The human phosphoadenosine-phosphosulfate synthase (PAPS) system is a bifunctional enzyme (fusion product of two catalytic activities). In a first step, sulfate adenylyltransferase catalyses the formation of adenosine 5′-phosphosulfate (APS) from ATP and inorganic sulfate. The second step is catalysed by the adenylylsulfate kinase portion of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) synthase, which involves the formation of PAPS from enzyme-bound APS and ATP. In contrast, in bacteria, yeast, fungi and plants, the formation of PAPS is carried out by two individual polypeptides, sulfate adenylyltransferase (EC 2.7.7.4) and adenylyl-sulfate kinase (EC 2.7.1.25).
The taxonomic range for the selected organisms is: Pseudomonas aeruginosa The enzyme appears in selected viruses and cellular organisms
assimilatory sulfate reduction II, assimilatory sulfate reduction III, assimilatory sulfate reduction IV, dissimilatory sulfate reduction I (to hydrogen sufide)), selenate reduction, sulfate activation for sulfonation, sulfite oxidation III
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
SYSTEMATIC NAME
IUBMB Comments
ATP:sulfate adenylyltransferase
The human phosphoadenosine-phosphosulfate synthase (PAPS) system is a bifunctional enzyme (fusion product of two catalytic activities). In a first step, sulfate adenylyltransferase catalyses the formation of adenosine 5'-phosphosulfate (APS) from ATP and inorganic sulfate. The second step is catalysed by the adenylylsulfate kinase portion of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase, which involves the formation of PAPS from enzyme-bound APS and ATP. In contrast, in bacteria, yeast, fungi and plants, the formation of PAPS is carried out by two individual polypeptides, sulfate adenylyltransferase (EC 2.7.7.4) and adenylyl-sulfate kinase (EC 2.7.1.25).