
Tuberculosis
Discovery of potent anti-tuberculosis agents targeting leucyl-tRNA synthetase.
Tuberculosis
Dual-target inhibitors of mycobacterial aminoacyl-tRNA synthetases among N-benzylidene-N'-thiazol-2-yl-hydrazines.
Tuberculosis
Dual-targeted hit identification using pharmacophore screening.
Tuberculosis
First-Time-in-Human Study and Prediction of Early Bactericidal Activity for GSK3036656, a Potent Leucyl-tRNA Synthetase Inhibitor for Tuberculosis Treatment.
Tuberculosis
Identification of Mycobacterium tuberculosis leucyl-tRNA synthetase (LeuRS) inhibitors among the derivatives of 5-phenylamino-2H-[1,2,4]triazin-3-one.
Tuberculosis
In Vitro Susceptibility Testing of GSK656 against Mycobacterium Species.
Urinary Tract Infections
Bacterial resistance to leucyl-tRNA synthetase inhibitor GSK2251052 develops during treatment of complicated urinary tract infections.
Usher Syndromes
Laser-capture micro dissection combined with next-generation sequencing analysis of cell type-specific deafness gene expression in the mouse cochlea.
Waardenburg Syndrome
Laser-capture micro dissection combined with next-generation sequencing analysis of cell type-specific deafness gene expression in the mouse cochlea.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
0.16
8-azaadenosine 5'-triphosphate
-
-
1
8-bromoadenosine 5'-triphosphate
0.07
8-Methylaminoadenosine 5'-triphosphate
-
-
0.055
adenosine 5'-O-(3-thiotriphosphate)
-
-
0.002 - 0.0025
Ile-tRNALeu
-
1.034
L-didehydroleucine
-
mutant T252Y
0.0092 - 0.0173
L-isoleucyl-tRNALeu
0.01251 - 0.01643
L-leucyl-Pyrococcus horikoshii tRNALeu(GAG)
-
2.245
L-oxonorvaline
-
mutant T252Y
0.01101 - 0.01313
Natrialba magadii tRNALeu(CAA)
-
0.00335 - 0.00773
Natrialba magadii tRNALeu(GAG)
-
0.00074 - 0.0017
tRNACAGLeu
-
0.00012 - 0.0058
tRNAGAGLeu
-
0.0003 - 0.0014
tRNALeu from Aquifex aeolicus
-
0.00076 - 0.0015
tRNALeu from Escherichia coli
-
0.00032 - 0.0075
tRNALeu(GAG)
-
0.0013 - 0.0044
tRNALeu(UAA)
-
0.0076
tRNALeu(UAG)
-
in 100 mM Tris-HCl (pH 7.8), 30 mM KCl, 12 mM MgCl2, 5 mM dithiothreitol, at 30°C
-
0.0179
tRNALeu(UUR)
-
-
-
0.0012
tRNALeuA35G
-
37°C, pH 7.8
-
0.00052
tRNALeuA73
-
wild-type tRNALeu, pH 7.5, 37°C
-
0.011
tRNALeuA73G
-
37°C, pH 7.8
-
0.0002 - 0.025
tRNALeuCUN
-
0.0003
tRNALeuGAG
-
pH 6.8, 65°C, recombinant wild-type enzyme
-
0.0047
tRNALeuU73
-
tRNALeu isoacceptor, pH 7.5, 37°C
-
0.000018 - 0.006
tRNALeuUUR
-
0.0014
tRNASer mutant
-
pH 7.5, 37°C
-
0.0015 - 0.0025
tRNAUAALeu
-
0.065
tubercidin 5'-triphosphate
-
-
additional information
additional information
-
1
8-bromoadenosine 5'-triphosphate

-
-
1
8-bromoadenosine 5'-triphosphate
-
3'-dATP, tubercidin triphosphate
0.08
ATP

