Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(carboxymethyl)cellulose with endohydrolysed (1->4)-beta-D-glucosidic linkages + H2O + O2
?
-
-
-
-
r
1,3-dimethylxanthine + H2O + O2
1,3-dimethylurate + H2O2
-
-
-
-
?
1,7-dimethylxanthine + H2O + O2
1,7-dimethylurate + H2o2
-
-
-
-
?
1-methyl-2-hydroxypurine + H2O + O2
1-methyl-2-hydroxy-7,9-dihydropurin-8-one + H2O2
-
-
-
?
1-methylxanthine + H2O + O2
1-methylurate + H2O2
2,3-dihydroxybenzaldehyde + H2O + O2
2,3-dihydroxybenzoate + H2O2
-
-
-
?
2,5-dihydroxybenzaldehyde + H2O + O2
?
-
-
-
-
?
2,6-diaminopurine + H2O + O2
2,6-diamino-7,9-dihydro-8H-purin-8-one
-
-
-
-
?
2-amino-4-hydroxypteridine + H2O + O2
?
2-amino-4-hydroxypterin + H2O + O2
? + H2O2
-
substrate inhibition kinetic pattern
-
-
?
2-amino-6-chloro-purine + H2O + O2
2-amino-6-chloro-7,9-dihydro-purin-8-one + H2O2
-
-
-
-
?
2-hydroxybenzaldehyde + H2O + O2
2-hydroxybenzoate + H2O2
-
-
-
-
?
2-mercaptopurine + H2O + O2
8-hydroxy-2-mercaptopurine + H2O2
-
no conversion to 2-thioxanthine
-
-
?
2-methoxybenzaldehyde + H2O + O2
2-methoxybenzoate + H2O2
-
-
-
-
?
2-methylbenzaldehyde + H2O + O2
2-methylbenzoate + H2O2
-
-
-
-
?
2-nitrobenzaldehyde + H2O + O2
2-nitrobenzoate + H2O2
-
-
-
-
?
2-oxo-6-methylpurine + H2O + O2
? + H2O2
-
low activity
-
-
?
2-thioxanthine + H2O + O2
2-thiourate + H2O2
-
-
-
-
?
2-thioxanthine + H2O + O2
2-thiouric acid + H2O2
-
-
-
-
?
3,4-dihydroxybenzaldehyde + H2O + O2
3,4-dihydroxybenzoate + H2O2
-
-
-
-
?
3,4-dimethoxybenzaldehyde + H2O + O2
3,4-dimethoxybenzoate + H2O2
-
-
-
-
?
3-hydroxy-4-methoxybenzaldehyde + H2O + O2
3-hydroxy-4-methoxybenzoate + H2O2
-
-
-
-
?
3-hydroxybenzaldehyde + H2O + O2
3-hydroxybenzoate + H2O2
-
-
-
-
?
3-methoxybenzaldehyde + H2O + O2
3-methoxybenzoate + H2O2
-
-
-
-
?
3-methylbenzaldehyde + H2O + O2
3-methylbenzoate + H2O2
-
-
-
-
?
3-methylhypoxanthine + H2O + O2
3-methylxanthine + H2O2
-
-
-
?
3-methylxanthine + H2O + O2
3-methylurate + H2O2
-
-
-
-
?
3-nitrobenzaldehyde + H2O + O2
3-nitrobenzoate + H2O2
-
-
-
-
?
4-hydroxy-3-methoxybenzaldehyde + H2O + O2
4-hydroxy-3-methoxybenzoate + H2O2
-
-
-
-
?
4-hydroxybenzaldehyde + H2O + O2
4-hydroxybenzoate + H2O2
-
-
-
-
?
4-hydroxyphenylglycoaldehyde + H2O + O2
?
-
-
-
-
?
4-methoxybenzaldehyde + H2O + O2
4-methoxybenzoate + H2O2
-
-
-
-
?
4-methylbenzaldehyde + H2O + O2
4-methylbenzoate + H2O2
-
-
-
-
?
4-nitrobenzaldehyde + H2O + O2
4-nitrobenzoate + H2O2
-
-
-
-
?
5-chloro-6-[(2-iminopyrrolidin-1-yl)methyl]-3H-pyrimidin-4-one + H2O + O2
?
-
-
-
-
?
6'-deoxyacyclovir + H2O + O2
acyclovir + H2O2
-
prodrug of the antiviral agent acyclovir
-
?
6,8-dihydroxypurine + H2O + O2
?
-
-
-
-
?
6,8-dihydroxypurine + H2O + O2
? + H2O2
6,8-dihydroxypurine binding structure, overview
-
-
?
6-amino-5-bromo-1H-pyrimidin-2-one + H2O + O2
?
-
-
-
-
?
6-amino-5-bromo-3H-pyrimidin-4-one + H2O + O2
?
-
-
-
-
?
6-amino-5-bromopyrimidine + H2O + O2
?
-
-
-
-
?
6-cyanopurine + H2O + O2
6-cyano-7,9-dihydropurine-8-one
-
-
-
?
6-formylpterin + H2O + O2
?
-
-
-
-
?
6-formylpterin + H2O + O2
? + H2O2
-
-
-
-
?
6-mercaptopurine + 2 H2O + 2 O2
6-thiouric acid + 2 H2O2
6-mercaptopurine + H2O + O2
6-mercapto-7,9-dihydropurin-8-one + H2O2
-
4.4% of activity with xanthin
-
?
6-mercaptopurine + H2O + O2
?
-
an anticancer drug
-
-
?
6-thioxanthine + H2O + O2
6-thiourate + H2O2
6-thioxanthine + H2O + O2
6-thiouric acid + H2O2
-
-
-
-
?
7-alkylpteridin-4-one + H2O + O2
7-alkyllumazine + H2O2
-
-
-
?
7-methylxanthine + H2O + O2
7-methylurate + H2O2
-
-
-
-
?
7-phenylpteridin-4-one + H2O + O2
7-phenyllumazine + H2O2
-
-
-
?
7H-pyrrolo[2,3-d]pyrimidin-2(1H)-one + H2O + O2
?
-
-
-
-
?
7H-pyrrolo[2,3-d]pyrimidin-4(3H)-one + H2O + O2
?
-
-
-
-
?
7H-pyrrolo[2,3-d]pyrimidine + H2O + O2
?
-
-
-
-
?
acetaldehyde + H2O + O2
acetic acid + H2O2
adenine + H2O + O2
6-amino-7,9-dihydropurin-8-one + H2O2
adenine + H2O + O2
? + H2O2
-
substrate inhibition kinetic pattern
-
-
?
aldehyde + indophenol
?
-
-
-
-
r
allopurinol + H2O + O2
oxypurinol + H2O2
benzaldehyde + H2O + O2
benzoate + H2O2
butanal + H2O + O2
butanoate + H2O2
-
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
dibromoacetonitrile + H2O + O2
?
-
-
-
-
r
formaldehyde + H2O + O2
?
-
-
-
-
r
formycin B + H2O + O2
?
-
-
-
-
?
FYX-051 + O2 + H2O
?
-
the structure of bovine XOR exposed to the slow-reacting substrate FYX-051 shows a covalent intermediate of the hydroxylation reaction, in which the hydroxyl oxygen bridged the molybdenumatom and the acceptor carbon atom of the aromatic ring of the substrate
-
-
?
glyceraldehyde-3-phosphate + H2O + O2
?
-
-
-
-
?
glyceryl trinitrate + 2,3-dihydroxybenzaldehyde
?
-
-
-
-
?
glyceryl trinitrate + NADH
? + NAD+ + H2O
-
-
further reaction of organic nitrite with thiols or ascorbate leads to generation of NO or nitrosothiols
-
?
glyceryl trinitrate + xanthine
urate + ?
-
-
-
-
?
guanine + H2O + O2
2-amino-7,9-dihydro-1H-purine-6,8-dione + H2O2
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
hypoxanthine + H2O + O2
urate + H2O2
-
-
-
-
?
hypoxanthine + NAD+ + H2O
xanthine + NADH
indole-3-acetaldehyde + H2O + O2
?
-
-
-
-
?
indole-3-aldehyde + H2O + O2
?
-
-
-
-
?
isosorbide dinitrate + 2,3-dihydroxybenzaldehyde
?
-
-
-
-
?
isosorbide dinitrate + NADH
? + NAD+ + H2O
-
-
further reaction of organic nitrite with thiols or ascorbate leads to generation of NO or nitrosothiols
-
?
isosorbide dinitrate + xanthine
urate + ?
-
-
-
-
?
lumazine + H2O + O2
? + H2O2
-
classical Michaelis-Menten hyperbolic saturation kinetic pattern
-
-
?
N-methylnicotinamide + H2O + O2
?
-
poor oxidation reaction
-
-
r
N1-methylnicotinamide + H2O + O2
?
NADH + H2O + O2
NAD+ + H2O2
NADPH + indophenol
?
-
-
-
-
r
nitrate + 2,3-dihydroxybenzaldehyde
nitrite + ?
-
-
-
-
?
nitrate + NADH
nitrite + NAD+ + H2O
nitrate + xanthine
nitrite + urate + ?
-
-
-
-
?
nitrite + 2,3-dihydroxybenzaldehyde
NO + ?
-
NO generation occurs under aerobic conditions and is regulated by O2 tension, pH, nitrite, and reducing substrate concentrations
-
-
?
nitrite + NADH
NO + NAD+ + H2O
nitrite + O2 + hypoxanthine
peroxynitrite + ?
-
-
-
-
?
nitrite + O2 + pterin
peroxynitrite + ?
-
-
-
-
?
nitrite + xanthine
NO + ?
o-hydroxybenzaldehyde + H2O + O2
o-hydroxybenzoate + H2O2
-
-
-
?
organic nitrate + NADH
organic nitrite + NAD+ + H2O
-
organic nitrite is the initial product in the process of xanthine oxidase mediated organic nitrate biotransformation and is the precursor of NO and nitrosothiols, serving as the link between organic nitrate and soluble guanylyl cyclase
-
-
?
propanal + H2O + O2
propanoate + H2O2
-
-
-
?
pterin + H2O + O2
?
-
fluorometric assay method
-
-
?
pterin + H2O + O2
isoxanthopterin + H2O2
-
-
-
?
pterine + NAD+
? + H2O + NADH
-
-
-
?
purine + H2O + O2
7,9-dihydropurin-8-one + H2O2
purine + NAD+
? + H2O + NADH
-
-
-
?
pyridine 3-aldehyde + H2O + O2
?
-
-
-
-
r
pyridine-2-aldehyde + H2O + O2
?
-
-
-
-
?
pyridine-3-aldehyde + H2O + O2
?
-
-
-
-
?
pyridine-4-aldehyde + H2O + O2
?
-
-
-
-
?
pyrimidine derivatives + H2O + O2
?
salicylaldehyde + H2O + O2
salicylic acid + H2O2
-
-
-
?
succinate semialdehyde + H2O + O2
succinate + H2O2
-
-
-
-
?
xanthine + 2,6-dichlorophenolindophenol + H2O
urate + reduced 2,6-dichlorophenolindophenol
-
-
-
-
?
xanthine + cytochrome c + H2O
urate + reduced cytochrome c
-
-
-
-
?
xanthine + H2O + O2
?
-
-
-
-
?
xanthine + H2O + O2
superoxide + urate + ?
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
xanthine + H2O + O2
uric acid + H2O2
xanthine + methylene blue + O2
urate + reduced methylene blue
-
-
-
-
?
xanthine + NAD+ + H2O
urate + NADH
-
-
-
?
xanthine + NO2-
uric acid + NO
xanthine + O2 + H2O
urate + H2O2
xanthine + thionine + O2
urate + reduced thionine
-
-
-
-
?
xanthopterin + H2O + O2
?
-
-
-
-
?
xanthopterin + H2O + O2
? + H2O2
-
substrate activation kinetic pattern
-
-
?
additional information
?
-
1-methylxanthine + H2O + O2

