Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
216.5 kDa protein
-
-
-
-
3CD protein
-
precursor of the RNA-dependent RNA polymerase, although 3CD is a fully functional protease, it lacks polymerase activity
3Dpol-like protein
-
the RNA-dependent RNA polymerase is associated with the 3Dpol-like protein
HC-J4 NS5BDELTA21
-
a C-terminally truncated polymerase based on the consensus sequence of pCV-J4L6S
hepatitis C virus polymerase
-
inner layer protein VP1
-
-
-
-
JEV NS5
-
nonstructural protein that carries both methyltransferase and RNA-dependent RNA polymerase (RdRp) domains
large structural protein
-
-
-
-
M1 phosphoprotein
-
-
-
-
nonstructural phosphoprotein
-
-
-
-
nonstructural protein
-
-
-
-
nonstructural protein 12
-
NS5B RNA-dependent RNA polymerase
NS5b-directed RNA polymerase
-
-
nucleocapsid phosphoprotein
-
-
-
-
nucleotidyltransferase, ribonucleate, RNA-dependent
-
-
-
-
Phage f2 replicase
-
-
-
-
picornaviral 3D polymerase
plant-encoded RNA-dependent RNA polymerase 1
-
polymerase acidic protein
-
-
-
-
polymerase basic 1 protein
-
-
-
-
proteins, specific or class, lambda3, of reovirus
-
-
-
-
proteins, specific or class, PB 1
-
-
-
-
proteins, specific or class, PB 2
-
-
-
-
replicase, phage f2
-
-
-
-
ribonucleic acid replicase
-
-
-
-
ribonucleic acid-dependent ribonucleate nucleotidyltransferase
-
-
-
-
ribonucleic acid-dependent ribonucleic acid polymerase
-
-
-
-
ribonucleic replicase
-
-
-
-
ribonucleic synthetase
-
-
-
-
RNA dependent RNA polymerase
RNA nucleotidyltransferase (RNA-directed)
-
-
-
-
RNA transcriptase
-
-
-
-
RNA-binding protein
-
-
-
-
RNA-dependent ribonucleate nucleotidyltransferase
-
-
-
-
RNA-dependent RNA polymerase
RNA-dependent RNA polymerase 1
RNA-Dependent RNA Polymerase 2
-
-
RNA-dependent RNA polymerase 6
-
-
RNA-dependent RNA polymerase NIb
RNA-dependent RNA polymerase NS5B
-
-
RNA-dependent RNA polymerases
RNA-dependent RNA replicase
-
-
-
-
RNA-dependent RNA-polymerase
RNA-directed RNA polymerase
-
-
-
-
RNA-directed RNA polymerase L
RNAdependent RNA polymerase
Q9LKP0
-
SARS-CoV-2 RNA polymerase
-
SARSCoV-2-core polymerase complex
-
3D polymerase

-
-
-
-
3Dpol

-
-
HCV NS5B polymerase

-
-
HCV NS5B polymerase
-
-
-
influenza polymerase PA

-
influenza polymerase PA
-
-
JEV NS5 protein

-
-
jRdRp

-
nonstructural protein 5B

-
-
-
-
nonstructural protein 5B
-
-
nonstructural protein 5B
-
NS5

-
-
NS5
-
consists of a C-terminal RNA-dependent RNA polymerase domain and an N-terminal methyltransferase domain
NS5
-
consists of a C-terminal RNA-dependent RNA polymerase domain and an N-terminal methyltransferase domain
NS5
-
consists of a C-terminal RNA-dependent RNA polymerase domain and an N-terminal methyltransferase domain
NS5
-
consists of a C-terminal RNA-dependent RNA polymerase domain and an N-terminal methyltransferase domain
NS5
-
consists of a C-terminal RNA-dependent RNA polymerase domain and an N-terminal methyltransferase domain
NS5
-
consists of a C-terminal RNA-dependent RNA polymerase domain and an N-terminal methyltransferase domain
NS5
-
consists of a C-terminal RNA-dependent RNA polymerase domain and an N-terminal methyltransferase domain
NS5
-
consists of a C-terminal RNA-dependent RNA polymerase domain and an N-terminal methyltransferase domain
NS5
-
NS5 consists of an N-terminal methyltransferase domain and the C-terminal RNA-dependent RNA polymerase (RdRp) domain
NS5
-
NS5 consists of an N-terminal methyltransferase domain and the C-terminal RNA-dependent RNA polymerase (RdRp) domain
-
NS5 protein

