Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(1E)-prop-1-en-1-ylbenzene + H2O2
2-methyl-3-phenyloxirane + H2O
-
-
71% conversion, 7% enantiomeric excess
?
(1Z)-prop-1-en-1-ylbenzene + H2O2
2-methyl-3-phenyloxirane + H2O
-
-
96% conversion, 29% enantiomeric excess
?
(R)-(+)-limonene + H2O2
? + H2O
-
-
76% epoxide products
?
(R)-2-phenoxyproprionic acid + H2O2
(R)-2-(4-hydroxyphenoxy)propionic acid + H2O
(S)-(-)-limonene + H2O2
? + H2O
-
-
85% epoxide products
?
1,2,3,4-tetrahydronaphthalene + H2O2
(1R)-1,2,3,4-tetrahydronaphthalen-1-ol
-
-
85% conversion, 99% enantiomeric excess
?
1,2-dihydronaphthalene + H2O2
1,2-dihydronaphthalene oxide
1,4-dimethoxybenzene + H2O2
4-methoxyphenol + formaldehyde + H2O
-
-
-
?
1,4-dimethoxybenzene + H2O2
?
-
-
-
?
1,4-dioxane + H2O2
2-(2-hydroxyethoxy)acetaldehyde + H2O
-
-
-
?
1-(methoxymethyl)-4-nitrobenzene + H2O2
4-nitrobenzaldehyde + methanol + H2O
-
-
-
?
1-butene + H2O2
but-3-en-2-ol + 2-ethyloxirane + H2O
-
-
75% epoxide product
?
1-heptene + H2O2
hept-1-en-3-ol + 2-pentyloxirane + H2O
-
-
88% epoxide product
?
1-hexene + H2O2
hex-1-en-3-ol + 2-butyloxirane + H2O
-
-
50% epoxide product
?
1-methyl-1-cyclohexene + H2O2
3-methylcyclohex-3-en-1-ol + 1-methyl-7-oxabicyclo[4.1.0]heptane + H2O
-
-
70% epoxide product
?
1-methyl-1H-indene + H2O2
(1aS,6aR)-6-methyl-6,6a-dihydro-1aH-indeno[1,2-b]oxirene + H2O
-
-
96% conversion, 2.3% enantiomeric excess
?
1-methylnaphthalene + H2O2
monohydroxylated 1-methylnaphthalene + dihydroxylated 1-methylnaphthalene + H2O
1-octene + H2O2
oct-1-en-3-ol + 2-hexyloxirane + H2O
-
-
55% epoxide product
?
1-pentene + H2O2
pent-1-en-3-ol + 2-propyloxirane + H2O
-
-
31% epoxide product
?
1-pyrenol + H2O2
1,8-dihydroxypyrene + 1,6-dihydroxypyrene + H2O
2 2,6-dimethoxyphenol + 2 H2O2
cerugilone + 2 H2O
2 2,6-dimethoxyphenol + 2 H2O2
cerulignone + 2 H2O
2 2,6-dimethoxyphenol + 2 H2O2
coerulignone + 2 H2O
-
-
-
?
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2
?
-
-
-
?
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2
? + H2O
-
-
-
?
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2
oxidized 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O
2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) + H2O2
?
-
-
-
?
2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) + H2O2
oxidized 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) + H2O
-
-
-
?
2,3-dihydro-1H-indene + H2O2
(1R)-2,3-dihydro-1H-inden-1-ol + H2O
-
-
77% conversion, 87% enantiomeric excess
?
2,3-dimethyl-2-butene + H2O2
2,2,3,3-tetramethyloxirane + H2O
-
-
sole product
?
2,3-dimethylbutane + H2O2
2,3-dimethyl-butan-2-ol + H2O
2,6-dimethoxyphenol + H2O2
?
2,6-dimethoxyphenol + H2O2
oxidized 2,6-dimethoxyphenol + H2O
-
-
-
?
2-(propan-2-yloxy)propane + H2O2
propan-2-one + propan-2-ol + H2O
-
-
-
?
2-chloropyridine + H2O2
2-chloropyridine N-oxide + H2O
-
26.1% conversion compared to pyridine
-
?
2-methyl-2-butene + H2O2
2,2,3-trimethyloxirane + H2O
-
-
sole product
?
2-methyl-2-butene + H2O2
2,3-epoxy-2-methylbutane + H2O
2-methylnaphthalene + H2O2
2-naphthoic acid + monohydroxylated 2-methylnaphthalene + 2-naphthaldehyde + 2-naphthalene-methanol + monohydroxylated 2-naphthaldehyde + monohydroxylated 2-naphthoic acid + monohydroxylated 2-napthalenemethanol + dihydroxylated 2-napthalenemethanol + H2O
2-methylpropene + H2O2
2,2-dimethyloxirane + H2O
-
-
sole product
?
2-phenoxypropionic acid + H2O2
(R)-2-(4-hydroxyphenoxy)propionic acid + H2O
-
the enzyme hydroxylates 2-phenoxypropionic acid regioselectively at the para-position
the reaction yields the R-isomer of 2-(4-hydroxyphenoxy)propionic acid with an enantiomeric excess of 60%
?
3,4-dimethoxybenzyl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
?
3,4-dimethoxybenzylmethyl ether + H2O2
3,4-dimethoxybenzaldehyde + methanol + H2O
3,5-dimethylpyridine + H2O2
5-methyl-nicotinic alcohol + 5-methyl-nicotinic aldehyde + 3,5-dimethylpyridine N-oxide + H2O
-
143.4% conversion compared to pyridine
3,5-dimethylpyridine N-oxide is less than 1% of the converted substrate
?
3-bromopyridine + H2O2
3-bromopyridine N-oxide + H2O
-
61.8% conversion compared to pyridine
-
?
3-chloropyridine + H2O2
3-chloropyridine N-oxide + nicotinic alcohol + nicotinic aldehyde + nicotinic acid + H2O
-
47.2% conversion compared to pyridine
-
?
3-cyanopyridine + H2O2
3-cyanopyridine N-oxide + H2O
-
moderate substrate with 25.4% conversion compared to pyridine
-
?
3-fluoropyridine + H2O2
3-fluoropyridine N-oxide + H2O
-
39.4% conversion compared to pyridine
-
?
3-iodopyridine + H2O2
3-iodopyridine N-oxide + H2O
-
3-iodopyridine is slightly better oxidized than unsubstituted pyridine (102.2% conversion)
-
?
3-methylpyridine + H2O2
3-methylpyridine N-oxide + H2O
-
98.4% conversion compared to pyridine
-
?
3-nitropyridine + H2O2
3-nitropyridine N-oxide + H2O
-
moderate substrate with 5.4% conversion compared to pyridine
-
?
4-chloropyridine + H2O2
4-chloropyridine N-oxide + H2O
-
4-chloropyridine is slightly better oxidized than unsubstituted pyridine (102.9% conversion)
-
?
4-ethoxy-3-methoxybenzyl alcohol + H2O2
4-ethoxy-3-methoxybenzaldehyde + H2O
-
-
-
?
4-ethylbenzoic acid + H2O2
?
-
-
?
4-isoprophylbenzoic acid + H2O2
?
-
-
?
4-methyl-1-cyclohexene + H2O2
3-methyl-7-oxabicyclo[4.1.0]heptane + 6-methylcyclohex-2-en-1-ol + H2O
-
-
70% epoxide product
?
4-nitroanisole + H2O2
formaldehyde + 4-nitrophenol + H2O
-
-
-
?
4-nitrobenzaldehyde + H2O2
4-nitrobenzoic acid + H2O
-
-
-
?
4-nitrobenzyl alcohol + H2O2
4-nitrobenzaldehyde + H2O
-
-
-
?
4-nitrophenol + H2O2
4-nitrocatechol + H2O
-
-
-
?
4-nitrophenoxycarboxylic acid + H2O2
?
-
-
?
4-nitrotoluene + H2O2
4-nitrobenzyl alcohol + H2O
-
APO hydroxylates 4-nitrotoluene to 4-nitrobenzyl alcohol, then to 4-nitrobenzaldehyde and then to 4-nitrobenzoic acid. The reactions proceed stepwise with total conversions of 12% for 4-nitrotoluene
-
?
5-hydroxymethylfurfural + H2O2
2,5-furandicarboxylic acid + H2O
5-nitro-1,3-benzodioxole + H2O2
4-nitrocatechol + formic acid + H2O
acetanilide + H2O2
paracetamol + H2O
anisaldehyde + H2O2
? + H2O
-
-
-
?
anisyl alcohol + H2O2
anisaldehyde + H2O
-
-
-
?
anthracene + H2O2
mono-hydroxylated anthracene + dihydroxylated anthracene
benzaldehyde + H2O2
benzoic acid + H2O
-
-
-
?
benzene + H2O2
phenol + H2O
benzyl alcohol + H2O2
benzaldehyde + H2O
carbamazepine + H2O2
3-hydroxycarbamazepine + H2O
cholecalciferol + H2O2
25-hydroxycholecalciferol + 24-hydroxycholecalciferol + 26,27-hydroxycholecalciferol + H2O
cis-2-butene + H2O2
2,3-dimethyloxirane + H2O
-
-
sole product
?
cyclohexane + H2O2
? + H2O
-
-
-
?
cyclohexane + H2O2
cyclohexanol + cyclohexanone + ?
-
-
-
?
cyclohexane + H2O2
cyclohexanol + H2O
cyclohexanol + H2O2
cyclohexanone + H2O
cyclohexene + H2O2
cyclohex-2-en-1-ol + 7-oxabicyclo[4.1.0]heptane + H2O
-
-
55% epoxide product
?
daidzein + H2O2
6-hydroxydaidzein + H2O