1-methylurate + H2O2
-
-
-
?
1-methylxanthine + H2O + O2
1-methylurate + H2O2
-
-
-
?
1-methylxanthine + H2O + O2
1-methylurate + H2O2
-
-
-
-
?
1-methylxanthine + H2O + O2
1-methylurate + H2O2
-
-
-
-
?
2-amino-4-hydroxypteridine + H2O + O2

?
-
-
-
-
r
2-amino-4-hydroxypteridine + H2O + O2
?
-
-
-
-
r
6-mercaptopurine + 2 H2O + 2 O2

6-thiouric acid + 2 H2O2
-
-
-
-
?
6-mercaptopurine + 2 H2O + 2 O2
6-thiouric acid + 2 H2O2
-
production of superoxide radicals
-
-
?
6-mercaptopurine + 2 H2O + 2 O2
6-thiouric acid + 2 H2O2
-
a two-step reaction with 6-thioxanthine as intermediate
-
-
?
6-mercaptopurine + 2 H2O + 2 O2
6-thiouric acid + 2 H2O2
-
-
-
-
?
6-mercaptopurine + 2 H2O + 2 O2
6-thiouric acid + 2 H2O2
-
an anticancer prodrug, no activation by xanthine oxidase but conversion to the inactive metabolite 6-thiouric acid, catabolism, overview
-
-
?
6-thioxanthine + H2O + O2

6-thiourate + H2O2
-
-
-
?
6-thioxanthine + H2O + O2
6-thiourate + H2O2
-
-
-
-
?
acetaldehyde + H2O + O2

acetic acid + H2O2
-
-
-
?
acetaldehyde + H2O + O2
acetic acid + H2O2
-
-
-
?
adenine + H2O + O2

6-amino-7,9-dihydropurin-8-one + H2O2
-
-
-
?
adenine + H2O + O2
6-amino-7,9-dihydropurin-8-one + H2O2
-
no activity with adenine
-
-
?
adenine + H2O + O2
6-amino-7,9-dihydropurin-8-one + H2O2
-
-
-
?
allopurinol + H2O + O2