-
bifunctional and contains 900 amino acids. The S-adenosyl methionine transferase activity resides within its N-terminal domain, and residues 270 to 900 form the RNA-dependent RNA polymerase (RdRp) catalytic domain
NS5 RdRp

-
NS5 is a viral nonstructural protein that carries both methyltransferase and RNA-dependent RNA polymerase domains, it is a key component of the viral RNA replicase complex that presumably includes other viral nonstructural and cellular proteins
NS5B

-
-
-
-
NS5B polymerase

-
-
NS5B protein

-
-
-
-
NS5B RdRp

-
-
NS5B RNA-dependent RNA polymerase

-
-
NS5B RNA-dependent RNA polymerase
-
nsp12

MN908947
-
picornaviral 3D polymerase

-
picornaviral 3D polymerase
-
-
Qbeta replicase

-
-
-
-
RDR

-
-
RDR1

-
-
RDR2

-
-
RDR6

-
-
RDRP

-
-
-
-
RDRP
-
-
662739, 690468, 690615, 691257, 691273, 693537, 695258, 704921, 705419, 737661, 738870
RDRP
-
758581, 758739, 759010, 759029, 759086, 759153, 759164, 759229, 759350, 759357, 759377, 759513, 759517, 759551, 759616, 759672, 759673, 759687, 759688, 759693, 759699, 759829, 759905, 760198, 760199
RNA dependent RNA polymerase

-
-
RNA dependent RNA polymerase
-
RNA dependent RNA polymerase
-
-
-
RNA dependent RNA polymerase
-
RNA polymerase

-
-
RNA-dependent RNA polymerase

-
-
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
Q6DLV0
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
662733, 662739, 690468, 690470, 690615, 691255, 693537, 695258, 705419, 738678, 759501, 759504
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
Rotavirus A RRV
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
MN908947
-
RNA-dependent RNA polymerase
-
758581, 758739, 759010, 759086, 759100, 759153, 759164, 759229, 759350, 759357, 759377, 759513, 759517, 759551, 759616, 759672, 759673, 759688, 759693, 759699, 759829, 759847, 759905, 760198, 760199
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
consists of three viral proteins, PB1, PB2, and PA
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
RNA-dependent RNA polymerase
-
-
-
RNA-dependent RNA polymerase 1

-
RNA-dependent RNA polymerase 1
-
RNA-dependent RNA polymerase NIb

-
-
RNA-dependent RNA polymerase NIb
-
-
RNA-dependent RNA polymerase NIb
-
-
RNA-dependent RNA polymerase NIb
-
-
RNA-dependent RNA polymerases

-
-
RNA-dependent RNA polymerases
-
-
RNA-dependent RNA polymerases
-
-
RNA-dependent RNA-polymerase

-
-
RNA-dependent RNA-polymerase
-
RNA-dependent RNA-polymerase
-
-
RNA-dependent RNA-polymerase
-
-
RNA-dependent RNA-polymerase
-
-
RNA-dependent RNA-polymerase
-
-
RNA-dependent RNA-polymerase
-
-
RNA-dependent RNA-polymerase
-
-
RNA-dependent RNA-polymerase
-
-
RNA-dependent RNA-polymerase
-
-
RNA-dependent RNA-polymerase
-
-
RNA-dependent RNA-polymerase
-
-
RNA-directed RNA polymerase L

-
RNA-directed RNA polymerase L
-
-
RNA-directed RNA polymerase L
-
RNA-directed RNA polymerase L
-
RRF-3

