show all | hide all No of entries

Information on EC - xanthine dehydrogenase

for references in articles please use BRENDA:EC1.17.1.4
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     1 Oxidoreductases
         1.17 Acting on CH or CH2 groups
             1.17.1 With NAD+ or NADP+ as acceptor
       xanthine dehydrogenase
IUBMB Comments
Acts on a variety of purines and aldehydes, including hypoxanthine. The mammalian enzyme can also convert all-trans retinol to all-trans-retinoate, while the substrate is bound to a retinoid-binding protein . The enzyme from eukaryotes contains [2Fe-2S], FAD and a molybdenum centre. The mammalian enzyme predominantly exists as the NAD-dependent dehydrogenase (EC During purification the enzyme is largely converted to an O2-dependent form, xanthine oxidase (EC The conversion can be triggered by several mechanisms, including the oxidation of cysteine thiols to form disulfide bonds [2,6,8,15] [which can be catalysed by EC, enzyme-thiol transhydrogenase (glutathione-disulfide) in the presence of glutathione disulfide] or limited proteolysis, which results in irreversible conversion. The conversion can also occur in vivo [2,7,15].
Specify your search results
Select one or more organisms in this record:
Word Map
The enzyme appears in viruses and cellular organisms
AtXDH1, EC, EC, More, NAD-xanthine dehydrogenase, PaoABC, Retinol dehydrogenase, Rosy locus protein, VvXDH, xanthine dehydrogenase, more
xanthine + NAD+ + H2O = urate + NADH + H+
show the reaction diagram