?
-
-
-
-
?
allopurinol + H2O + O2
?
-
-
-
-
?
allopurinol + H2O + O2

oxypurinol + H2O2
-
-
allopurinol is a conventional substrate that generates superoxide radicals during its oxidation
-
?
allopurinol + H2O + O2
oxypurinol + H2O2
-
allopurinol is a substrate and a competitive inhibitor for xanthine oxidase, it binds irreversibly at the active site reducing molybdenum VI to IV
-
-
?
allopurinol + H2O + O2
oxypurinol + H2O2
-
allopurinol is a substrate and a competitive inhibitor for xanthine oxidase, it binds irreversibly at the active site reducing molybdenum VI to IV
-
-
?
benzaldehyde + H2O + O2

benzoate + H2O2
-
-
-
-
?
benzaldehyde + H2O + O2
benzoate + H2O2
-
-
-
-
?
carboxylic aldehyde + H2O + O2

carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
guanine + H2O + O2

2-amino-7,9-dihydro-1H-purine-6,8-dione + H2O2
-
-
-
-
?
guanine + H2O + O2
2-amino-7,9-dihydro-1H-purine-6,8-dione + H2O2
-
53.3% of activity with xanthin
-
?
hypoxanthine + 2 H2O + 2 O2

urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
a two-step reaction with xanthine as intermediate, production of superoxide radicals
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
via intermediate xanthine formation, production of superoxide radicals
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
hypoxanthine binding structure, overview
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
92.3% of activity with xanthin
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
92.3% of activity with xanthin
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
production of superoxide radicals
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
-
?
hypoxanthine + NAD+ + H2O

xanthine + NADH
-
-
-
-
?
hypoxanthine + NAD+ + H2O
xanthine + NADH
-
-
-
-
?
hypoxanthine + NAD+ + H2O
xanthine + NADH
-
-
-
-
?
hypoxanthine + NAD+ + H2O
xanthine + NADH
-
-
-
-
?
hypoxanthine + NAD+ + H2O
xanthine + NADH
-
-
-
-
?
hypoxanthine + NAD+ + H2O
xanthine + NADH
-
-
-
?
hypoxanthine + NAD+ + H2O
xanthine + NADH
-
-
-
?
N1-methylnicotinamide + H2O + O2

?
-
-
-
-
?
N1-methylnicotinamide + H2O + O2
?
-
-
-
-
?
NADH + H2O + O2

NAD+ + H2O2
-
-
-
?
NADH + H2O + O2
NAD+ + H2O2
-
-
-
-
?
nitrate + NADH

nitrite + NAD+ + H2O
-
-
-
-
?
nitrate + NADH
nitrite + NAD+ + H2O
-
reaction can be an important source of NO production in ischemic tissues
-
-
?
nitrite + NADH

NO + NAD+ + H2O
-
-
-
-
?
nitrite + NADH
NO + NAD+ + H2O
-
reaction can be an important source of NO production in ischemic tissues
-
-
?
nitrite + NADH
NO + NAD+ + H2O
-
NO generation occurs under aerobic conditions and is regulated by O2 tension, pH, nitrite, and reducing substrate concentrations
-
-
?
nitrite + xanthine

NO + ?
-
-
-
-
?
nitrite + xanthine
NO + ?
-
NO generation occurs under aerobic conditions and is regulated by O2 tension, pH, nitrite, and reducing substrate concentrations
-
-
?
pteridine + H2O + O2

?
-
-
-
-
?
pteridine + H2O + O2
?
-
and derivatives, e.g.: 4-amino-7-hydroxy pteridine, 4-hydroxy-7-azapteridine
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2

7,9-dihydropurin-8-one + H2O2
-
purine and derivatives
-
?
purine + H2O + O2
7,9-dihydropurin-8-one + H2O2
-
purine and derivatives
-
?
purine + H2O + O2
7,9-dihydropurin-8-one + H2O2
-
23.3% of activity with xanthine
-
?
purine + H2O + O2
7,9-dihydropurin-8-one + H2O2
-
purine and derivatives
-
?
purine + H2O + O2
7,9-dihydropurin-8-one + H2O2
-
purine and derivatives
-
?
purine + H2O + O2

?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
pyrimidine derivatives + H2O + O2

?
-
e.g. 2-hydroxypyrimidine
-
-
?
pyrimidine derivatives + H2O + O2
?
-
6-hydroxy-6-aminepyrimidine
-
-
?
pyrimidine derivatives + H2O + O2
?
-
7-hydroxy-(1,2,5)-thiadiazolo(3,4-d)-pyrimidine
-
-
?
pyrimidine derivatives + H2O + O2
?
-
7-hydroxy-(1,2,5)-thiadiazolo(3,4-d)-pyrimidine
-
-
?
xanthine + H2O + O2

urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
658734, 660329, 673434, 675050, 684878, 685300, 686525, 689276, 714464, 714785, 715264, 716010 -
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
from dead cancer cells
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals
-
-
?
xanthine + H2O + O2
urate + H2O2
-
active site structure, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
orientation of xanthine in the active site of xanthine oxidoreductase,structure, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals, determination of a reactive intermediate oxygen species relevant to superoxide and hydroxyl radicals, method optimization using electron transfer via H2O2, luminol, and aminophthallate, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
catalytically relevant binding mode of the substrate xanthine, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
effects of variations in the cofactor, the substrate, and the active site residue Glu802 on the reaction mechanism, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
substrate inhibition kinetic pattern
-
-
?
xanthine + H2O + O2
urate + H2O2
substrate orientation and catalytic specificity, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals
-
-
?
xanthine + H2O + O2
urate + H2O2
-
the enzyme is involved in development of ischemia and equine laminitis, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals
-
-
?
xanthine + H2O + O2
urate + H2O2
-
the enzyme plays a role in the development of distant organ dysfunction after abdominal surgery, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
old persons show higher enzyme expression and activity than young persons which promotes a worse prognosis for patients with chronic heart failure due to the increased contents of risk factor urate, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of reactive oxygen species via superoxide radicals involved in endothelial dysfunction
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals
-
-
?
xanthine + H2O + O2
urate + H2O2
-
roles of active site residues E308 and R881 in binding and activation of purine substrate, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
the enzyme plays a role in the development of distant organ dysfunction after abdominal surgery, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
urate is involved in development of endothelial dysfunction, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
xanthine oxidase-derived extracellular superoxide anions stimulate activator protein 1 activity and hypertrophy in vascular smooth muscle via c-Jun N-terminal kinase and p38 mitogen-activated protein kinases, xanthine and xanthine oxidase treatment of smooth muscle cells lead to increased cell growth and size, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals, mechanism of stepwise enzyme reduction during catalysis, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals
-
-
?
xanthine + H2O + O2
urate + H2O2
-
xanthine oxidase inhibition, meaning a decrease in myocardial oxidative stress, improves left ventricular dysfunction in dilated cardiomyopathic hamsters, modelling, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals, treatment with an enzyme inhibitor largely prevents the development of endothelial dysfunction and atherosclerosis in mice
-
-
?
xanthine + H2O + O2
urate + H2O2
-
the enzyme plays a role in the development of distant organ dysfunction after abdominal surgery, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
xanthine oxidoreductase, XOR, can exist in a dehydrogenase form, XD, and an oxidase form, XO. Part of total XOR activity in peroxisomes is XO activity. The major function of XOR activity in the cytoplasm of rat liver parenchymal cells and in sinusoidal cells is not the production of O2 radicals, but rather the production of uric acid which can act as a potent antioxidant
-
-
?
xanthine + H2O + O2
urate + H2O2
-
old animals show higher enzyme expression and activity than young rats which promotes a worse prognosis for patients with chronic heart failure due to the increased contents of risk factor urate, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals can be induced by gama-irradiation and contributes to oxidative stress and endothelial nitroredox imbalance with resultant endothelial dysfunction and altered vascular mechanics, mechanism and regulation, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
the enzyme is involved in regulation of reactive oxygen species in the functional response of veins and arteries to angiotensin II, norepinephrine, and acetylcholine
-
-
?
xanthine + H2O + O2
urate + H2O2
-
the enzyme plays a role in the development of distant organ dysfunction after abdominal surgery, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
urate is involved in development of endothelial dysfunction, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
xanthine oxidase inhibition by febuxostat lowers uric acid and alleviates systemic and glomerular hypertension in hyperuricaemia, experimentally-induced by inhibition of uricase with oxonic acid, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
xanthine oxidase is an important source of reactive oxygen species that contributes to neurovascular dysfunction in experimental diabetes, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals, mechanism of stepwise enzyme reduction during catalysis, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
catalytically relevant binding mode of the substrate xanthine, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2