-
-
RrpC

-
transcriptase

-
-
-
-
VP1

-
-
-
-
additional information

-
the RDR enzymes belong to the RDR family
additional information
-
the enzyme belongs to the supergroup I of RNA-dependent RNA polymerases
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(dT)12 + UTP
diphosphate + ?
-
assay uses poly(A) as an RNA template and oligo(dT)12-18 as the primer. Enzyme is strictly dependent on the presence of primer
-
-
?
2'-C-methyl-ATP + RNAn
diphosphate + RNAn+1
-
-
-
ir
5-fluorouridine triphosphate + RNAn
diphosphate + RNAn+1
-
the enzyme incorporates 5-fluorouridine monophosphate during RNA elongation in place of UMP or CMP using homopolymeric and heteropolymeric templates. Incorporation of 5-fluorouridine monophosphate does not prevent chain elongation, and, in some sequence contexts, it favors misincorporations at downstream positions. 5-Fluorouridine monophosphate is incorporated into the nascent RNA and occupies the new 3'-end of the primer at the active site of the enzyme. 5-Fluorouridine monophosphate establishes a Watson and Crick pair with the corresponding acceptor AMP in the template strand and an additional hydrogen bond with Ser304 of the polymerase. Further interactions, similar to those observed with standard nucleotides, contribute also to stabilize 5-fluorouridine monophosphate in the 3'-terminus of the RNA. When present in the template, 5-fluorouridine monophosphate directs the incorporation of AMP and GMP, with ATP being a more effective substrate than GTP. The misincorporation of GMP is 17fold faster opposite 5-fluorouridine than opposite U in the template. But Incorporated 5-fluorouridine monophosphate is not a chain terminator during RNA elongation
RNA with incoporated 5-fluorouridine phosphate
-
?
ara-ATP + RNAn
diphosphate + RNAn+1
-
-
-
ir
ATP + poly(U)
diphosphate + ?
ATP + RNAn
diphosphate + RNAn+1
ATP + sshRNAn
diphosphate + sshRNAn+1
-
-
-
-
?
CTP + RNA9
diphosphate + RNA10
AJ242654
-
-
-
?
CTP + RNAn
diphosphate + RNAn+1
CTP + sshRNAn
diphosphate + sshRNAn+1
-
-
-
-
?
dATP + RNAn
diphosphate + RNAn+1
-
-
-
ir
GTP + poly(C)
diphosphate + ?
GTP + poly(C)
diphosphate + poly(C)n+1
-
-
-
-
?
GTP + poly(C)n
diphosphate + poly(C)n+1
-
-
-
-
?
GTP + RNAn
diphosphate + RNAn+1
GTP + sshRNAn
diphosphate + sshRNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
remdesivir triphosphate + RNAn
diphosphate + RNAn 3'-remdesivir
remdesivir triphosphate + RNAn
diphosphate + RNAn+1
remdesivir triphosphate is effective in combating COVID-19 because it is a better substrate than ATP for the viral RNA-dependent RNA polymerase
-
-
?
rGTP + RNAn
diphosphate + RNAn+1
ribavirin triphosphate + RNAn
?
ribavirin is a guanosine analogue that can be a substrate for the viral RNA polymerase. HCV is genetically variable, and this genetic variation can affect the polymerase's use of ribavirin triphosphate, overview
-
-
?
UTP + poly(A)n
diphosphate + poly(A)n+1
-
-
-
-
?
UTP + RNAn
diphosphate + RNAn+1
UTP + sshRNAn
diphosphate + sshRNAn+1
-
-
-
-
?
additional information
?
-
ATP + poly(U)

diphosphate + ?
-
-
-
-
?
ATP + poly(U)
diphosphate + ?
-
-
-
-
?
ATP + RNAn

ADP + RNAn+1
-
-
-
-
?
ATP + RNAn
ADP + RNAn+1
-
-
-
-
?
ATP + RNAn
ADP + RNAn+1
RNA template with the first 25 nucleotides from the TrC (Trailer complement) sequence
-
-
?
ATP + RNAn
ADP + RNAn+1
-
-
-
?
ATP + RNAn
ADP + RNAn+1
-
-
-
-
?
ATP + RNAn
ADP + RNAn+1
-
-
-
-
?
ATP + RNAn
ADP + RNAn+1
-
-
-
?
ATP + RNAn

diphosphate + RNAn+1
-
-
-
-
?
ATP + RNAn
diphosphate + RNAn+1
-
-
-
ir
ATP + RNAn
diphosphate + RNAn+1
-
-
-
ir
ATP + RNAn
diphosphate + RNAn+1
-
-
-
-
?
ATP + RNAn
diphosphate + RNAn+1
-
-
-
?
ATP + RNAn
diphosphate + RNAn+1
-
-
-
ir
ATP + RNAn
diphosphate + RNAn+1
-
-
-
ir
CTP + RNAn