dibenzofuran + H2O2
3-hydroxy-dibenzofuran + monohydroxylated dibenzofuran + 2,3-dihydroxydibenzofuran + 3,7-dihydroxydibenzofuran + dihydroxylated dibenzofuran + trihydroxylated dibenzofuran + H2O
dibenzothiophene + H2O2
?
diclofenac + H2O2
4'-hydroxydiclofenac + H2O
diclofenac + H2O2
?
-
-
-
?
diethyl ether + H2O2
acetaldehyde + ethanol + H2O
-
-
-
?
diethyl ether + H2O2
ethanol + acetaldehyde + H2O
dimethoxy-5-nitrobenzene + H2O2
?
-
-
-
?
dimethylene-5-nitrobenzene + H2O2
?
-
-
-
?
ergocalciferol + H2O2
25-hydroxyergocalciferol + H2O
ethylbenzene + H2O2
(R)-1-phenylethanol
-
-
95% conversion, 99% enantiomeric excess
?
ethylbenzene + H2O2
(R)-phenylethanol + H2O
ethylbenzene + H2O2
1-phenylethanol + H2O
flavone + H2O2
6-hydroxyflavone + H2O
fluorene + H2O2
2-hydroxyfluorene + 9-fluorenol + dihydroxylated fluorene + monohydroxylated fluorenone + trihydroxylated fluorene + H2O
-
-
-
?
fluorene + H2O2
9-fluorenone + 2-hydroxyfluorene + 9-fluorenol + dihydroxylated fluorene + monohydroxylated fluorenone + trihydroxylated fluorene + H2O
-
the enzyme oxygenates fluorene at the non-aromatic C9-carbon
-
?
fluorene + H2O2
9-hydroxyfluorene + H2O
-
-
-
?
lauric acid + H2O2
11-hydroxylauric acid + 10-hydroxylauric acid + H2O
-
-
57% omega-1 product, 43% omega-2 product
?
lauric acid + H2O2
omega-1-hydroxylauric acid + omega-2-hydroxylauric acid + omega-hydroxylauric acid + H2O
lidocaine + H2O2
monoglycinexylidede + glycinexylidide + H2O
methyl 3,4-dimethoxybenzyl ether + H2O2
3,4-dimethoxybenzaldehyde + methanol + H2O
-
-
-
?
methyl 4-nitrobenzyl ether + H2O2
4-nitrobenzaldehyde + methanol + H2O
-
-
-
?
methyl myristate + H2O2
methyl 13-hydroxymyristate + methyl 12-hydroxymyristate + methyl 13-oxomyristate + methyl 12-oxomyristate + H2O
-
-
21.1% omega-1 hydroxy product, 43.4% omega-2 hydroxy product, plus 24.3% omega-1 keto product, 11.3% omega-2 keto product
?
methyl tert-butyl ether + H2O2
formaldehyde + tert-butanol + H2O
-
-
-
?
myristic acid + H2O2
13-hydroxymyristic acid + 12-hydroxymyristic acid + H2O
-
-
49.5% omega-1 hydroxy product, 43% omega-2 hydroxy product, plus small amounts of corresponding keto products
?
myristoleic acid + H2O2
12-hydroxymyristoleic acid + H2O
-
-
100% omega-2 hydroxy product
?
n-butylbenzene + H2O2
(R)-1-phenylbutanol
-
-
52% conversion, 40% enantiomeric excess
?
n-heptane + H2O2
2-heptanol + 3-heptanol + H2O
n-pentylbenzene + H2O2
1-phenylpentanol
-
-
8.4% conversion, 99% enantiomeric excess
?
naphthalene + H2O2
1-naphthol + 2-naphthol + 1,4-naphthoquinone + H2O
-
the enzyme regioselectively hydroxylates naphthalene to 1-naphthol and traces of 2-naphthol (ratio 36:1)
-
?
naphthalene + H2O2
1-naphthol + 2-naphthol + H2O
-
naphthalene is regioselectively converted into 1-naphthol and 2-naphthol at a ratio of 12:1
-
?
naphthalene + H2O2
1-naphthol + H2O
naphthalene + H2O2
?
-
-
-
?
naphthalene + H2O2
? + H2O
-
-
-
?
naphthalene + H2O2
naphthalene 1,2-oxide + H2O
octyl octanoate + H2O2
octyl 7-hydroxyoctanoate + octyl 6-hydroxyoctanoate + H2O
-
-
49.7% omega-1 hydroxy product, 50.3% omega-2 hydroxy product
?
oleic acid + H2O2
17-hydroxyoleic acid + 16-hydroxyoleic acid + H2O
-
-
33% omega-1 hydroxy product, 66% omega-2 hydroxy product
?
palmitic acid + H2O2
15-hydroxypalmitic acid + 14-hydroxypalmitic acid + H2O
-
-
38.4% omega-1 hydroxy product, 52.9% omega-2 hydroxy product, plus small amounts of corresponding keto products
?
phenanthrene + H2O2
4-phenanthrol + 1-phenanthrol + 3-phenanthrol + dihydroxylated phenanthrol + H2O
-
the enzyme almost completely converts phenantrene within 6 h
-
?
phenol + bromide
2-bromophenol + 4-bromophenol
-
phenol is brominated to 2- and 4-bromophenol (ratio 1:4)
-
?
phenol + chloride
4-benzoquinone + 2-chlorophenol
-
the chlorinating activity is by orders of magnitude lower than the brominating activity, 4-benzoquinone is the major product while only traces of 2-chlorophenol (1%) and no 4-chlorophenol are detectable
-
?
phenol + H2O2
hydroquinone + catechol + H2O
phenol + KBr
4-bromophenol + 2-bromophenol
-
the Agrocybe aegerita peroxidase has also strong brominating activity
-
?
propane + H2O2
isopropanol + H2O
propene + H2O2
2-methyloxirane + H2O
-
-
100% epoxide product
?
propranolol + H2O2
5-hydroxypropranolol + H2O
propylbenzene + H2O2
(R)-1-phenylpropanol
-
-
64% conversion, 99% enantiomeric excess
?
pyrene + H2O2
1-pyrenol + H2O
pyridine + H2O2
pyridine N-oxide + H2O
SAR548304 + H2O2
?
-
-
-
?
sildenafil + H2O2
N-desmethylsildenafil + formaldehyde + H2O
stearic acid + H2O2
17-hydroxystearic acid + 16-hydroxystearic acid + H2O
-
-
31.5% omega-1 hydroxy product, 50% omega-2 hydroxy product, plus small amounts of corresponding keto products
?
testosterone + H2O2
17beta-hydroxy-4,5-epoxy-5beta-androstan-3-one + 16alpha,17beta-dihydroxyandrost-4-en-3-one + H2O
-
-
?
tetradecane + H2O2
2-hydroxytetradecane + 3-hydroxytetradecane + 2,13-dihydroxytetradecane + 2,12-dihydroxytetradecane + 3,12-dihydroxytetradecane + 12-hydroxy2-ketotetradecane
-
-
reaction in 20% acetone, 120 min, 1% 2-hydroxytetradecane + 1.9% 3-hydroxytetradecane + 1.7% 2,13-dihydroxytetradecane + 9.5% 2,12-dihydroxytetradecane + 15% 3,12-dihydroxytetradecane + 70% 12-hydroxy-2-oxotetradecane. Reaction in 40% acetone, 120 min, 27% 2-hydroxytetradecane + 36% 3-hydroxytetradecane + 8.2% 2,13-dihydroxytetradecane + 14.2% 2,12-dihydroxytetradecane + 8.2% 3,12-dihydroxytetradecane + 6.3% 12-hydroxy2-ketotetradecane
?
tetradecanol + H2O2
13-hydroxytetradecanol + 12-hydroxytetradecanol + stearic acid + 13-hydroxystearic acid + 12-hydroxystearic acid + H2O
-
-
30 min reaction, 6.4% 13-hydroxytetradecanol, 7.2% 12-hydroxytetradecanol, 75.8% stearic acid, 5.9% 13-hydroxystearic acid, 4.7%12-hydroxystearic acid. 120 min reaction, 4.1% 13-hydroxytetradecanol, 5.9% 12-hydroxytetradecanol, 47.2% stearic acid, 23.8% 13-hydroxystearic acid, 19.4% 12-hydroxystearic acid
?
tetrahydro-2H-pyran + H2O2
5-hydroxypentanal + H2O
-
-
-
?
tetrahydrofuran + H2O2
4-hydroxybutanal + H2O
toluene + H2O2
4-cresol + 2-cresol + methyl 4-benzoquinone + H2O
-
-
-
?
toluene + H2O2
4-cresol + 2-cresol + methyl-4-benzoquinone + H2O
-
-
-
?
toluene + H2O2
benzyl alcohol + benzaldehyde + benzoic acid + 2-cresol + 4-cresol + methylhydroquinone + H2O
-
all peroxygenase fractions oxygenate toluene at both the side chain and the aromatic ring with a ratio of side chain versus aromatic hydroxylation of about 2:1 in all cases
-
?
toluene + H2O2
benzyl alcohol + H2O
toluene + H2O2
o-cresol + p-cresol + H2O
trans-2-butene + H2O2
2,3-dimethyloxirane + H2O
-
-
sole product
?
vanillyl alcohol + H2O2
vanillaldehyde + H2O
-
-
-
?
veratraldehyde + H2O2
veratric acid + H2O
-
-
-
?
veratryl alcohol + H2O2
veratraldehyde + H2O
veratryl alcohol + H2O2 + H+
veratraldehyde + H2O
additional information
?
-
(R)-2-phenoxyproprionic acid + H2O2