uric acid + H2O2
-
-
-
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
Arthrobacter S-2 enzyme: relatively specific
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor ferricyanide
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor 2,6-dichlorophenolindophenol
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
Arthrobacter S-2 enzyme: relatively specific
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor ferricyanide
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor 2,6-dichlorophenolindophenol
-
?
xanthine + H2O + O2
uric acid + H2O2
-
-
-
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor methylene blue
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor methylene blue
under some conditions the product is mainly superoxide rather than peroxide: RH + H2O + 2 O2 = ROH + 2 H+ + 2 O2-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor NAD+
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor NAD+
under some conditions the product is mainly superoxide rather than peroxide: RH + H2O + 2 O2 = ROH + 2 H+ + 2 O2-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
under some conditions the product is mainly superoxide rather than peroxide: RH + H2O + 2 O2 = ROH + 2 H+ + 2 O2-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor quinones
under some conditions the product is mainly superoxide rather than peroxide: RH + H2O + 2 O2 = ROH + 2 H+ + 2 O2-
?
xanthine + H2O + O2
uric acid + H2O2
-
specificity for electron acceptor is low
-
?
xanthine + H2O + O2
uric acid + H2O2
-
specificity for electron acceptor is low
under some conditions the product is mainly superoxide rather than peroxide: RH + H2O + 2 O2 = ROH + 2 H+ + 2 O2-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor triphenyltetrazolium chloride, phenazine methosulfate, nitrate, cytochrome c, ferritin
-
?
xanthine + H2O + O2
uric acid + H2O2
-
enzyme also oxidizes hypoxanthine, some other purines, pterines and aldehydes, i.e. possesses the activity of EC 1.2.3.1, probably acts on the hydrated derivatives of these substrates
under some conditions the product is mainly superoxide rather than peroxide: RH + H2O + 2 O2 = ROH + 2 H+ + 2 O2-
?
xanthine + H2O + O2
uric acid + H2O2
-
low specificity to substrate
-
?
xanthine + H2O + O2
uric acid + H2O2
-
low specificity to substrate
under some conditions the product is mainly superoxide rather than peroxide: RH + H2O + 2 O2 = ROH + 2 H+ + 2 O2-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor ferricyanide
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor ferricyanide
under some conditions the product is mainly superoxide rather than peroxide: RH + H2O + 2 O2 = ROH + 2 H+ + 2 O2-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor 2,6-dichlorophenolindophenol
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor 2,6-dichlorophenolindophenol
under some conditions the product is mainly superoxide rather than peroxide: RH + H2O + 2 O2 = ROH + 2 H+ + 2 O2-
?
xanthine + H2O + O2
uric acid + H2O2
-
the enzyme accelerates reaction rate via base-catalyzed chemistry in which a Mo-OH group undertakes nucleophilic attack on the carbon center to be hydroxylated, with concomitant hydride transfer to a catalytically essential Mo=S group in the molybdenum coordination sphere. This chemistry appears to proceed via obligate two-electron chemistry rather than in individual steps to yield a reduced enzyme product complex with product coordinmated to the active site molybdenum by means of the newly introduced hydroxyl group in a sinple end-on fashion. Product displacement by hydroxide and electron transfer to other redox-active centers in the enzyme complete the catalytic sequence
-
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor ferricyanide
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor 2,6-dichlorophenolindophenol
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor ferricyanide
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor 2,6-dichlorophenolindophenol
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
enzyme contributes to the oxidant stress component of ischemia-reperfusion injury to intestine and liver, O2- production decreases with increasing substrate concentrations
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + H2O + O2
uric acid + H2O2
-
electron acceptor O2
-
?
xanthine + NO2-

uric acid + NO
-
-
-
?
xanthine + NO2-
uric acid + NO
-
oxidation of the enzyme by NO2- or reduction by xanthine take place at the molybdenum site
-
-
?
xanthine + O2 + H2O

urate + H2O2
-
-
-
-
?
xanthine + O2 + H2O
urate + H2O2
-
-
-
-
?
xanthine + O2 + H2O
urate + H2O2
-
xanthine oxidoreductase exists in two forms. The protein normally exists as xanthine dehydrogenase, XDH, EC 1.17.1.4, and utilizes NAD+ as its final electron acceptor in catalysis. Under certain conditions, most notably schemia and/or hypoxia, XDH can be converted to an oxidase form, XO, which can no longer reduce NAD+ and instead utilizes O2 exclusively as the terminal electron acceptor in the course of turnover. This conversion may occur either by oxidation of sulfhydryl groups and/or by limited proteolysis
-
-
?
xanthine + O2 + H2O
urate + H2O2
-
binding modes of the substrate xanthine and mechanism of its hydroxylation, overview
-
-
?
xanthine + O2 + H2O
urate + H2O2
-
conversion of xanthine to uric acid at the molybdenum-containing active site
-
-
?
xanthine + O2 + H2O
urate + H2O2
-
-
-
-
?
xanthine + O2 + H2O
urate + H2O2
-
-
-
-
?
xanthine + O2 + H2O
urate + H2O2
-
-
-
-
?
xanthine + O2 + H2O
urate + H2O2
-
-
-
-
?
xanthine + O2 + H2O
urate + H2O2
-
binding modes of the substrate xanthine and mechanism of its hydroxylation, overview
-
-
?
additional information

