conversion of dihydroartemsinic aldehyde to artemisinate is nonenzymatic in trichomes by nonenzymatic autoxidation of dihydroartemsinic aldehyde to dihydroartemsinic acid tertiary hydroperoxide and subsequent nonenzymatic rearrangement to artemisinin
the production of artemisinin occurs in specialized 10-cell biseriate glandular trichomes present on the leaves, stems, and inflorescences of Artemisia annua
the enzyme knockout mutant cyp71av1-1 reveals that the consequence of blocking the artemisinin biosynthetic pathway is the redirection of sesquiterpene metabolism to a sesquiterpene epoxide, termed arteannuin X. Disruption of CYP71AV1 results in the accumulation of a sesquiterpene epoxide at the expense of artemisinin
amorpha-4,11-diene synthase (ADS) and Cyt P450 monooxygenase CYP71AV1 in Artemisia annua are two key enzymes involved in the biosynthesis of artemisinin. The promoters of ADS and CYP71AV1 contain E-box elements, which are putative binding sites for basic helix-loop-helix (bHLH) transcription factors. The E-box is important for the CYP71AV1 promoter activity. AabHLH1 can positively regulate the biosynthesis of artemisinin. AabHLH1 protein is capable of binding to the E-box cis-elements, present in both ADS and CYP71AV1 promoters, and possesses transactivation activity in yeast
the amorpha-4,11-diene C-12 oxidase (CYP71AV1) enzyme, responsible for a series of oxidation reactions in the artemisinin biosynthetic pathway, overview
enzyme CYP71AV1 is the critical enzyme that is capable of catalyzing three consecutive oxidation reactions at C-12 position of amorpha-4,11-diene to artemisinate. The heme catalytic site is situated at the C-terminal domain
the antimalarial artemisinin is a sesquiterpene lactone produced by glandular secretory trichomes on the leaves, stems, and inflorescences of Artemisia annua. Glandular secretory trichomes are able to redirect flux into a sesquiterpene epoxide. The amorpha-4,11-diene C-12 oxidase (CYP71AV1) enzyme, responsible for a series of oxidation reactions in the artemisinin biosynthetic pathway
the positive regulator and transcription factor, glandular trichome-specific WRKY 1, is involved in the regulatory network of the artemisinin biosynthetic pathway, overview. Both AaMYC2 and AabZIP1 form a feed-forward loop with AaGSW1 to regulate CYP71AV1
Saccharomyces cerevisiae expressing the native Artemisia annua cytochrome P450 monooxygenase (CYP71AV1) and artemisinic aldehyde D11(13) reductase (DBR2) is used as a whole-cell biocatalyst to produce the immediate artemisinin precursor, dihydroartemisinic acid (DHAA). Introducing artemisinic aldehyde dehydrogenase (ALDH1) from Artemisia annua, which recycles NADPH, results in a significant enhancement in artemisinate titer. Method optimization and evaluation, host screening and cofactor engineering, overview. The co-expression of DBR2 and modulation of abiotic conditions result in a higher yield. Optimal condition are 80 OD yeast cells in 0.05 ml reaction at pH 8.0. Growing the yeast cells at 20°C in galactose medium increases the dihydroartemisinate titer by 50%
gene CYP71AV1, semi-quantitative RT-PCR enzyme expression analysis, the expression level of CYP71AV1 significantly increases with the overexpression of AabHLH1
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
endophyte Penicillium oxalicum strain B4 induces the enzyme and leads to enhanced growth and artemisinin content of host plant in an in vitro dual culture of endophyte with regenerated plantlets via generation of reactive oxygen species (ROS) including superoxide ions and H2O2
the expression level of CYP71AV1 significantly increases with the overexpression of transcription factor AabHLH1. The promoters of ADS and CYP71AV1 contain E-box elements, which are putative binding sites for basic helix-loop-helix (bHLH) transcription factors. The E-box is important for the CYP71AV1 promoter activity. AabHLH1 can positively regulate the biosynthesis of artemisinin. AabHLH1 protein is capable of binding to the E-box cis-elements, present in both ADS and CYP71AV1 promoters, and possesses transactivation activity in yeast. Transient expression of AabHLH1 in Artemisia annua leaves increases transcript levels of the genes involved in artemisinin biosynthesis, such as ADS, CYP71AV1 and HMGR
transcription factor protein glandular trichome-specific WRKY 1, i.e. AaGSW1, promotes artemisinin biosynthesis in Artemisia annua by inducing CYP71AV1 expression. AaGSW1 positively regulates CYP71AV1 and AaORA expression by directly binding to the W-box motifs in their promoters. Overexpression of AaGSW1 in Artemisia annua (via Agrobacterium tumefaciens transformation method) significantly improves artemisinin and dihydroartemisinic acid contents. AaGSW1 can be directly regulated by AaMYC2 and AabZIP1, which are positive regulators of jasmonate- and abscisic acid-mediated artemisinin biosynthetic pathways, respectively. AaGSW1 binds to the W-box in the CYP71AV1 promoter in vitro and activates the transcription of CYP71AV1 in vivo. Global expression profile and phylogenetic analysis of WRKY transcription factors in Artemisia annua, overview
Saccharomyces cerevisiae expressing the native Artemisia annua cytochrome P450 monooxygenase (CYP71AV1) and artemisinic aldehyde D11(13) reductase (DBR2) is used as a whole-cell biocatalyst to produce the immediate artemisinin precursor, dihydroartemisinic acid (DHAA)
Muangphrom, P.; Seki, H.; Suzuki, M.; Komori, A.; Nishiwaki, M.; Mikawa, R.; Fukushima, E.O.; Muranaka, T.
Functional analysis of amorpha-4,11-diene synthase (ADS) homologs from non-artemisinin-producing artemisia species the discovery of novel koidzumiol and (+)-alpha-bisabolol synthases