(R)-2-(4-hydroxyphenoxy)propionic acid + H2O
-
-
?
(R)-2-phenoxyproprionic acid + H2O2
(R)-2-(4-hydroxyphenoxy)propionic acid + H2O
-
-
-
?
(R)-2-phenoxyproprionic acid + H2O2
(R)-2-(4-hydroxyphenoxy)propionic acid + H2O
-
-
-
?
1,2-dihydronaphthalene + H2O2

1,2-dihydronaphthalene oxide
-
-
main product, plus some 1-hydroxy-1,2-dihydronaphthalene and 2-hydroxy-1,2-dihydronaphthalene. 1-Hydroxy-1,2-dihydronaphthalene and 2-hydroxy-1,2-dihydronaphthalene are aromatized and further epoxidized to naphthalene oxide, giving 95% 1-naphthol and 5% 2-naphthol as final products
?
1,2-dihydronaphthalene + H2O2
1,2-dihydronaphthalene oxide
-
-
main product, plus some 1-hydroxy-1,2-dihydronaphthalene and 2-hydroxy-1,2-dihydronaphthalene
?
1-methylnaphthalene + H2O2

monohydroxylated 1-methylnaphthalene + dihydroxylated 1-methylnaphthalene + H2O
-
-
monohydroxylated 1-methylnaphthalene and dihydroxylated 1-methylnaphthalene are the main metabolites
?
1-methylnaphthalene + H2O2
monohydroxylated 1-methylnaphthalene + dihydroxylated 1-methylnaphthalene + H2O
-
-
monohydroxylated 1-methylnaphthalene and dihydroxylated 1-methylnaphthalene are the main metabolites
?
1-pyrenol + H2O2

1,8-dihydroxypyrene + 1,6-dihydroxypyrene + H2O
-
-
-
?
1-pyrenol + H2O2
1,8-dihydroxypyrene + 1,6-dihydroxypyrene + H2O
-
-
-
?
2 2,6-dimethoxyphenol + 2 H2O2

cerugilone + 2 H2O
-
-
?
2 2,6-dimethoxyphenol + 2 H2O2
cerugilone + 2 H2O
-
-
-
?
2 2,6-dimethoxyphenol + 2 H2O2
cerugilone + 2 H2O
-
-
-
?
2 2,6-dimethoxyphenol + 2 H2O2

cerulignone + 2 H2O
-
-
-
?
2 2,6-dimethoxyphenol + 2 H2O2
cerulignone + 2 H2O
-
-
?
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2

oxidized 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O
-
-
-
?
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2
oxidized 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O
-
-
?
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2
oxidized 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O
-
-
-
?
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2
oxidized 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O
-
-
?
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2
oxidized 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O
-
-
?
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2
oxidized 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O
-
-
-
?
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2
oxidized 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O
-
-
-
?
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2
oxidized 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O
-
-
-
?
2,3-dimethylbutane + H2O2