?
-
-
XDH, EC 1.17.1.4, can be converted into xanthine oxidase, XO, either reversibly by oxidation of the sulfhydryl groups of two conserved cysteine residues. Under physiological conditions the XDH form appears to dominate with 80% over the XO form with 20%
-
-
?
additional information
?
-
-
XDH, EC 1.17.1.4, can be converted into xanthine oxidoreductase, XO, either reversibly by oxidation of the sulfhydryl groups of two conserved cysteine residues. Under physiological conditions the XDH form appears to dominate with 80% over the XO form with 20%
-
-
?
additional information
?
-
-
AtXDH1 is capable of oxidizing NADH with concomitant formation of NAD+ and superoxide, the specific activity of recombinant AtXDH1 with NADH as substrate is about 15times higher than the activity with xanthine accompanied by a doubling in superoxide production and is dependent on sulfurated molybdenum cofactor, overview. FAD is crucial for NADH-based superoxide formation of AtXDH1, whereas the molybdenum cofactor has only little or no influence on the activity, residues E831, R909, E1297, W364, and Y421 are involved
-
-
?
additional information
?
-
-
AtXDH1 is capable of oxidizing NADH with concomitant formation of NAD+ and superoxide, the specific activity of recombinant AtXDH1 with NADH as substrate is about 15times higher than the activity with xanthine accompanied by a doubling in superoxide production, overview. FAD is crucial for NADH-based superoxide formation of AtXDH1, whereas the molybdenum cofactor has only little or no influence on the activity, residues E831, R909, E1297, W364, and Y421 are involved
-
-
?
additional information
?
-
-
the catalytic reaction of xanthine oxidase is initiated by abstraction of a proton from the Mo-OH group by a conserved active site glutamate residue. The oxidative hydroxylation of xanthine to uric acid takes place at the molybdenum center and results in the two-electron reduction of the metal from Mo(VI) to Mo(IV). The enzyme is subsequently re-oxidized by NAD+ or molecular oxygen in a reaction that occurs at the FAD cofactor
-
-
?
additional information
?
-
-
the catalytic reaction of xanthine oxidase is initiated by abstraction of a proton from the Mo-OH group by a conserved active site glutamate residue. The oxidative hydroxylation of xanthine to uric acid takes place at the molybdenum center and results in the two-electron reduction of the metal from Mo(VI) to Mo(IV). The enzyme is subsequently re-oxidized by NAD+ or molecular oxygen in a reaction that occurs at the FAD cofactor
-
-
?
additional information
?
-
-
addition of xanthine oxidase to a solution of acetaldehyde and ascorbate increases the rate of ascorbate oxidation, due to the action of superoxide radicals generated in the process
-
-
?
additional information
?
-
-
hydroxyl free radicals generated by the hypoxanthine/xanthine oxidase/Fe system are implicated in oxidation of dibromoacetonitrile to CN-
-
-
?
additional information
?
-
-
5-chloro-6-methyl-3H-pyrimidin-4-one is no substrate
-
-
?
additional information
?
-
-
evaluation of a HPLC detection method for enzyme reaction products, overview
-
-
?
additional information
?
-
-
nature and position of functional group on thiopurine substrates influence activity of xanthine oxidase
-
-
?
additional information
?
-
-
the enzyme also catalyzes the oxidation of hypoxanthine to xanthine as xanthine dehydrogenase, EC 1.17.1.4, using NAD+ a oxidant substrate, XDH, mechanism of transition between XOR and XDH, after conversion reversibly via disulfide formation or irreversibly via proteolytic cleavage involving residues R335, R427, W336, and F549, overview
-
-
?
additional information
?
-
-
during inflammatory conditions, reversible oxidation of critical cysteine residues or limited proteolysis converts xanthine dehydrogenase, XDH, EC 1.17.1.4, to xanthine oxidase, XO, which reduces O2 to superoxide and H2O2. Conversion to XO, however, is not requisite for reactive oxygen species production, as XDH displays partial oxidase activity. Xanthine oxidoreductase generates proinflammatory oxidants and secondary nitrating species, with inhibition of XOR proving beneficial in a variety of disorders
-
-
?
additional information
?
-
-
the oxidation of xanthine takes place at the molybdenum center, and the electrons thus introduced are rapidly transferred to FAD via the Fe-SI and Fe-SII centers. Glu1261, located near the Mo-OH in the salicylate bound-form of XOR, initiates catalysis by deprotonating the Mo-OH group
-
-
?
additional information
?
-
-
quantum mechanical/molecular mechanical study of the reductive half-reaction of wild-type xanthine oxidase, overview
-
-
?
additional information
?
-
-
role of Glu802 is facilitating the tautomerization of hypoxanthine in the course of hydroxylation by the enzyme, substrate binding structures, overview
-
-
?
additional information
?
-
-
xanthine and lumazine are good substrates, while 2-hydroxy-6-methylpurine is a slow and poor substrate
-
-
?
additional information
?
-
scavenging activities of 1,1-diphenyl-2-picryhydrazyl (DPPH) radical and O2 generated with phenazine methosulfate (PMS) and NADH,overview
-
-
?
additional information
?
-
-
the enzyme shows two conformational stages with different activities: one is the xanthine oxidase, the second is xanthine dehydrogenase, EC 1.17.1.4
-
-
?
additional information
?
-
-
xanthine oxidase inhibition in small intestine ischemia-reperfusion injury leads to reduction in neutrophil infiltration
-
-
?
additional information
?
-
-
enzyme inhibitors exert beneficial effect on endothelial dysfunction, mechanisms, overview, mechanism of action in cardiovascular disease, overview
-
-
?
additional information
?
-
-
phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells, overview
-
-
?
additional information
?
-
-
the enzyme activity, but not oxidative damage parameters, at the time of sepsis diagnosis is significantly higher in non-survival septic patients than in survival patients, overview
-
-
?
additional information
?
-
-
the enzyme and its superoxide producing activity are involved in endothelial dysfunction in atherosclerosis, overview
-
-
?
additional information
?
-
-
the enzyme catalyzes the oxidation of endogenous and exogenous purines and pyrimidines
-
-
?
additional information
?
-
-
the enzyme is induced by heat shock, the reactive oxygen species produced by heat shock may play an important role in the heat shock-induced activation of MAPKs, which can induce MMP-1 and-9 expressions, overview
-
-
?
additional information
?
-
-
evaluation of a HPLC detection method for enzyme reaction products, overview
-
-
?
additional information
?
-
-
single nucleotide polymorphisms alter the substrate specificity of the enzyme, overview
-
-
?
additional information
?
-
-
the enzyme interacts with the Toll-like receptor-4, TLR-4, inducing proinflammatory cytokine production, extracellular superoxide production by the enzyme leads to nuclear translocation of nuclear factor-kappaB and increased neutrophil production of the NFkappaB-dependent cytokines tumor necrosis factor-alpha and macrophage inhibitory protein-2 mediated by TLR-4, overview
-
-
?
additional information
?
-
-
the enzyme is capable to generate superoxide radicals and H2O2 derived from it, the synthesis of the radicals is increased upon a temperature shift from 30ưC to 45ưC and by photosensitization of tumor cells with a hematoporphyrin derivative, overview
-
-
?
additional information
?
-
-
the enzyme, together with mitochondrial complex III, is responsible for reactive oygen species production in ischemic muscle, they act in tissue damage after ischemic-reperfusion, regulation, overview
-
-
?
additional information
?
-
-
xanthine oxidase inhibition in small intestine ischemia-reperfusion injury leads to prevention of intestine necrosis
-
-
?
additional information
?
-
-
chronic enzyme inhibition by allopurinol or febuxostat cannot prevent or treat the progression of congestive heart failure induced by coronary artery ligation in rabbits, overview
-
-
?
additional information
?
-
-
xanthine oxidase is necessary during the physiological involution of tissues
-
-
?
additional information
?
-
-
enzyme inhibitors exert beneficial effect on endothelial dysfunction, mechanisms, overview, mechanism of action in cardiovascular disease, overview
-
-
?
additional information
?
-
-
xanthine oxidase inhibition in small intestine ischemia-reperfusion injury leads to reduction in villar necrosis, reduced intestinal MPO levels, reduced circulating neutrophil priming and reduction in pulmonary damage, prevention of permeability changes in intestinal mucosa, reduction in length of necrotic small bowel by 60%, reduction in intestinal apoptosis and tissue MDA levels; reduction in plasma MDA levels and improvement in renal function, and improved small intestine anastomotic healing and animal survival, overview
-
-
?
additional information
?
-
-
xanthine oxidase-derived reactive oxygen species contribute to the development of D-galactosamine-induced liver injury in rats, overview
-
-
?
additional information
?
-
-
enzyme inhibition by orange juice and hesperetin participates in preventing oxidative stress by enhancing total antioxidant capacity and decreasing lipid peroxidation, overview
-
-
?
additional information
?
-
-
the oxidation of xanthine takes place at the molybdenum cofactor, and the electrons thus introduced are rapidly transferred to FAD via the Fe-SI and Fe-SII centers. Glu1261, located near the Mo-OH in the salicylate bound-form of XOR, initiates catalysis by deprotonating the Mo-OH group
-
-
?
additional information
?
-
purified recombinant wild-type and DELTAC mutant enzymes both exhibit mostly xanthine oxidase activity
-
-
?
additional information
?
-
ionized Glu232 of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of xanthine. Proposed orientations of xanthine binding in the active site of xanthine oxidoreductase, using the predominant tautomers of the neutral and monoanionic forms of xanthine, overview
-
-
?
additional information
?
-
-
xanthine oxidase catalyzes the oxidation of hypoxanthine to xanthine to uric acid, and oxygen radicals that are formed as a by-product at both of these oxidation steps may participate in plant defense reactions
-
-
?
additional information
?
-
-
xanthine oxidase catalyzes the oxidation of hypoxanthine to xanthine to uric acid, and oxygen radicals that are formed as a by-product at both of these oxidation steps may participate in plant defense reactions
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
1-methylxanthine + H2O + O2
1-methylurate + H2O2
-
-
-
-
?
6-mercaptopurine + 2 H2O + 2 O2
6-thiouric acid + 2 H2O2
6-mercaptopurine + H2O + O2
?
-
an anticancer drug
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
hypoxanthine + NAD+ + H2O
xanthine + NADH
nitrate + NADH
nitrite + NAD+ + H2O
-
reaction can be an important source of NO production in ischemic tissues
-
-
?
nitrite + NADH
NO + NAD+ + H2O
-
reaction can be an important source of NO production in ischemic tissues
-
-
?
organic nitrate + NADH
organic nitrite + NAD+ + H2O
-
organic nitrite is the initial product in the process of xanthine oxidase mediated organic nitrate biotransformation and is the precursor of NO and nitrosothiols, serving as the link between organic nitrate and soluble guanylyl cyclase
-
-
?
xanthine + H2O + O2
urate + H2O2
xanthine + O2 + H2O
urate + H2O2
additional information
?
-
6-mercaptopurine + 2 H2O + 2 O2