-
mutant E292F, pH 7.8, 37°C
0.09
ATP
recombinant mitochondrial isozyme, pH 7.6, 37°C
0.1
ATP
-
mutants E292Q, E292D, and E292A, pH 7.8, 37°C
0.11
ATP
-
aminoacylation reaction, pH 7.8, 60°C
0.11
ATP
-
mutants E292D and E292K, pH 7.8, 37°C
0.112
ATP
-
65°C, wild-type enzyme
0.1123
ATP
-
pH 6.8, 65°C, recombinant wild-type enzyme
0.113
ATP
-
65°C, recombinant His6-tagged enzyme
0.22
ATP
-
37°C, pH 7.8, mutant enzyme T252E
0.228
ATP
-
recombinant enzyme complex, 65°C
0.23
ATP
-
37°C, pH 7.8, mutant enzyme T25D
0.24
ATP
-
37°C, pH 7.8, native enzyme
0.25
ATP
-
aminoacylation reaction, mutant enzyme, pH 7.8, 37°C
0.26
ATP
-
wild-type enzyme, pH 7.8, 37°C
0.28
ATP
-
recombinant enzyme
0.28
ATP
-
aminoacylation reaction, wild-type enzyme, pH 7.8, 37°C
0.296
ATP
-
pH 7.5, 65°C, mutant R106A
0.323
ATP
-
pH 7.5, 65°C, mutant R97A
0.33
ATP
-
mutant lacking residues Q281 to D294, 45°C
0.351
ATP
-
pH 7.5, 65°C, mutant V108A
0.36
ATP
-
ATP-diphosphate exchange reaction, pH 7.8, 37°C
0.362
ATP
-
pH 7.5, 65°C, mutant D98A
0.366
ATP
-
pH 7.5, 65°C, mutant K100A/Y109A
0.37
ATP
-
pH 7.5, 65°C, mutant N96A
0.373
ATP
-
pH 7.5, 65°C, mutant E114A
0.38
ATP
-
ATP-diphosphate exchange reaction, pH 7.8, 60°C
0.383
ATP
-
pH 7.5, 65°C, mutant T101A
0.472
ATP
-
pH 7.5, 65°C, mutant W103A
0.531
ATP
-
pH 7.5, 65°C, mutant K100A
0.537
ATP
-
pH 7.5, 65°C, mutant Y105A
0.547
ATP
-
pH 7.5, 65°C, mutant F119A
0.55
ATP
-
aminoacylation reaction, pH 7.8, 37°C
0.551
ATP
-
pH 7.5, 65°C, mutant D121A
0.578
ATP
-
pH 7.5, 65°C, wild-type enzyme
0.584
ATP
-
pH 7.5, 65°C, mutant K100A/Y105A
0.59 - 1
ATP
-
pH 7.5, 65°C, mutant Y109A
0.653
ATP
-
pH 8.2, 45°C, mutant W155A
0.675
ATP
-
pH 8.2, 45°C, mutant Q154A
0.683
ATP
-
pH 8.2, 45°C, mutant K170A
0.687
ATP
-
pH 8.2, 45°C, mutant K166A
0.688
ATP
-
wild-type, 45°C
0.698
ATP
-
pH 8.2, 45°C, mutant K148A
0.711
ATP
-
pH 8.2, 45°C, mutant S153A
0.725
ATP
-
37°C, pH 7.6, leucylation, DELTAChcLeuRS (a C-terminal 89-amino acid truncated enzyme form)
0.728
ATP
-
pH 8.2, 45°C, mutant K142A
0.772
ATP
-
pH 8.2, 45°C, mutant K141A
0.773
ATP
-
37°C, pH 7.6, leucylation, full-length enzyme
0.796
ATP
-
pH 7.5, 65°C, mutant I104A
0.812
ATP
-
pH 8.2, 45°C, mutant K139A
0.822
ATP
-
pH 8.2, 45°C, mutant K144A
0.834
ATP
-
pH 8.2, 45°C, mutant K152A
0.837
ATP
-
pH 7.5, 65°C, mutant E113A
0.99
ATP
-
recombinant mitochondrial isozyme mutant, 37°C
1.025
ATP
-
pH 8.2, 45°C, mutant D173A
1.157
ATP
-
pH 7.5, 65°C, mutant T118A
1.169
ATP
-
pH 8.2, 45°C, mutant E165A
1.308
ATP
-
37°C, pH 7.6, ATP-diphosphate exchange, full-length enzyme
1.349
ATP
-
37°C, pH 7.6, ATP-diphosphate exchange, DELTAChcLeuRS (a C-terminal 89-amino acid truncated enzyme form)
2.129
ATP
-
pH 8.2, 45°C, mutant E167A
2.177
ATP
-
pH 7.5, 65°C, mutant I115A
0.002
Ile-tRNALeu

mutant enzyme R185E, in 100 mM HEPES (pH 7.8), 10 mM MgCl2, at 37°C
-
0.0021
Ile-tRNALeu
wild type enzyme, in 100 mM HEPES (pH 7.8), 10 mM MgCl2, at 37°C
-
0.0024
Ile-tRNALeu
mutant enzyme R286E, in 100 mM HEPES (pH 7.8), 10 mM MgCl2, at 37°C
-
0.0025
Ile-tRNALeu
mutant enzyme E184R, in 100 mM HEPES (pH 7.8), 10 mM MgCl2, at 37°C
-
0.25
L-isoleucine