CDP + RNAn+1
-
-
-
-
?
CTP + RNAn
CDP + RNAn+1
-
-
-
-
?
CTP + RNAn
CDP + RNAn+1
RNA template with the first 25 nucleotides from the TrC (Trailer complement) sequence
-
-
?
CTP + RNAn
CDP + RNAn+1
-
-
-
?
CTP + RNAn
CDP + RNAn+1
-
-
-
-
?
CTP + RNAn
CDP + RNAn+1
-
-
-
-
?
CTP + RNAn
CDP + RNAn+1
-
-
-
?
CTP + RNAn

diphosphate + RNAn+1
-
-
-
-
?
CTP + RNAn
diphosphate + RNAn+1
-
-
-
-
?
CTP + RNAn
diphosphate + RNAn+1
-
-
-
ir
GTP + poly(C)

diphosphate + ?
-
use of poly(C) as template annealed with oligoG12 as primer
-
-
?
GTP + poly(C)
diphosphate + ?
-
use of poly(C) as template annealed with oligoG12 as primer
-
-
?
GTP + RNAn

diphosphate + RNAn+1
with poly(rC)
-
-
?
GTP + RNAn
diphosphate + RNAn+1
-
-
-
-
?
GTP + RNAn
diphosphate + RNAn+1
-
-
-
-
?
GTP + RNAn
diphosphate + RNAn+1
-
-
-
-
?
GTP + RNAn

GDP + RNAn+1
-
-
-
-
?
GTP + RNAn
GDP + RNAn+1
-
-
-
-
?
GTP + RNAn
GDP + RNAn+1
RNA template with the first 25 nucleotides from the TrC (Trailer complement) sequence
-
-
?
GTP + RNAn
GDP + RNAn+1
-
-
-
?
GTP + RNAn
GDP + RNAn+1
-
-
-
-
?
GTP + RNAn
GDP + RNAn+1
-
-
-
-
?
GTP + RNAn
GDP + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn

diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
the enzyme should be involved in the replication of BaMV
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
full-length negative strand BBV RNAs are synthesized
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
the enzyme synthesizes single-stranded RNA transcripts of one polarity which are identical in size to the denatured parental double-stranded RNA segments
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
the enzyme is active in an in vitro RNA polymerase assay using homopolymeric RNA or BVDV minigenomic RNA templates. The major product is a covalently linked double-stranded molecule. In addition, a nucleotide-nonspecific and template-independent terminal nucleotidyl transferase activity is observed
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
dependent on and specific for BMV RNA
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
RNAs of Brome mosaic virus and the closely related cowpea Chlorotic mottle virus are the most effective, but some activity is also shown by certain other viral nucleic acids and polyribonucleotides
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
using poly(rA)/(dT)15 as a template-primer system
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
using poly(rA)/(dT)15 as a template-primer system
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
the enzyme is completely dependent on exogenous template. The enzyme utilizes a variety of viral RNAs and CMV satellite RNA as template for minus-strand synthesis. Cellular RNAs are not used as templates
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
the enzyme copies CMV RNA and several other viral RNAs, Brome mosaic virus RNA, Alfalfa mosaic virus RNA and Tobacco mosaic virus RNA. Activity with poly(C) and poly(U) but not poly(A) or poly(G). The product with CMV RNA as template is heterogenous in size with a peak length of about 150 residues
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
GTP + CMV RNA, yeast RNA or poly(C)
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
Q6DLV0
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
Q6DLV0
homopolymer C as the template and biotinoligo(G)20 as the primer
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
Q6DLV0
using homopolymer C as the template
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
enzyme initiates RNA synthesis in a primer- and poly(A)-dependent manner in vitro
product is double-stranded RNA
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
the enzyme does not manifest strict specificity towards EMC RNA template. It can use also Qbeta RNA, rRNA of BHK cells or poly(C)
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
rNTP substrate binding structure, multistep model of nucleotide incorporation, overview
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
catalysis and translocation are uncoupled in the viral RNA-dependent RNA polymerase. A motif B loop may assist the movement of the template strand in late stages of transcription
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
poly(A)-dependent oligo(U)-primed poly(U) polymerase activity. In the presence of an oligo(U) primer, the enzyme catalyzes the synthesis of a full-length copy of either poliovirus or globin RNA templates. In the absence of added primer, RNA products up to twice the length of the template are synthesized
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
kinetic mechanism for single nucleotide incorporation catalyzed by poliovirus polymerase in presence of Mg2+
-
-
r
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
RdRP incorporation of incorrect nucleosides is inefficient, making precise determination of kinetic parameters experimentally challenging. The fidelity for poliovirus polymerase 3Dpol ranges from 12000 to 1000000 for transition mutations and 32000 to 43000000 for transversion mutations
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
VPg (a peptide comprising the 3B region of protein 3AB) is the 22-residue soluble product of 3AB cleavage and serves as the protein primer for RNA replication
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
substrate is HP1 RNA
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
when the nucleotide concentrations are low, C is incorporated at the fastest rate and G at the slowest. G-incorporation step largely limits the overall reaction rate
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
synthesis of RNA in response to RNA template. An RNA primer can substitute for GTP to allow initiation. Mn2+ might reduce the template specificity by forming a complex with GTP that is more efficiently incorporated than is Mg*GTP with unfavored template
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
GTP and polyC
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
GTP and polyC
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
composed of one phage-coded polypeptide and three host-supplied polypeptides which function in the biosynthesis of proteins in the uninfected host. Two of theses polypeptides, protein elongation factors EF-Tu and EF-Ts, are required for initiation of transcription by replicase with all templates
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
Qbeta replicase is an RNA-dependent RNA polymerase responsible for replicating the RNA genome of coliphage Qbeta and plays a key role in the life cycle of the Qbeta phage
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
kinetic model for the RNA replication reaction
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
synthesis of RNA in response to RNA template. An RNA primer can substitute for GTP to allow initiation. Mn2+ might reduce the template specificity by forming a complex with GTP that is more efficiently incorporated than is Mg*GTP with unfavored template
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
GTP and polyC
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
GTP and polyC