2,3-dimethyl-butan-2-ol + H2O
-
-
?
2,3-dimethylbutane + H2O2
2,3-dimethyl-butan-2-ol + H2O
-
-
-
?
2,3-dimethylbutane + H2O2
2,3-dimethyl-butan-2-ol + H2O
-
-
-
?
2,6-dimethoxyphenol + H2O2

?
-
-
?
2,6-dimethoxyphenol + H2O2
?
-
-
?
2,6-dimethoxyphenol + H2O2
?
-
-
?
2,6-dimethoxyphenol + H2O2
?
-
-
-
?
2-methyl-2-butene + H2O2

2,3-epoxy-2-methylbutane + H2O
-
-
?
2-methyl-2-butene + H2O2
2,3-epoxy-2-methylbutane + H2O
-
-
-
?
2-methyl-2-butene + H2O2
2,3-epoxy-2-methylbutane + H2O
-
-
-
?
2-methylnaphthalene + H2O2

2-naphthoic acid + monohydroxylated 2-methylnaphthalene + 2-naphthaldehyde + 2-naphthalene-methanol + monohydroxylated 2-naphthaldehyde + monohydroxylated 2-naphthoic acid + monohydroxylated 2-napthalenemethanol + dihydroxylated 2-napthalenemethanol + H2O
-
-
2-naphthoic acid and monohydroxylated 2-methylnaphthalenes are the main metabolites
?
2-methylnaphthalene + H2O2
2-naphthoic acid + monohydroxylated 2-methylnaphthalene + 2-naphthaldehyde + 2-naphthalene-methanol + monohydroxylated 2-naphthaldehyde + monohydroxylated 2-naphthoic acid + monohydroxylated 2-napthalenemethanol + dihydroxylated 2-napthalenemethanol + H2O
-
-
2-naphthoic acid and monohydroxylated 2-methylnaphthalenes are the main metabolites
?
3,4-dimethoxybenzylmethyl ether + H2O2

3,4-dimethoxybenzaldehyde + methanol + H2O
-
-
?
3,4-dimethoxybenzylmethyl ether + H2O2
3,4-dimethoxybenzaldehyde + methanol + H2O
-
-
-
?
3,4-dimethoxybenzylmethyl ether + H2O2
3,4-dimethoxybenzaldehyde + methanol + H2O
-
-
-
?
5-hydroxymethylfurfural + H2O2

2,5-furandicarboxylic acid + H2O
-
-
-
?
5-hydroxymethylfurfural + H2O2
2,5-furandicarboxylic acid + H2O
-
-
-
?
5-nitro-1,3-benzodioxole + H2O2

4-nitrocatechol + formic acid + H2O
-
-
-
?
5-nitro-1,3-benzodioxole + H2O2
4-nitrocatechol + formic acid + H2O
-
-
?
5-nitro-1,3-benzodioxole + H2O2
4-nitrocatechol + formic acid + H2O
-
-
-
?
5-nitro-1,3-benzodioxole + H2O2
4-nitrocatechol + formic acid + H2O
-
-
?
5-nitro-1,3-benzodioxole + H2O2
4-nitrocatechol + formic acid + H2O
-
-
?
5-nitro-1,3-benzodioxole + H2O2
4-nitrocatechol + formic acid + H2O
-
-
-
?
5-nitro-1,3-benzodioxole + H2O2
4-nitrocatechol + formic acid + H2O
-
-
-
?
acetanilide + H2O2

paracetamol + H2O
-
-
?
acetanilide + H2O2
paracetamol + H2O
-
-
-
?
acetanilide + H2O2
paracetamol + H2O
-
-
-
?
anthracene + H2O2

mono-hydroxylated anthracene + dihydroxylated anthracene
-
the enzyme almost completely converts anthracene within 6 h
-
?
anthracene + H2O2
mono-hydroxylated anthracene + dihydroxylated anthracene
-
-
-
?
benzene + H2O2

phenol + H2O
-
-
?
benzene + H2O2
phenol + H2O
-
oxygenation of the unactivated aromatic ring of benzene with hydrogen peroxide as co-substrate. Reaction proceeds via an initial epoxide intermediate that re-aromatizes in aqueous solution to form phenol. Second and third [per]oxygenation is also observed and results in the formation of further hydroxylation and following [per]oxidation products hydroquinone and p-benzoquinone, catechol and o-benzoquinone as well as 1,2,4-trihydroxybenzene and hydroxy-p-benzoquinone, respectively. The origin of the oxygen atom incorporated into benzene or phenol is the peroxide
?
benzene + H2O2
phenol + H2O
-
-
-
?
benzene + H2O2
phenol + H2O
-
-
-
?
benzyl alcohol + H2O2

benzaldehyde + H2O
-
-
-
?
benzyl alcohol + H2O2
benzaldehyde + H2O
-
-
?
benzyl alcohol + H2O2
benzaldehyde + H2O
-
-
-
?
benzyl alcohol + H2O2
benzaldehyde + H2O
-
-
-
?
carbamazepine + H2O2

3-hydroxycarbamazepine + H2O
-
-
?
carbamazepine + H2O2
3-hydroxycarbamazepine + H2O
-
-
-
?
carbamazepine + H2O2
3-hydroxycarbamazepine + H2O
-
-
-
?
cholecalciferol + H2O2

25-hydroxycholecalciferol + 24-hydroxycholecalciferol + 26,27-hydroxycholecalciferol + H2O
-
-
-
?
cholecalciferol + H2O2
25-hydroxycholecalciferol + 24-hydroxycholecalciferol + 26,27-hydroxycholecalciferol + H2O
-
-
-
?
cyclohexane + H2O2

cyclohexanol + H2O
-
-
?
cyclohexane + H2O2
cyclohexanol + H2O
-
-
-
?
cyclohexane + H2O2
cyclohexanol + H2O
-
-
-
?
cyclohexane + H2O2
cyclohexanol + H2O
-
-
-
?
cyclohexanol + H2O2

cyclohexanone + H2O
-
-
?
cyclohexanol + H2O2
cyclohexanone + H2O
-
-
-
?
cyclohexanol + H2O2
cyclohexanone + H2O
-
-
-
?
cyclohexanol + H2O2
cyclohexanone + H2O
-
-
-
?
daidzein + H2O2

6-hydroxydaidzein + H2O
-
-
?
daidzein + H2O2
6-hydroxydaidzein + H2O
-
-
-
?
daidzein + H2O2
6-hydroxydaidzein + H2O
-
-
-
?
dibenzofuran + H2O2

3-hydroxy-dibenzofuran + monohydroxylated dibenzofuran + 2,3-dihydroxydibenzofuran + 3,7-dihydroxydibenzofuran + dihydroxylated dibenzofuran + trihydroxylated dibenzofuran + H2O
-
-
-
?
dibenzofuran + H2O2
3-hydroxy-dibenzofuran + monohydroxylated dibenzofuran + 2,3-dihydroxydibenzofuran + 3,7-dihydroxydibenzofuran + dihydroxylated dibenzofuran + trihydroxylated dibenzofuran + H2O
-
-
-
?
dibenzothiophene + H2O2

