show all | hide all No of entries

Information on EC 1.13.11.87 - endo-cleaving rubber dioxygenase

for references in articles please use BRENDA:EC1.13.11.87
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
IUBMB Comments
The enzyme catalyses the cleavage of the double bonds in natural and synthetic rubber, producing a mixture of C20, C25, C30, and higher oligo-isoprenoids with ketone and aldehyde groups at their ends. Two unrelated bacterial enzymes are known to possess this activity - the enzyme from Streptomyces sp. K30 (Lcp) contains a b-type cytochrome, while the enzyme from Xanthomonas sp. 35Y, (RoxB) contains two c-type cytochromes. Both enzymes attack the substrate at random locations, and are not able to cleave the C35 or smaller products into shorter fragments.
Specify your search results
Select one or more organisms in this record: ?
Word Map
The enzyme appears in viruses and cellular organisms
Reaction Schemes
Cleavage of cis-1,4-polyisoprene polymers into a mixture of compounds, including a C20 compound ((4Z,8Z,12Z,16Z,20Z,24Z)-4,8,12,16,20,24-hexamethyl-28-oxononacosa-4,8,12,16,20,24-hexaenal), a C25 compound ((4Z,8Z,12Z,16Z,20Z)-4,8,12,16,20-pentamethyl-24-oxopentacosa-4,8,12,16,20-pentaenal), a C30 compound ((4Z,8Z,12Z,16Z)-4,8,12,16-tetramethyl-20-oxohenicosa-4,8,12,16-tetraenal), and larger isoprenologes such as C35, C40, C45, and higher analogues
Synonyms
lcp1vh2, rubber oxygenase, lcpk30, latex-clearing protein, lcp2vh2, more
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
Cleavage of cis-1,4-polyisoprene polymers into a mixture of compounds, including a C20 compound ((4Z,8Z,12Z,16Z,20Z,24Z)-4,8,12,16,20,24-hexamethyl-28-oxononacosa-4,8,12,16,20,24-hexaenal), a C25 compound ((4Z,8Z,12Z,16Z,20Z)-4,8,12,16,20-pentamethyl-24-oxopentacosa-4,8,12,16,20-pentaenal), a C30 compound ((4Z,8Z,12Z,16Z)-4,8,12,16-tetramethyl-20-oxohenicosa-4,8,12,16-tetraenal), and larger isoprenologes such as C35, C40, C45, and higher analogues
show the reaction diagram
-
-
-
-
PATHWAY SOURCE
PATHWAYS
Select items on the left to see more content.