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
synthesis of RNA in response to RNA template. An RNA primer can substitute for GTP to allow initiation. Mn2+ might reduce the template specificity by forming a complex with GTP that is more efficiently incorporated than is Mg*GTP with unfavored template
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
GTP and polyC
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
purified recombinant FMDV 3D is active in polymerization assays using homopolymeric and heteropolymeric primer templates and in binding to RNA
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
rNTP substrate binding structure, multistep model of nucleotide incorporation, overview
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
rNTP substrate binding structure, multistep model of nucleotide incorporation, overview
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
Foxtail mosaic potexvirus
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
inducible enzyme
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
ATP, the enzyme requires a single-stranded molecule of RNA or polyribonucleotide as template, initiates new chains with purine ribonucleoside triphosphates
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
661081, 662733, 673227, 690468, 690470, 690615, 691255, 691257, 691273, 692029, 693537, 695258, 737570, 738678, 738870, 759501 -
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
polyC/oligoG is more efficient in supporting the HCV NS5B polymerase activity than polyA/oligodT. PolyA/oligoU or polyI/oligodC
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
the enzyme performs RNA- or DNA oligonucleotide primer-dependent RNA synthesis on templates with a blocked 3' end or on homopolymeric templates
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
ribonucleotide-incorporating activity on an in vitro transcribed RNA containing the 3' end of the HCV genome. It also possesses ribunucleotide incorporation activity, to a lesser extent, on in vitro transcribed foreign RNA templates when RNA or DNA primers are present. The activity is higher with DNA primers than with RNA primers
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
RNA-dependent RNA polymerase activity uses poly(C) most efficiently as a template but is inactive on poly(U) and poly(G). The enzyme is able to copy a full-length or nearly full-length genome in the absence of additional viral or cellular cofactors. Poly(C)-oligo(G)12 is the most efficient substrate
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
once synthesis has begun, the C-terminally truncated enzyme NS5B(DELTA21) does not dissociate from the template until a complete double strand copy of the RNA is made
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
replication of Hepatitits C virus is thought to proceed via the initial synthesis of a complementary (-)RNA strand, which serves, in turn, as a template for the production of progeny (+)-strand RNA molecules. An RNA-dependent RNA polymerase is postulated to be involved in these steps
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
essential catalytic enzyme for HCV replication. NS5A binds RNA-dependent RNA polymerase and modulates RNA-dependent RNA polymerase activity
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
NS5B RdRp is essential for viral replication
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
poly(C) RNA template
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
nculeotides are GTP, CTP, ATP, and UTP, the RNA templates for the enzyme assay are transcribed from linearized murine inducible nitric oxide synthase, iNOS, clone having 400 nt insert in an in vitro transcription reaction using SP6 RNA polymerase
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
rNTP substrate binding structure, multistep model of nucleotide incorporation, overview
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
rNTP substrate binding structure, multistep model of nucleotide incorporation, overview
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
B2 RNA is a substrate for RNA dependent RNA polymerization by Pol II
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
B2 RNA is a substrate for RNA dependent RNA polymerization by Pol II. Extension of B2 RNA by Pol II occurs from the 3'-end and is internally templated and requires all four NTPs, mechanism, overview. No activity with B2 RNA mutated at C155 to G
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
in presence of Mg2+ significant activity is observed when poly(A) or poly(C) is used as template and the activity is template and primer-dependent. Poly(G) and poly(U) templates are not efficient substrates. Biotinylated oligoDNA primers appear to work slightly more efficiently than oligoRNA primers. In presence of Mn2+ activity is stimulated 2.5-5.6fold. RNA synthesis using poly(C) as template becomes primer-independent
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
RNA polymerase activity on homopolymeric templates poly(A) and poly(C) and heteropolymeric RNA templates primed with either RNA or DNA oligonucleotide primers or self-primed by a copy-back mechanism
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
required for replication of the HRV RNA genome
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
rNTP substrate binding structure, multistep model of nucleotide incorporation, overview
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
rNTP substrate binding structure, multistep model of nucleotide incorporation, overview
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
rNTP substrate binding structure, multistep model of nucleotide incorporation, overview
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
in vitro transcription using the model RNA template, v84
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