?
-
in vivo Agrocybe aegerita peroxygenase oxidizes dibenzothiophene (0.11 mM) by 100% within 16 days into eight different metabolites. Among the latter are mainly S-oxidation products (dibenzothiophene sulfoxide, dibenzothiophene sulfone) and in lower amounts ring-hydroxylation compounds (e.g., 2-hydroxy-dibenzothiophene). In vitro a total of 19 oxygenation products are detected after dibenzothiophene conversion by the purified peroxygenase with ring hydroxylation favored over S-oxidation with 2-hydroxy-dibenzothiophene as major product
-
?
dibenzothiophene + H2O2
?
-
in vivo Coprinellus radians peroxygenase converts about 60% of dibenzothiophene into dibenzothiophene sulfoxide and dibenzothiophene sulfone as the sole metabolites. In vitro a total of seven oxygenation products are detected after dibenzothiophene conversion by the purified peroxygenase with dibenzothiophene sulfoxide as major product
-
?
diclofenac + H2O2

4'-hydroxydiclofenac + H2O
-
-
?
diclofenac + H2O2
4'-hydroxydiclofenac + H2O
-
-
-
?
diclofenac + H2O2
4'-hydroxydiclofenac + H2O
-
-
-
?
diethyl ether + H2O2

ethanol + acetaldehyde + H2O
-
-
?
diethyl ether + H2O2
ethanol + acetaldehyde + H2O
-
-
-
?
diethyl ether + H2O2
ethanol + acetaldehyde + H2O
-
-
-
?
ergocalciferol + H2O2

25-hydroxyergocalciferol + H2O
-
-
-
?
ergocalciferol + H2O2
25-hydroxyergocalciferol + H2O
-
-
-
?
ethylbenzene + H2O2

(R)-phenylethanol + H2O
-
-
?
ethylbenzene + H2O2
(R)-phenylethanol + H2O
-
-
-
?
ethylbenzene + H2O2
(R)-phenylethanol + H2O
-
-
-
?
ethylbenzene + H2O2

1-phenylethanol + H2O
-
-
?
ethylbenzene + H2O2
1-phenylethanol + H2O
-
-
1-phenylethanol is the major product
?
ethylbenzene + H2O2
1-phenylethanol + H2O
-
-
1-phenylethanol is the major product
?
ethylbenzene + H2O2
1-phenylethanol + H2O
-
-
?
flavone + H2O2

6-hydroxyflavone + H2O
-
-
?
flavone + H2O2
6-hydroxyflavone + H2O
-
-
-
?
flavone + H2O2
6-hydroxyflavone + H2O
-
-
-
?
fluorene + H2O2

?
-
-
?
fluorene + H2O2
?
-
-
-
?
lauric acid + H2O2

omega-1-hydroxylauric acid + omega-2-hydroxylauric acid + omega-hydroxylauric acid + H2O
-
-
?
lauric acid + H2O2
omega-1-hydroxylauric acid + omega-2-hydroxylauric acid + omega-hydroxylauric acid + H2O
-
-
-
?
lauric acid + H2O2
omega-1-hydroxylauric acid + omega-2-hydroxylauric acid + omega-hydroxylauric acid + H2O
-
-
-
?
lidocaine + H2O2

monoglycinexylidede + glycinexylidide + H2O
-
-
?
lidocaine + H2O2
monoglycinexylidede + glycinexylidide + H2O
-
-
-
?
lidocaine + H2O2
monoglycinexylidede + glycinexylidide + H2O
-
-
-
?
methyl benzoate + H2O2

?
-
-
?
methyl benzoate + H2O2
?
-
-
-
?
methyl benzoate + H2O2
?
-
-
-
?
n-heptane + H2O2

2-heptanol + 3-heptanol + H2O
-
-
?
n-heptane + H2O2
2-heptanol + 3-heptanol + H2O
-
-
-
?
n-heptane + H2O2
2-heptanol + 3-heptanol + H2O
-
-
-
?
naphthalene + H2O2

1-naphthol + H2O
-
-
?
naphthalene + H2O2
1-naphthol + H2O
-
-
in addition to 1-naphthol a smaller amount of naphthalene is converted to 2 naphthol dependent on pH, at pH 7.0-8.0 3% 2-naphthol and 97% 1-naphthol are formed while at pH 3.0 18% 2-naphthol and 82% 1-naphthol are formed. Traces of 1-naphthol are later oxidized to 1,4-naphthoquinone
?
naphthalene + H2O2
1-naphthol + H2O
-
-
?
naphthalene + H2O2
1-naphthol + H2O
-
-
?
naphthalene + H2O2
1-naphthol + H2O
-
-
-
?
naphthalene + H2O2
1-naphthol + H2O
-
-
-
?
naphthalene + H2O2

naphthalene 1,2-oxide + H2O
-
-
-
?
naphthalene + H2O2
naphthalene 1,2-oxide + H2O
-
the enzyme selectively hydroxylates the aromatic ring of naphthalene
naphthalene 1,2-oxide is the primary product of Agrocybe aegerita peroxidase/peroxygenase-catalyzed oxygenation of naphthalene
?
phenol + H2O2

hydroquinone + catechol + H2O
-
-
?
phenol + H2O2
hydroquinone + catechol + H2O
-
-
-
?
phenol + H2O2
hydroquinone + catechol + H2O
-
-
-
?
propane + H2O2

isopropanol + H2O
-
-
?
propane + H2O2
isopropanol + H2O
-
-
-
?
propane + H2O2
isopropanol + H2O
-
-
-
?
propranolol + H2O2

5-hydroxypropranolol + H2O
-
-
?
propranolol + H2O2
5-hydroxypropranolol + H2O
-
-
-
?
propranolol + H2O2
5-hydroxypropranolol + H2O
-
-
-
?
pyrene + H2O2

1-pyrenol + H2O
-
45% of pyrene is oxidized within 8 h
-
?
pyrene + H2O2
1-pyrenol + H2O
-
13% of pyrene is oxidized within 8 h
-
?
pyridine + H2O2

pyridine N-oxide + H2O
-
-
-
?
pyridine + H2O2
pyridine N-oxide + H2O
-
-
?
pyridine + H2O2
pyridine N-oxide + H2O
-
100% conversion
-
?
pyridine + H2O2
pyridine N-oxide + H2O
-
-
-
?
pyridine + H2O2
pyridine N-oxide + H2O
-
-
-
?
sildenafil + H2O2

N-desmethylsildenafil + formaldehyde + H2O
-
-
?
sildenafil + H2O2
N-desmethylsildenafil + formaldehyde + H2O
-
-
-
?
sildenafil + H2O2
N-desmethylsildenafil + formaldehyde + H2O
-
-
-
?
tetrahydrofuran + H2O2