-
pH 7.5, 37°C
0.698
L-isoleucine
-
37°C
2.04
L-isoleucine
wild-type, pH 7.6, 30°C
2.8
L-isoleucine
-
ATP-diphosphate exchange reaction, mutant enzyme, pH 7.8, 37°C
3.3
L-isoleucine
mutant D399A, pH 7.6, 30°C
3.5
L-isoleucine
-
ATP-diphosphate exchange reaction, wild-type enzyme, pH 7.8, 37°C
14
L-isoleucine
-
pH 7.5, 37°C
0.0092
L-isoleucyl-tRNALeu

-
wild-type, pH 7.5, 37°C
0.0122
L-isoleucyl-tRNALeu
-
mutant Y515A, pH 7.5, 37°C
0.0147
L-isoleucyl-tRNALeu
-
mutant Y520H, pH 7.5, 37°C
0.0173
L-isoleucyl-tRNALeu
-
mutant Y520A, pH 7.5, 37°C
0.008
L-Leu

-
-
0.05
L-Leu
-
adenylyl (beta,gamma-imido)diphosphonate
0.0011
L-leucine

-
-
0.0013
L-leucine
-
ATP-diphosphate exchange reaction, pH 7.8, 37°C
0.0015
L-leucine
-
wild-type enzyme, aminoacylation
0.0016
L-leucine
-
ATP-diphosphate exchange reaction, pH 7.8, 60°C
0.0016
L-leucine
-
mutant enzyme T252V, aminoacylation
0.002
L-leucine
-
mutant enzyme T252S, aminoacylation
0.0024
L-leucine
-
pH 8.2, 45°C, mutant K152A
0.0035
L-leucine
-
pH 8.2, 45°C, mutant Q154A
0.0036
L-leucine
-
mutant enzyme T252A, aminoacylation
0.00537
L-leucine
-
pH 7.5, 65°C, mutant N96A
0.0054
L-leucine
-
mutant Y515A, pH 8.2, 45°C
0.0054
L-leucine
-
mutant Y515E, pH 8.2, 45°C
0.0054
L-leucine
-
mutant Y520H, pH 8.2, 45°C
0.00555
L-leucine
-
pH 7.5, 65°C, mutant Y105A
0.00559
L-leucine
-
pH 7.5, 65°C, mutant I115A
0.00569
L-leucine
-
pH 7.5, 65°C, mutant I104A
0.0057
L-leucine
-
pH 7.5, 65°C, mutant K100A/Y109A
0.0058
L-leucine
-
37°C, pH 7.6, leucylation, DELTAChcLeuRS (a C-terminal 89-amino acid truncated enzyme form)
0.00581
L-leucine
-
pH 7.5, 65°C, mutant V108A
0.0059
L-leucine
-
mutant lacking residues Q281 to D294, 45°C
0.00592
L-leucine
-
pH 7.5, 65°C, wild-type enzyme
0.00592
L-leucine
-
pH 7.5, 65°C, mutant D98A
0.006
L-leucine
-
aminoacylation reaction, pH 7.8, 60°C
0.006
L-leucine
-
pH 6.8, 65°C, recombinant wild-type enzyme
0.006
L-leucine
-
mutant Y520A, pH 8.2, 45°C
0.0061
L-leucine
-
wild-type, pH 8.2, 45°C
0.00618
L-leucine
-
pH 7.5, 65°C, mutant E113A
0.00623
L-leucine
-
pH 7.5, 65°C, mutant E114A
0.0063
L-leucine
-
pH 7.5, 65°C, mutant K100A/Y105A
0.00636
L-leucine
-
pH 7.5, 65°C, mutant T118A
0.0064
L-leucine
-
aminoacylation reaction, pH 7.8, 37°C
0.0064
L-leucine
-
65°C, recombinant His6-tagged enzyme
0.0064
L-leucine
-
65°C, wild-type enzyme
0.00721
L-leucine
-
pH 7.5, 65°C, mutant D121A
0.0075
L-leucine
-
37°C, pH 7.6, leucylation, full-length enzyme
0.0077
L-leucine
-
mutant lacking residues S295 to L304, 45°C
0.0077
L-leucine
-
mutant Y520E, pH 8.2, 45°C
0.008
L-leucine
-
mutant Y515K, pH 8.2, 45°C
0.0083
L-leucine
-