6-thiouric acid + 2 H2O2
-
-
-
-
?
6-mercaptopurine + 2 H2O + 2 O2
6-thiouric acid + 2 H2O2
-
an anticancer prodrug, no activation by xanthine oxidase but conversion to the inactive metabolite 6-thiouric acid, catabolism, overview
-
-
?
carboxylic aldehyde + H2O + O2

carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
carboxylic aldehyde + H2O + O2
carboxylic acid + H2O2
-
enzyme is implicated in the control of various redox reactions in the cell, in milk: assures absorption of iron from the gut, coupling antibacterial effect via the lactoperoxidase system
-
-
?
hypoxanthine + 2 H2O + 2 O2

urate + 2 H2O2
-
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
production of superoxide radicals
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
-
?
hypoxanthine + 2 H2O + 2 O2
urate + 2 H2O2
-
-
-
-
?
hypoxanthine + NAD+ + H2O

xanthine + NADH
-
-
-
-
?
hypoxanthine + NAD+ + H2O
xanthine + NADH
-
-
-
-
?
hypoxanthine + NAD+ + H2O
xanthine + NADH
-
-
-
-
?
hypoxanthine + NAD+ + H2O
xanthine + NADH
-
-
-
-
?
hypoxanthine + NAD+ + H2O
xanthine + NADH
-
-
-
-
?
hypoxanthine + NAD+ + H2O
xanthine + NADH
-
-
-
?
pteridine + H2O + O2

?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
pteridine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2

?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
purine + H2O + O2
?
-
-
-
-
?
xanthine + H2O + O2

urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
from dead cancer cells
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals
-
-
?
xanthine + H2O + O2
urate + H2O2
-
catalytically relevant binding mode of the substrate xanthine, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
the enzyme is involved in development of ischemia and equine laminitis, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
the enzyme plays a role in the development of distant organ dysfunction after abdominal surgery, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
old persons show higher enzyme expression and activity than young persons which promotes a worse prognosis for patients with chronic heart failure due to the increased contents of risk factor urate, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of reactive oxygen species via superoxide radicals involved in endothelial dysfunction
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals
-
-
?
xanthine + H2O + O2
urate + H2O2
-
roles of active site residues E308 and R881 in binding and activation of purine substrate, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
the enzyme plays a role in the development of distant organ dysfunction after abdominal surgery, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
urate is involved in development of endothelial dysfunction, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
xanthine oxidase-derived extracellular superoxide anions stimulate activator protein 1 activity and hypertrophy in vascular smooth muscle via c-Jun N-terminal kinase and p38 mitogen-activated protein kinases, xanthine and xanthine oxidase treatment of smooth muscle cells lead to increased cell growth and size, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
xanthine oxidase inhibition, meaning a decrease in myocardial oxidative stress, improves left ventricular dysfunction in dilated cardiomyopathic hamsters, modelling, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals, treatment with an enzyme inhibitor largely prevents the development of endothelial dysfunction and atherosclerosis in mice
-
-
?
xanthine + H2O + O2
urate + H2O2
-
the enzyme plays a role in the development of distant organ dysfunction after abdominal surgery, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
xanthine oxidoreductase, XOR, can exist in a dehydrogenase form, XD, and an oxidase form, XO. Part of total XOR activity in peroxisomes is XO activity. The major function of XOR activity in the cytoplasm of rat liver parenchymal cells and in sinusoidal cells is not the production of O2 radicals, but rather the production of uric acid which can act as a potent antioxidant
-
-
?
xanthine + H2O + O2
urate + H2O2
-
old animals show higher enzyme expression and activity than young rats which promotes a worse prognosis for patients with chronic heart failure due to the increased contents of risk factor urate, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals
-
-
?
xanthine + H2O + O2
urate + H2O2
-
production of superoxide radicals can be induced by gama-irradiation and contributes to oxidative stress and endothelial nitroredox imbalance with resultant endothelial dysfunction and altered vascular mechanics, mechanism and regulation, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
the enzyme is involved in regulation of reactive oxygen species in the functional response of veins and arteries to angiotensin II, norepinephrine, and acetylcholine
-
-
?
xanthine + H2O + O2
urate + H2O2
-
the enzyme plays a role in the development of distant organ dysfunction after abdominal surgery, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
urate is involved in development of endothelial dysfunction, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
xanthine oxidase inhibition by febuxostat lowers uric acid and alleviates systemic and glomerular hypertension in hyperuricaemia, experimentally-induced by inhibition of uricase with oxonic acid, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
xanthine oxidase is an important source of reactive oxygen species that contributes to neurovascular dysfunction in experimental diabetes, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
catalytically relevant binding mode of the substrate xanthine, overview
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + H2O + O2
urate + H2O2
-
-
-
-
?
xanthine + O2 + H2O