4-hydroxybutanal + H2O
-
-
-
?
tetrahydrofuran + H2O2
4-hydroxybutanal + H2O
-
-
?
tetrahydrofuran + H2O2
4-hydroxybutanal + H2O
-
-
-
?
tetrahydrofuran + H2O2
4-hydroxybutanal + H2O
-
-
-
?
toluene + H2O2

benzyl alcohol + H2O
-
-
-
?
toluene + H2O2
benzyl alcohol + H2O
-
the initial product of toluene oxidation is benzyl alcohol, which then declines with concomitant production of benzaldehyde, which in turn declines with concomitant production of benzoic acid. The reactions proceed stepwise with total conversions of 93% for toluene
-
?
toluene + H2O2

o-cresol + p-cresol + H2O
-
-
?
toluene + H2O2
o-cresol + p-cresol + H2O
-
-
-
?
toluene + H2O2
o-cresol + p-cresol + H2O
-
-
-
?
veratryl alcohol + H2O2

veratraldehyde + H2O
-
-
-
?
veratryl alcohol + H2O2
veratraldehyde + H2O
-
-
?
veratryl alcohol + H2O2
veratraldehyde + H2O
-
-
-
?
veratryl alcohol + H2O2
veratraldehyde + H2O
-
-
?
veratryl alcohol + H2O2
veratraldehyde + H2O
-
-
-
?
veratryl alcohol + H2O2
veratraldehyde + H2O
-
-
-
?
veratryl alcohol + H2O2 + H+

veratraldehyde + H2O
-
-
-
?
veratryl alcohol + H2O2 + H+
veratraldehyde + H2O
-
-
?
veratryl alcohol + H2O2 + H+
veratraldehyde + H2O
-
-
-
?
veratryl alcohol + H2O2 + H+
veratraldehyde + H2O
-
-
-
?
additional information

?
-
-
nicotinic acid, nicotine amide, 3,5-dichloropyridine and perchloropyridine are no substrates
-
?
additional information
?
-
-
the Agrocybe aegerita peroxidase has strong brominating as well as weak chlorinating and iodating activities, and catalyzes both benzylic and aromatic hydroxylations
-
?
additional information
?
-
-
the enzyme does not oxidize perylene
-
?
additional information
?
-
-
the enzyme exhibits also haloperoxidase activity as shown by the chlorination or bromination of monochlorodimedone. Ethanol is not oxidized by the peroxidase
-
?
additional information
?
-
-
the enzyme fails to cleave a 4-nitrophenyl-terminated polyethylene glycol
-
?
additional information
?
-
-
the transferred oxygen exclusively originates from the peroxide. Benzylic hydroxylation leads exclusively to the (R)-1-phenylalkanols. For (R)-1-phenylethanol, (R)-1-phenylpropanol and (R)-1-tetralol, the enantiomeric excess reaches >99%. For longer chain lengths, the enantiomeric excesses and total turnover numbers decrease while the number of by-products, e.g. 1-phenylketones, increase
-
?
additional information
?
-
the enzyme is not capable of oxidizing bromide or chloride
-
?
additional information
?
-
-
the enzyme is not capable of oxidizing bromide or chloride
-
?
additional information
?
-
the enzyme is not capable of oxidizing bromide or chloride
-
?
additional information
?
-
-
the enzyme also brominates phenol to 2- and 4-bromophenols and selectively hydroxylates naphthalene to 1-naphthol, but shows no laccase activity
-
?
additional information
?
-
-
the enzyme does not oxidize phenanthrene and perylene
-
?
additional information
?
-
-
regioselective hydroxylation of saturated/unsaturated fatty acids is observed at the omega-1 and omega-2 position, but only at the omega-2 position in myristoleic acid. Alkyl esters of fatty acids and monoglycerides are also omga-1 or omega-2 hydroxylated, but di- and tri-glycerides are not modified. Fatty alcohols yield hydroxy derivatives at the omega-1 or omega-2 positions (diols) but also fatty acids and their hydroxy derivatives. The peroxygenase is able to oxyfunctionalize alkanes giving, in addition to alcohols at positions 2 or 3, dihydroxylated derivatives at both sides of the molecule. The predominance of mono- or di-hydroxylated derivatives seems related to the higher or lower proportion of acetone, respectively, in the reaction medium
-
?
additional information
?
-
-
enzyme shows neither brominating nor chlorinating activities
-
?
additional information
?
-
the enzyme catalyzes hydrogen peroxide-driven ethylbenzene hydroxylation, as well as styrene epoxidation. The ethylbenzene hydroxylation activity is higher than the styrene epoxidation activity, maybe due to a difference in the binding affinity of the two substrates. The rate-limiting steps of ethylbenzene hydroxylation and styrene epoxidation are the same, and may be any step before formation of the active oxidant
-
?
additional information
?
-
the enzyme catalyzes hydrogen peroxide-driven ethylbenzene hydroxylation, as well as styrene epoxidation. The ethylbenzene hydroxylation activity is higher than the styrene epoxidation activity, maybe due to a difference in the binding affinity of the two substrates. The rate-limiting steps of ethylbenzene hydroxylation and styrene epoxidation are the same, and may be any step before formation of the active oxidant
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
1.43
1,2-dimethoxy-4-(methoxymethyl)benzene
-
pH 5.6, 22°C
0.733 - 0.759
1,4-dimethoxybenzene
0.025 - 0.181
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
0.037 - 0.049
2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate)
0.126 - 0.866
2,6-dimethoxyphenol
4.976
2-methyl-2-butene
-
pH 5.6, 22°C
0.35 - 0.87
5-nitro-1,3-benzodioxole
3.6
Benzene
pH 7.0, temperature not specified in the publication
0.118 - 2.8
benzyl alcohol
1.844 - 6.571
Cyclohexanol
0.261 - 0.427
dimethylene-5-nitrobenzene
-
1.43
methyl 3,4-dimethoxybenzyl ether
-
in potassium phosphate buffer (50 mM, pH 7.0), at 23°C
0.127 - 0.791
Naphthalene
480
propylbenzene
-
pH not specified in the publication, temperature not specified in the publication
2.1
tetrahydrofuran
-
in potassium phosphate buffer (50 mM, pH 7.0), at 23°C
0.088 - 7.9
veratryl alcohol
0.733
1,4-dimethoxybenzene

-
free enzyme, at pH 7.0, temperature not specified in the publication
0.759
1,4-dimethoxybenzene
-
polyvinylalcohol/polyethylenglycol-gel-immobilized enzyme, at pH 7.0, temperature not specified in the publication
0.025
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)

at pH 4.4 and 20°C
0.037
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
-
in sodium citrate buffer, pH 4.5, at 25°C
0.043
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
mutant enzyme T120V/S226G/T320N, at pH 4.4 and 30°C
0.043
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
mutant enzyme T120V/S226G/T320R, at pH 4.4 and 30°C
0.048
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
mutant enzyme F12Y/A14V/R15GA21D/V57A/L67F/V75I/I248V/F311L, at pH 4.0, temperature not specified in the publication
0.048
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
-
recombinant enzyme from Saccharomyces cerevisiae, at pH 4.0, temperature not specified in the publication
0.05
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
-
recombinant enzyme from Pichia pastoris, at pH 4.0, temperature not specified in the publication
0.071
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
-
pH 4.5, 25°C
0.083
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
mutant enzyme F12Y/A14V/R15G/A21D/V57A/L67F/V75I/I248V/F311L, at pH 4.4 and 30°C
0.181
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
mutant enzyme G241D/R257K, at pH 4.0, temperature not specified in the publication
0.037
2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate)