recombinant enzyme complex, 65°C
0.00843
L-leucine
-
isoform LeuRS1, in 20 mM Tris-HCl, pH 9.0, 3.5 M KCl, 30 mM MgCl2, 1 mM dithiohtreitol, at 40°C
0.00854
L-leucine
-
pH 7.5, 65°C, mutant R106A
0.00871
L-leucine
-
pH 7.5, 65°C, mutant W103A
0.00891
L-leucine
-
pH 7.5, 65°C, mutant K100A
0.009
L-leucine
-
wild-type, 45°C
0.00902
L-leucine
-
pH 7.5, 65°C, mutant Y109A
0.00927
L-leucine
-
pH 7.5, 65°C, mutant R97A
0.00984
L-leucine
-
pH 7.5, 65°C, mutant T101A
0.01
L-leucine
-
recombinant mitochondrial isozyme mutant, 37°C
0.0118
L-leucine
-
pH 7.5, 65°C, mutant F119A
0.0119
L-leucine
-
pH 8.2, 45°C, mutant W155A
0.012
L-leucine
-
mutant E292K, pH 7.8, 37°C
0.0124
L-leucine
-
pH 8.2, 45°C, mutant K148A
0.013
L-leucine
-
mutant E292S, pH 7.8, 37°C
0.0132
L-leucine
-
pH 8.2, 45°C, mutant K141A
0.014
L-leucine
-
mutant E292D, E292A, and E292F pH 7.8, 37°C
0.0141
L-leucine
-
pH 8.2, 45°C, mutant K170A
0.0145
L-leucine
-
pH 8.2, 45°C, mutant K142A
0.0147
L-leucine
-
pH 8.2, 45°C, mutant K166A
0.015
L-leucine
-
pH 7.5, 37°C
0.015
L-leucine
-
aminoacylation reaction, wild-type and mutant enzyme, pH 7.8, 37°C
0.015
L-leucine
-
recombinant and native enzyme
0.015
L-leucine
-
wild-type enzyme and mutant E292Q, pH 7.8, 37°C
0.0151
L-leucine
-
pH 8.2, 45°C, mutant K139A
0.0153
L-leucine
-
pH 8.2, 45°C, mutant K144A
0.0157
L-leucine
-
pH 8.2, 45°C, mutant E165A
0.0159
L-leucine
-
pH 8.2, 45°C, mutant S153A
0.0162
L-leucine
-
pH 8.2, 45°C, mutant E167A
0.0165
L-leucine
-
pH 8.2, 45°C, mutant D173A
0.018
L-leucine
-
mutant T252Y
0.019
L-leucine
-
37°C, pH 7.8, mutant enzyme T252E
0.019
L-leucine
-
37°C, pH 7.8, mutant enzyme T25D
0.02
L-leucine
-
37°C, pH 7.8, native enzyme
0.021
L-leucine
-
recombinant mitochondrial isozyme mutant, 37°C
0.024
L-leucine
wild-type, pH 7.6, 30°C
0.039
L-leucine
wild type enzyme, in 100 mM HEPES (pH 7.8), 10 mM MgCl2, at 37°C
0.045
L-leucine
recombinant mitochondrial isozyme, pH 7.6, 37°C
0.0456
L-leucine
-
pH 7.6, 37°C, wild-type enzyme
0.05
L-leucine
-
pH 7.6, 37°C, mutant D399A
0.052
L-leucine
-
ATP-diphosphate exchange reaction, wild-type enzyme, pH 7.8, 37°C
0.064
L-leucine
-
37°C, pH 7.6, ATP-diphosphate exchange, DELTAChcLeuRS (a C-terminal 89-amino acid truncated enzyme form)
0.069
L-leucine
-
ATP-diphosphate exchange reaction, mutant enzyme, pH 7.8, 37°C
0.075
L-leucine
-
37°C, pH 7.6, ATP-diphosphate exchange, full-length enzyme
0.13
L-leucine
-
pH 7.5, 37°C
0.891
L-leucine
-
isoform LeuRS2, in 20 mM Tris-HCl, pH 9.0, 3.5 M KCl, 30 mM MgCl2, 1 mM dithiohtreitol, at 40°C
0.9
L-leucine
mutant D399A, pH 7.6, 30°C
0.01251
L-leucyl-Pyrococcus horikoshii tRNALeu(GAG)