various RNA substrates: Alu RNA, 110 nucleotides of the Alu domain of Pyrococcus horikoshii SRP RNA, Candida albicans tRNAAsn, U-rich RNA (59-GGCCAUCCUGU7 CCCU11CU19-39)29, ph-RNA of 81 nucleotides30, and short ph-RNA of 36 nucleotides comprising just the conserved 3' and 5' ends with a short linker and circular single stranded DNA
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
various RNA substrates: Alu RNA, 110 nucleotides of the Alu domain of Pyrococcus horikoshii SRP RNA, Candida albicans tRNAAsn, U-rich RNA (59-GGCCAUCCUGU7 CCCU11CU19-39)29, ph-RNA of 81 nucleotides30, and short ph-RNA of 36 nucleotides comprising just the conserved 3' and 5' ends with a short linker and circular single stranded DNA
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
replication occurs through de novo initiation and involves a complementary RNA intermediate
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
JEV NS5 protein can initiate RNA synthesis through a de novo initiation mechanism. JEV NS5 protein is more efficient in using negative-strand RNA templates, indicating that the JEV NS5 protein is involved in regulating the ratio of positive strand RNA to negative strand RNA
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
JEV NS5 protein can initiate RNA synthesis through a de novo initiation mechanism. JEV NS5 protein is more efficient in using negative-strand RNA templates
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
the NS5 protein is able to use both plus- and minus-strand 3'-untranslated regions of the JEV genome as templates in the absence of a primer, with the latter RNA being a better template. Analysis of the RNA synthesis initiation site using the 3'-end 83 nucleotides of the JEV genome as a minimal RNA template reveals that the NS5 protein specifically initiates RNA synthesis from an internal site, U81, at the two nucleotides upstream of the 3'-end of the template
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
poly(A) RNA template
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
uses JEV and dengue-2 virus 3' end plus- and minus-strand RNA templates, the incorporation of [32P]-UMP is much lower when using positive-strand RNA as template than when using negative-strand RNA - an almost 10fold difference in efficiency
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
primer-free initiation assay with 13-nt RNA template, and ATP, CTP, FAM-UTP, and GTP, and additionally with a primer (5'-GUUCACACAGAUAAACUUCU-3') with a 6-FAM-labeled at the 5'-end in the primer extension assay
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
JEV NS5 protein can initiate RNA synthesis through a de novo initiation mechanism. JEV NS5 protein is more efficient in using negative-strand RNA templates, indicating that the JEV NS5 protein is involved in regulating the ratio of positive strand RNA to negative strand RNA
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
JEV NS5 protein can initiate RNA synthesis through a de novo initiation mechanism. JEV NS5 protein is more efficient in using negative-strand RNA templates
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
uses JEV and dengue-2 virus 3' end plus- and minus-strand RNA templates, the incorporation of [32P]-UMP is much lower when using positive-strand RNA as template than when using negative-strand RNA - an almost 10fold difference in efficiency
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
primer-free initiation assay with 13-nt RNA template, and ATP, CTP, FAM-UTP, and GTP, and additionally with a primer (5'-GUUCACACAGAUAAACUUCU-3') with a 6-FAM-labeled at the 5'-end in the primer extension assay
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
incorporation is more dependent on exogenopus UTP and GTP than ATP or CTP
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
incorporation is more dependent on exogenopus UTP and GTP than ATP or CTP
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
La France isometric virus
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
La France isometric virus
-
the enzyme is probably a transcriptase engaged in the synthesis of ssRNA transcripts corresponding to each of the virion-associated dsRNAs
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
the polymerase product anneals only to measles RNA and not to Vero cell RNA
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
the enzyme catalyzes cap methylation of virus-specific mRNA as well as RNA synthesis
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
viral ribonucleoprotein complexes and purified recombinant L protein but not P protein exhibit mRNA (guanine-7-)methyl-transferase activity. mRNA synthesis in a reconstituted transcription system using purified N protein-genomic RNA complex as a template requires both the L and P proteins. Enzymatic properties of Senda virus mRNA (guanine-7-)methyl-transferase are different to that of cellular mRNA (guanine-7-)methyl-transferase. Unlike cellular enzyme, the SeV enzyme preferentially methylates capped RNA containing the viral mRNA 5'-end sequences (GpppApGpG-). The C-terminal part (amino acid residues 1,756Ć¢ĀĀ2,228) of the L protein catalyzes cap methylation, whereas the N-terminal half (residues 1Ć¢ĀĀ1,120) containing putative RNA polymerase subdomains does not
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
the random polymers poly(UG), poly(UC), poly(AG) and poly(AU) serve as more effective templates than homopolymers
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
NV 3Dpol yields two different products when incubated with synthetic RNA in vitro: (1) a double-stranded RNA consisting of two single strands of opposite polarity or (2) the single-stranded RNA template labelled at its 39 terminus by terminal transferase activity. Initiation of RNA synthesis by NV 3Dpol on heteromeric RNA template occurs de novo
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
rNTP substrate binding structure, multistep model of nucleotide incorporation, overview
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