-
at pH 4.5 in sodium phosphate/citrate buffer, in the presence of 5 mM benzyl alcohol, at 25°C
0.049
2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate)
-
in sodium phosphate-citrate buffer at pH 4.5 and 25°C
0.126
2,6-dimethoxyphenol

mutant enzyme F12Y/A14V/R15GA21D/V57A/L67F/V75I/I248V/F311L, at pH 7.0, temperature not specified in the publication
0.133
2,6-dimethoxyphenol
-
pH 5.5, 25°C
0.298
2,6-dimethoxyphenol
-
at pH 7.0 in sodium phosphate/citrate buffer, at 25°C
0.298
2,6-dimethoxyphenol
-
in sodium citrate buffer, pH 7.0, at 25°C
0.342
2,6-dimethoxyphenol
-
in sodium phosphate-citrate buffer at pH 4.5 and 25°C
0.866
2,6-dimethoxyphenol
mutant enzyme G241D/R257K, at pH 7.0, temperature not specified in the publication
0.35
5-nitro-1,3-benzodioxole

mutant enzyme T120V/S226G/T320N, at pH 4.4 and 30°C
0.483
5-nitro-1,3-benzodioxole
-
recombinant enzyme from Saccharomyces cerevisiae, at pH 7.0, temperature not specified in the publication
0.49
5-nitro-1,3-benzodioxole
mutant enzyme T120V/S226G/T320R, at pH 4.4 and 30°C
0.684
5-nitro-1,3-benzodioxole
at pH 6.5 and 20°C
0.85
5-nitro-1,3-benzodioxole
-
recombinant enzyme from Pichia pastoris, at pH 7.0, temperature not specified in the publication
0.87
5-nitro-1,3-benzodioxole
mutant enzyme F12Y/A14V/R15G/A21D/V57A/L67F/V75I/I248V/F311L, at pH 4.4 and 30°C
0.118
benzyl alcohol

-
pH 5.5, 25°C
0.635
benzyl alcohol
-
in sodium phosphate-citrate buffer at pH 7.0 and 25°C
1.001
benzyl alcohol
-
at pH 7.0 in sodium phosphate/citrate buffer, at 25°C
1.001
benzyl alcohol
-
in sodium citrate buffer, pH 7.0, at 25°C
1.9
benzyl alcohol
at pH 7.0 and 20°C
2.5
benzyl alcohol
-
recombinant enzyme from Saccharomyces cerevisiae, at pH 7.0 temperature not specified in the publication
2.8
benzyl alcohol
-
recombinant enzyme from Pichia pastoris, at pH 7.0 temperature not specified in the publication
0.397
Cyclohexane

-
at pH 7.0 and 22°C
0.994
Cyclohexane
at pH 7.0 and 22°C
2.242
Cyclohexane
-
at pH 7.0 and 22°C
18.4
Cyclohexane
-
pH 5.6, 22°C
1.844
Cyclohexanol

-
at pH 7.0 and 22°C
4.977
Cyclohexanol
at pH 7.0 and 22°C
6.571
Cyclohexanol
-
at pH 7.0 and 22°C
0.778
diclofenac

-
polyvinylalcohol/polyethylenglycol-gel-immobilized enzyme, at pH 7.0, temperature not specified in the publication
0.907
diclofenac
-
free enzyme, at pH 7.0, temperature not specified in the publication
0.261
dimethylene-5-nitrobenzene

-
free enzyme, at pH 7.0, temperature not specified in the publication
-
0.427
dimethylene-5-nitrobenzene
-
polyvinylalcohol/polyethylenglycol-gel-immobilized enzyme, at pH 7.0, temperature not specified in the publication
-
23.2
ethylbenzene

pH 5.0, 25°C
26.2
ethylbenzene
pH 10.0, 25°C
81.4
ethylbenzene
pH 7.0, 25°C
694
ethylbenzene
-
pH not specified in the publication, temperature not specified in the publication
0.486
H2O2

mutant enzyme F12Y/A14V/R15GA21D/V57A/L67F/V75I/I248V/F311L, with 2,6-dimethoxyphenol as cosubstrate, at pH 7.0, temperature not specified in the publication
0.49
H2O2
-
recombinant enzyme from Saccharomyces cerevisiae, with benzyl alcohol as cosubstrate, at pH 7.0, temperature not specified in the publication
0.79
H2O2
at pH 7.0, temperature not specified in the publication
1.201
H2O2
-
in the presence of 5 mM benzyl alcohol, in sodium phosphate-citrate buffer at pH 7.0 and 25°C
1.25
H2O2
mutant enzyme G241D/R257K, with 2,6-dimethoxyphenol as cosubstrate, at pH 7.0, temperature not specified in the publication
1.313
H2O2
-
at pH 7.0 in sodium phosphate/citrate buffer, at 25°C
1.313
H2O2
-
in sodium citrate buffer, pH 7.0, at 25°C
1.37
H2O2
at pH 7.0 and 20°C
1.53
H2O2
-
recombinant enzyme from Pichia pastoris, with benzyl alcohol as cosubstrate, at pH 7.0, temperature not specified in the publication
1.99
H2O2
-
in potassium phosphate buffer (50 mM, pH 7.0), at 23°C
3.14
H2O2
-
pH 5.5, 25°C
7.2
H2O2
-
pH 5, 30°C, mutant enzyme F310A/F320Q
9.3
H2O2
-
pH 10, 30°C, mutant enzyme F310A/F320Q
11.4
H2O2
-
at pH 7.0, temperature not specified in the publication
23.2
H2O2
-
pH 5, 30°C, wild-type enzyme
26.2
H2O2
-
pH 10, 30°C, wild-type enzyme
28.94
H2O2
-
at pH 7.0, temperature not specified in the publication
30.6
H2O2
-
pH 7, 30°C, mutant enzyme F310A/F320Q
81.4
H2O2
-
pH 7, 30°C, wild-type enzyme
0.127
Naphthalene

mutant enzyme G241D/R257K, at pH 7.0, temperature not specified in the publication
0.32
Naphthalene
-
in potassium phosphate buffer, pH 7.0, at 25°C
0.32
Naphthalene
-
pH 5.6, 22°C
0.578
Naphthalene
mutant enzyme F12Y/A14V/R15GA21D/V57A/L67F/V75I/I248V/F311L, at pH 7.0, temperature not specified in the publication
0.584
Naphthalene
-
in sodium phosphate-citrate buffer at pH 7.0 and 25°C
0.791
Naphthalene
-
pH 5.5, 25°C
0.069
Pyridine

-
in 10 mM phosphate buffer (pH 7.0), temperature not specified in the publication
0.069
Pyridine
-
pH 5.6, 22°C
0.088
veratryl alcohol

-
in sodium phosphate-citrate buffer at pH 7.0 and 25°C
0.279
veratryl alcohol
-
pH 5.5, 25°C
2.367
veratryl alcohol
-
at pH 7.0 in sodium phosphate/citrate buffer, at 25°C
2.367
veratryl alcohol
-
in sodium citrate buffer, pH 7.0, at 25°C
3.1
veratryl alcohol
at pH 7.0, temperature not specified in the publication
5.2
veratryl alcohol
at pH 7.0 and 20°C
6.2
veratryl alcohol
-
recombinant enzyme from Pichia pastoris, at pH 7.0, temperature not specified in the publication
7.9
veratryl alcohol
-
recombinant enzyme from Saccharomyces cerevisiae, at pH 7.0, temperature not specified in the publication
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
720
1,2-dimethoxy-4-(methoxymethyl)benzene
-
pH 5.6, 22°C
457 - 593
1,4-dimethoxybenzene
25 - 952
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
123 - 283
2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate)
2 - 142
2,6-dimethoxyphenol
1257
2-methyl-2-butene
-
pH 5.6, 22°C
192 - 498
5-nitro-1,3-benzodioxole
8
Benzene
pH 7.0, temperature not specified in the publication
271 - 322
dimethylene-5-nitrobenzene
-
0.0093 - 410
ethylbenzene
720
methyl 3,4-dimethoxybenzyl ether
-
in potassium phosphate buffer (50 mM, pH 7.0), at 23°C
194
propylbenzene
-
pH not specified in the publication, temperature not specified in the publication
0.26
testosterone
at pH 7.0 and 22°C
33
tetrahydrofuran
-
in potassium phosphate buffer (50 mM, pH 7.0), at 23°C
457
1,4-dimethoxybenzene