-
isoform LeuRS1, in 20 mM Tris-HCl, pH 9.0, 3.5 M KCl, 30 mM MgCl2, 1 mM dithiohtreitol, at 40°C
-
0.01643
L-leucyl-Pyrococcus horikoshii tRNALeu(GAG)
-
isoform LeuRS2, in 20 mM Tris-HCl, pH 9.0, 3.5 M KCl, 30 mM MgCl2, 1 mM dithiohtreitol, at 40°C
-
0.983
L-methionine

-
37°C
6.2
L-methionine
-
ATP-diphosphate exchange reaction, mutant enzyme, pH 7.8, 37°C
7.5
L-methionine
-
ATP-diphosphate exchange reaction, wild-type enzyme, pH 7.8, 37°C
0.01
Leu

-
-
0.01101
Natrialba magadii tRNALeu(CAA)

-
isoform LeuRS1, in 20 mM Tris-HCl, pH 9.0, 3.5 M KCl, 30 mM MgCl2, 1 mM dithiohtreitol, at 40°C
-
0.01313
Natrialba magadii tRNALeu(CAA)
-
isoform LeuRS2, in 20 mM Tris-HCl, pH 9.0, 3.5 M KCl, 30 mM MgCl2, 1 mM dithiohtreitol, at 40°C
-
0.00335
Natrialba magadii tRNALeu(GAG)

-
isoform LeuRS2, in 20 mM Tris-HCl, pH 9.0, 3.5 M KCl, 30 mM MgCl2, 1 mM dithiohtreitol, at 40°C
-
0.00773
Natrialba magadii tRNALeu(GAG)
-
isoform LeuRS1, in 20 mM Tris-HCl, pH 9.0, 3.5 M KCl, 30 mM MgCl2, 1 mM dithiohtreitol, at 40°C
-
0.00074
tRNACAGLeu

pH 7.8, 37°C, recombinant wild-type enzyme
-
0.0017
tRNACAGLeu
pH 7.8, 37°C, recombinant mutant R668A
-
0.00012
tRNAGAGLeu

pH 7.8, 37°C, recombinant mutant R703A
-
0.0003
tRNAGAGLeu
pH 7.8, 65°C, recombinant wild-type enzyme
-
0.00031
tRNAGAGLeu
pH 7.8, 65°C, recombinant mutant R98A
-
0.00039
tRNAGAGLeu
pH 7.8, 65°C, recombinant mutant R98E
-
0.00044
tRNAGAGLeu
pH 7.8, 37°C, recombinant mutant K692A
-
0.00052
tRNAGAGLeu
pH 7.8, 37°C, recombinant mutant K698A
-
0.0006
tRNAGAGLeu
pH 7.8, 37°C, recombinant mutant K699A
-
0.00065
tRNAGAGLeu
pH 7.8, 37°C, recombinant mutant K696A
-
0.00075
tRNAGAGLeu
pH 7.8, 65°C, recombinant mutant R94A
-
0.00081
tRNAGAGLeu
pH 7.8, 65°C, recombinant mutant R94A/R98A
-
0.00081
tRNAGAGLeu
pH 7.8, 65°C, recombinant mutant R94E
-
0.00088
tRNAGAGLeu
pH 7.8, 65°C, recombinant mutant R94E/R98E
-
0.002
tRNAGAGLeu
pH 7.8, 37°C, recombinant wild-type enzyme
-
0.0022
tRNAGAGLeu
pH 7.5, 37°C, recombinant wild-type enzyme
-
0.0022
tRNAGAGLeu
pH 7.5, 37°C, recombinant mutant R668A/R672A
-
0.0024
tRNAGAGLeu
pH 7.5, 37°C, recombinant mutant K671A
-
0.0024
tRNAGAGLeu
pH 7.5, 37°C, recombinant mutant R672A
-