the polymerase structure is switchable, with a discrete set of contacts stabilizing the initiation-competent form of the enzyme so that relatively modest changes can have-range effects, controlling the switch from the initiation to elongation phase, with premature conformational switching producing a structure that preferentially initiates by back-priming
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
template is RNA, the phi6 polymerase is highly processive and can use either single- or double-stranded RNA as a template and synthesizes a full-length complementary strand of an RNA
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
NTPs are ATP, GTP, CTP, and UTP, roles of the negatively charged plough area on the polymerase surface, of the rim of the template tunnel and of the template specificity pocket that is key in the formation of the productive RNA-polymerase binary complex. The positively charged rim of the template tunnel has a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
the enzyme (RdRP) is essential for both transcription and replication of the viral RNA genome
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
in addition to RNA-dependent RNA polymerase activity the enzyme also possesses cap-snatching capacity
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
in addition to RNA-dependent RNA polymerase activity the enzyme also possesses cap-snatching capacity
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
key enzyme of replication
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
in a synthetic RNA template-dependent reaction, sapovirus 3Dpol synthesizes a double-stranded RNA or labels the template 3' terminus by terminal transferase activity. Initiation of RNA synthesis occurs de novo on heteropolymeric templates or in a primer dependent manner on polyadenylated templates
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
essential enzyme for viral RNA replication
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
key enzyme responsible for the SARS-CoV-2 replication process, catalyzes the synthesis of complementary minus strand RNA and genomic plus strand RNA. Identification of potential key agents for targeting RNA-dependent RNA polymerase of SARS-CoV-2 by integrated analysis and virtual drug screening
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
RNA-dependent RNA polymerase is a key enzyme which regulates the viral replication of SARS-CoV-2
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
the enzyme plas a key role in the replication of SARS-CoV-2
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
the enzyme plays a crucial role in SARS-CoV-2 replication
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
the nsp12 (RdRp) is a central component of SARS-CoV-2 replication/transcription machinery. It catalyzes the synthesis of a complementary RNA strand using the virus RNA template with the assistance of nsp7 and nsp8 as cofactors
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
cryo-EM structures of the SARS-CoV-2 RNA polymerase in complexes with RNA, before and after RNA translocation, reveals structural rearrangements that the RNA-dependent RNA polymerase (RdRp) nsp12 and its co-factors (nsp7 and nsp8) undergo to accommodate nucleic acid binding
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
SARS-CoV-2 core polymerase complex has less efficient activity for RNA synthesis and lower thermostability of individual subunits compared with SARSCoV
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
the enzyme synthesizes single-stranded RNA transcripts of one polarity which are identical in size to the denatured parental double-stranded RNA segments
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
nsP4 possesses the RNA-dependent RNA polymerase activity required for the replication of the SIN genome and transcription of a subgenomic mRNA during infection
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
in the absence of other viral proteins nsP4 is capable of copying SIN plus- and minus-strand templates, but does not transcribe subgenomic RNA. Mutations in the 3' conserved sequence element and poly(A) tail of the plus-strand template prevent nsP4-mediated de novo initiation of minus-strand RNA synthesis. nsP4-dependent terminal addition of nucleotides occurs on template RNA possessing certain mutations in the 3' conserved sequence element and polyadenylate tail. nsP4 is capable of minus-strand synthesis independent of the sequence at the 5' end of the template. An A-U rich sequence in the 3' conserved sequence element represents a binding site for a replicase component. Probably nsP4 plus-strand genomic RNA synthesis is dependent on the 3' end of the minus-strand template
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
the enzyme catalyzes in vitro the transcription of short single-stranded RNA and DNA molecules into precise complementary RNA copies up to the full length of these templates. The transcription of RNA-oligonicleotide templates and DNA-oligonucleotide templates is equally effective. Differences in transcription efficiency are found to depend on nucleotide sequence rather than on the RNA or DNA nature of the single-stranded nucleic acid. Double-stranded nucleic acids such as poly(A)*poly(U) and a double-stranded DNA 14-mer are not transcribed. The RdRP-directed transcription can be primed. The unprimed transcription starts preferentially at the 3'-terminal nucleotide of the template. The enzyme is capable of adding a single noncomplementary nucleotide to the 3'-terminus of about 50% of the runoff transcripts. AMP is preferred over GMP whereas CMP and UMP are terminally added at very low frequency
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
key step in the reproduction of plus-stranded RNA viruses pathogens is replication of their single-stranded RNA genomes occuring in the cytosol of host cells in association with membranes and requiring a virally-encoded RNA-dependent RNA polymerase
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
-
-
-
-
?