urate + H2O2
-
-
-
-
?
xanthine + O2 + H2O
urate + H2O2
-
-
-
-
?
xanthine + O2 + H2O
urate + H2O2
-
xanthine oxidoreductase exists in two forms. The protein normally exists as xanthine dehydrogenase, XDH, EC 1.17.1.4, and utilizes NAD+ as its final electron acceptor in catalysis. Under certain conditions, most notably schemia and/or hypoxia, XDH can be converted to an oxidase form, XO, which can no longer reduce NAD+ and instead utilizes O2 exclusively as the terminal electron acceptor in the course of turnover. This conversion may occur either by oxidation of sulfhydryl groups and/or by limited proteolysis
-
-
?
xanthine + O2 + H2O
urate + H2O2
-
-
-
-
?
xanthine + O2 + H2O
urate + H2O2
-
-
-
-
?
xanthine + O2 + H2O
urate + H2O2
-
-
-
-
?
xanthine + O2 + H2O
urate + H2O2
-
-
-
-
?
additional information

?
-
-
XDH, EC 1.17.1.4, can be converted into xanthine oxidase, XO, either reversibly by oxidation of the sulfhydryl groups of two conserved cysteine residues. Under physiological conditions the XDH form appears to dominate with 80% over the XO form with 20%
-
-
?
additional information
?
-
-
XDH, EC 1.17.1.4, can be converted into xanthine oxidoreductase, XO, either reversibly by oxidation of the sulfhydryl groups of two conserved cysteine residues. Under physiological conditions the XDH form appears to dominate with 80% over the XO form with 20%
-
-
?
additional information
?
-
-
during inflammatory conditions, reversible oxidation of critical cysteine residues or limited proteolysis converts xanthine dehydrogenase, XDH, EC 1.17.1.4, to xanthine oxidase, XO, which reduces O2 to superoxide and H2O2. Conversion to XO, however, is not requisite for reactive oxygen species production, as XDH displays partial oxidase activity. Xanthine oxidoreductase generates proinflammatory oxidants and secondary nitrating species, with inhibition of XOR proving beneficial in a variety of disorders
-
-
?
additional information
?
-
-
xanthine oxidase inhibition in small intestine ischemia-reperfusion injury leads to reduction in neutrophil infiltration
-
-
?
additional information
?
-
-
enzyme inhibitors exert beneficial effect on endothelial dysfunction, mechanisms, overview, mechanism of action in cardiovascular disease, overview
-
-
?
additional information
?
-
-
phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells, overview
-
-
?
additional information
?
-
-
the enzyme activity, but not oxidative damage parameters, at the time of sepsis diagnosis is significantly higher in non-survival septic patients than in survival patients, overview
-
-
?
additional information
?
-
-
the enzyme and its superoxide producing activity are involved in endothelial dysfunction in atherosclerosis, overview
-
-
?
additional information
?
-
-
the enzyme catalyzes the oxidation of endogenous and exogenous purines and pyrimidines
-
-
?
additional information
?
-
-
the enzyme is induced by heat shock, the reactive oxygen species produced by heat shock may play an important role in the heat shock-induced activation of MAPKs, which can induce MMP-1 and-9 expressions, overview
-
-
?
additional information
?
-
-
the enzyme interacts with the Toll-like receptor-4, TLR-4, inducing proinflammatory cytokine production, extracellular superoxide production by the enzyme leads to nuclear translocation of nuclear factor-kappaB and increased neutrophil production of the NFkappaB-dependent cytokines tumor necrosis factor-alpha and macrophage inhibitory protein-2 mediated by TLR-4, overview
-
-
?
additional information
?
-
-
the enzyme is capable to generate superoxide radicals and H2O2 derived from it, the synthesis of the radicals is increased upon a temperature shift from 30ưC to 45ưC and by photosensitization of tumor cells with a hematoporphyrin derivative, overview
-
-
?
additional information
?
-
-
the enzyme, together with mitochondrial complex III, is responsible for reactive oygen species production in ischemic muscle, they act in tissue damage after ischemic-reperfusion, regulation, overview
-
-
?
additional information
?
-
-
xanthine oxidase inhibition in small intestine ischemia-reperfusion injury leads to prevention of intestine necrosis
-
-
?
additional information
?
-
-
chronic enzyme inhibition by allopurinol or febuxostat cannot prevent or treat the progression of congestive heart failure induced by coronary artery ligation in rabbits, overview
-
-
?
additional information
?
-
-
xanthine oxidase is necessary during the physiological involution of tissues
-
-
?
additional information
?
-
-
enzyme inhibitors exert beneficial effect on endothelial dysfunction, mechanisms, overview, mechanism of action in cardiovascular disease, overview
-
-
?
additional information
?
-
-
xanthine oxidase inhibition in small intestine ischemia-reperfusion injury leads to reduction in villar necrosis, reduced intestinal MPO levels, reduced circulating neutrophil priming and reduction in pulmonary damage, prevention of permeability changes in intestinal mucosa, reduction in length of necrotic small bowel by 60%, reduction in intestinal apoptosis and tissue MDA levels; reduction in plasma MDA levels and improvement in renal function, and improved small intestine anastomotic healing and animal survival, overview
-
-
?
additional information
?
-
-
xanthine oxidase-derived reactive oxygen species contribute to the development of D-galactosamine-induced liver injury in rats, overview
-
-
?
additional information
?
-
-
enzyme inhibition by orange juice and hesperetin participates in preventing oxidative stress by enhancing total antioxidant capacity and decreasing lipid peroxidation, overview
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(2S)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-2,3-dihydro-4H-chromen-4-one
-
a flavone compound from Selaginellaceae with antiviral activity
(4'-methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-ylamine
-
-
(E)-9-nitro-octadec-9-en-1-ol
-
slight inhibition
(E)-9-nitro-octadec-9-enoic acid
-
strong inhibition
1,2,4-triazolo[1,5-a]pyrimidine
-
poor inhibitor
1,2-Dihydroxybenzene 3,5-disulfonic acid
-
inhibits reaction with cytochrome c
1,3,6,7-tetrahydroxy-9H-xanthen-9-one
-
-
1-(3-(furan-2-yl)-4,5-dihydro-5-(pyridin-4-yl)pyrazol-1-yl)ethanone
-
1-(4'-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-ylamine
-
-
1-(4'-trifluoromethylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-ylamine
-
-
1-(9-ethyl-9H-carbazol-3-yl)-3,4-diphenylazetidin-2-one
-
-
1-(9-ethyl-9H-carbazol-3-yl)-3-phenyl-4-m-totylazetidin-2-one
-
-
1-(9-ethyl-9H-carbazol-3-yl)-3-phenyl-4-p-tolylazetidin-2-one
-
-
1-(9-ethyl-9H-carbazol-3-yl)-4-(2-nitrophenyl)-3-phenylazetidin-2-one
-
-
1-(9-ethyl-9H-carbazol-3-yl)-4-(3-methoxyphenyl)-3-phenylazetidin-2-one
-
-
1-(9-ethyl-9H-carbazol-3-yl)-4-(3-nitrophenyl)-3-phenylazetidin-2-one
-
-
1-(9-ethyl-9H-carbazol-3-yl)-4-(4-fluorophenyl)-3-phenylazetidin-2-one
-
-
1-(9-ethyl-9H-carbazol-3-yl)-4-(4-methoxyphenyl)-3-phenylazetidin-2-one
-
-
1-(9-ethyl-9H-carbazol-3-yl)-4-(4-nitrophenyl)-3-phenylazetidin-2-one
-
-
1-4-tolyl-1H-pyrazolo[3,4-d]pyrimidin-4-ylamine
-
-
1-O-(4''-O-caffeoyl)-beta-glucopyranosyl-1,4-dihydroxy-2-(3',3'-dimethylallyl)benzene
-
-
1-[(2,4-dichlorobenzyl)oxy]-3,6,7-trihydroxy-9H-xanthen-9-one
-
-
1-[(2,6-dichlorobenzyl)oxy]-3,6,7-trihydroxy-9H-xanthen-9-one
-
-
1-[(2-bromobenzyl)oxy]-3,6,7-trihydroxy-9H-xanthen-9-one
-
-
1-[(2-chlorobenzyl)oxy]-3,6,7-trihydroxy-9H-xanthen-9-one
-
-
1-[(2-fluorobenzyl)oxy]-3,6,7-trihydroxy-9H-xanthen-9-one
-
-
1-[(3-bromobenzyl)oxy]-3,6,7-trihydroxy-9H-xanthen-9-one
-
-
1-[(3-chlorobenzyl)oxy]-3,6,7-trihydroxy-9H-xanthen-9-one
-
-
1-[(3-fluorobenzyl)oxy]-3,6,7-trihydroxy-9H-xanthen-9-one
-
-
1-[(4-bromobenzyl)oxy]-3,6,7-trihydroxy-9H-xanthen-9-one
-
-
1-[(4-chlorobenzyl)oxy]-3,6,7-trihydroxy-9H-xanthen-9-one
-
-
1-[(4-fluorobenzyl)oxy]-3,6,7-trihydroxy-9H-xanthen-9-one
-
-
1-[3-cyano-4-(2,2-dimethylpropoxy)phenyl]-1H-pyrazole-4-carboxylic acid
10-nitro-octadec-9,12-dienoic acid
-
-
10-nitro-octadec-9-enoic acid
-
-
12-nitro-octadec-9,12-dienoic acid
-
-
13-nitro-octadec-9,12-dienoic acid
-
-
2,4-Diamino-6-hydroxy-s-triazine
-
-
2,4-dichloro-6-(2-phenyl-5,6-dihydropyrazolo[1,5-c]quinazolin-5-yl)phenol
-
2,4-dihydroxy-6-[(E)-2-(4-hydroxyphenyl)ethenyl]benzaldehyde
-
-
2,4-dinitrofluorobenzene
-
-
2,6-diaminopurine
-
poor inhibitor
2-(3,4-dihydroxy-5-methoxyphenyl)-5,7-dihydroxy-4H-chromen-4-one
-
competitive, 50% inhibition at 0.00022 mM
2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one
-
competitive, 50% inhibition at 0.00124 mM
2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-methoxy-4H-chromen-4-one
-
competitive, 50% inhibition at 0.00019 mM; competitive, 50% inhibition at 0.00020 mM
2-(3-phenyl-1H-pyrazol-5-yl)aniline
-
2-(4-chlorophenyl)-5-(3,4-dimethoxyphenyl)-5,6-dihydropyrazolo[1,5-c]quinazoline
-
2-Amino-4-hydroxy-6-formylpterine
2-Amino-4-hydroxypterine-6-aldehyde
-
-
2-amino-6-chloropurine
-
poor inhibitor
2-amino-6-hydroxy-8-mercaptopurine
-
mixed-type inhibition, the inhibitor specifically blocks the enzyme activity with the drug 6-mercaptopurine, but does affect activity with xanthine and hypoxanthine to a lesser extent, overview
2-amino-6-purine thiol
-
competitive inhibitor, the inhibitor specifically blocks the enzyme activity with the drug 6-mercaptopurine, but does affect activity with xanthine and hypoxanthine to a lesser extent, overview
2-Aminopurine
-
poor inhibitor
2-chloro-6(methylamino)purine
-
competitive
2-chloroadenine
-
substrate analogue
2-coumaric acid
-
competitively inhibits the enzyme by binding to the active site, have a protective effect against reactive oxygen species in cells, structure-function relationship, computational molecular docking, overview
2-hydroxy-4-methoxy-6-[(E)-2-(4-methoxyphenyl)ethenyl]benzaldehyde
-
a resveratrol derivative
2-hydroxy-6-methylpurine
interacts with Arg880 in both active sites of the nezyme dimer, binding structure, overview
2-hydroxy-6-[(E)-2-(4-hydroxyphenyl)ethenyl]-4-methoxybenzaldehyde
-
a resveratrol derivative
2-methoxy-4-(2-phenyl-5,6-dihydropyrazolo[1,5-c]quinazolin-5-yl)phenol
-
2-methoxycinnamic acid
-
competitively inhibits the enzyme by binding to the active site, have a protective effect against reactive oxygen species in cells, structure-function relationship, computational molecular docking, overview
2-phenylpyrazolo[1,5-c]quinazoline
-
2-[(2,3-dimethylphenoxy)methyl]-7-methyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one
2-[(2,4-dimethylphenoxy)methyl]-7-methyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one
2-[(2-bromophenoxy)methyl]-7-methyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one
2-[(2-chlorophenoxy)methyl]-7-methyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one
2-[(2-fluorophenoxy)methyl]-7-methyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one
2-[(3-bromophenoxy)methyl]-7-methyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one
2-[(3-chlorophenoxy)methyl]-7-methyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one
2-[(3-fluorophenoxy)methyl]-7-methyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one
2-[(4-bromophenoxy)methyl]-7-methyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one
2-[(4-chloro-3-methylphenoxy)methyl]-7-methyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one
2-[(4-chlorophenoxy)methyl]-7-methyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one
2-[(4-fluorophenoxy)methyl]-7-methyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one
2-[(4-methoxyphenoxy)methyl]-7-methyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one
2-[3-(4-chlorophenyl)-1H-pyrazol-5-yl]aniline
-
2-[3-cyano-4-(2-methylpropoxy)phenyl]-4-methylthiazole-5-carboxylic acid
-
i.e. febuxostat, TEI-6720, or TMX-67, mixed-type inhibition of both the oxidized and reduced form of xanthine oxidase
2-[[(3,6,7-trihydroxy-9-oxo-9H-xanthen-1-yl)oxy]methyl]benzonitrile
-
-
3,3',4,4'-Tetrahydroxychalcone
-
-
3,4-di-O-caffeoylquinic acid methyl ester
-
reversible inhibition, IC50: 0.0036 mM
3,4-Dihydroxybenzaldehyde
-
mixed type inhibition, 50% inhibition at 0.0568 mM
3,4-dihydroxyphenyl dodecanoate
sigmoidal inhibition of superoxide anion formation
3,4-dihydroxyphenyl octanoate
-
3,5-di-O-caffeoylquinic acid
-
-