-
free enzyme, at pH 7.0, temperature not specified in the publication
593
1,4-dimethoxybenzene
-
polyvinylalcohol/polyethylenglycol-gel-immobilized enzyme, at pH 7.0, temperature not specified in the publication
25
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)

-
pH 4.5, 25°C
125
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
mutant enzyme G241D/R257K, at pH 4.0, temperature not specified in the publication
221
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
at pH 4.4 and 20°C
283
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
-
in sodium citrate buffer, pH 4.5, at 25°C
343
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
mutant enzyme T120V/S226G/T320N, at pH 4.4 and 30°C
380
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
mutant enzyme T120V/S226G/T320R, at pH 4.4 and 30°C
395
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
mutant enzyme F12Y/A14V/R15GA21D/V57A/L67F/V75I/I248V/F311L, at pH 4.0, temperature not specified in the publication
395
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
-
recombinant enzyme from Saccharomyces cerevisiae, at pH 4.0, temperature not specified in the publication
546
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
-
recombinant enzyme from Pichia pastoris, at pH 4.0, temperature not specified in the publication
952
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
mutant enzyme F12Y/A14V/R15G/A21D/V57A/L67F/V75I/I248V/F311L, at pH 4.4 and 30°C
123
2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate)

-
in sodium phosphate-citrate buffer at pH 4.5 and 25°C
283
2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate)
-
at pH 4.5 in sodium phosphate/citrate buffer, in the presence of 5 mM benzyl alcohol, at 25°C
2
2,6-dimethoxyphenol

-
in sodium phosphate-citrate buffer at pH 4.5 and 25°C
68
2,6-dimethoxyphenol
mutant enzyme F12Y/A14V/R15GA21D/V57A/L67F/V75I/I248V/F311L, at pH 7.0, temperature not specified in the publication
70
2,6-dimethoxyphenol
-
pH 5.5, 25°C
108
2,6-dimethoxyphenol
-
at pH 7.0 in sodium phosphate/citrate buffer, at 25°C
108
2,6-dimethoxyphenol
-
in sodium citrate buffer, pH 7.0, at 25°C
142
2,6-dimethoxyphenol
mutant enzyme G241D/R257K, at pH 7.0, temperature not specified in the publication
192
5-nitro-1,3-benzodioxole

mutant enzyme T120V/S226G/T320R, at pH 4.4 and 30°C
219
5-nitro-1,3-benzodioxole
at pH 6.5 and 20°C
268
5-nitro-1,3-benzodioxole
mutant enzyme T120V/S226G/T320N, at pH 4.4 and 30°C
328
5-nitro-1,3-benzodioxole
mutant enzyme F12Y/A14V/R15G/A21D/V57A/L67F/V75I/I248V/F311L, at pH 4.4 and 30°C
338
5-nitro-1,3-benzodioxole
-
recombinant enzyme from Saccharomyces cerevisiae, at pH 7.0, temperature not specified in the publication
498
5-nitro-1,3-benzodioxole
-
recombinant enzyme from Pichia pastoris, at pH 7.0, temperature not specified in the publication
62
benzyl alcohol

-
pH 5.5, 25°C
176
benzyl alcohol
-
in sodium phosphate-citrate buffer at pH 7.0 and 25°C
269
benzyl alcohol
-
at pH 7.0 in sodium phosphate/citrate buffer, at 25°C
269
benzyl alcohol
-
in sodium citrate buffer, pH 7.0, at 25°C
307
benzyl alcohol
-
recombinant enzyme from Saccharomyces cerevisiae, at pH 7.0 temperature not specified in the publication
329
benzyl alcohol
at pH 7.0 and 20°C
524
benzyl alcohol
-
recombinant enzyme from Pichia pastoris, at pH 7.0 temperature not specified in the publication
13
Cyclohexane

-
at pH 7.0 and 22°C
37
Cyclohexane
-
pH 5.6, 22°C
43
Cyclohexane
-
at pH 7.0 and 22°C
72
Cyclohexane
at pH 7.0 and 22°C
3
Cyclohexanol

-
at pH 7.0 and 22°C
5
Cyclohexanol
at pH 7.0 and 22°C
31
Cyclohexanol
-
at pH 7.0 and 22°C
371
diclofenac

-
polyvinylalcohol/polyethylenglycol-gel-immobilized enzyme, at pH 7.0, temperature not specified in the publication
582
diclofenac
-
free enzyme, at pH 7.0, temperature not specified in the publication
271
dimethylene-5-nitrobenzene

-
polyvinylalcohol/polyethylenglycol-gel-immobilized enzyme, at pH 7.0, temperature not specified in the publication
-
322
dimethylene-5-nitrobenzene
-
free enzyme, at pH 7.0, temperature not specified in the publication
-
0.0093
ethylbenzene

pH 5.0, 25°C
0.125
ethylbenzene
pH 7.0, 25°C
0.158
ethylbenzene
pH 10.0, 25°C
410
ethylbenzene
-
pH not specified in the publication, temperature not specified in the publication
0.07
H2O2

-
pH 5, 30°C, mutant enzyme F310A/F320Q
0.09
H2O2
-
pH 5, 30°C, wild-type enzyme
0.09
H2O2
-
pH 10, 30°C, mutant enzyme F310A/F320Q
0.13
H2O2
-
pH 7, 30°C, wild-type enzyme
0.16
H2O2
-
pH 10, 30°C, wild-type enzyme
0.34
H2O2
-
pH 7, 30°C, mutant enzyme F310A/F320Q
127
H2O2
at pH 7.0, temperature not specified in the publication
238
H2O2
mutant enzyme F12Y/A14V/R15GA21D/V57A/L67F/V75I/I248V/F311L, with 2,6-dimethoxyphenol as cosubstrate, at pH 7.0, temperature not specified in the publication
238
H2O2
-
recombinant enzyme from Saccharomyces cerevisiae, with benzyl alcohol as cosubstrate, at pH 7.0, temperature not specified in the publication
290
H2O2
at pH 7.0 and 20°C
367
H2O2
-
at pH 7.0 in sodium phosphate/citrate buffer, at 25°C
367
H2O2
-
in sodium citrate buffer, pH 7.0, at 25°C
447
H2O2
mutant enzyme G241D/R257K, with 2,6-dimethoxyphenol as cosubstrate, at pH 7.0, temperature not specified in the publication
471
H2O2
-
in the presence of 5 mM benzyl alcohol, in sodium phosphate-citrate buffer at pH 7.0 and 25°C
676
H2O2
-
recombinant enzyme from Pichia pastoris, with benzyl alcohol as cosubstrate, at pH 7.0, temperature not specified in the publication
1665
H2O2
-
at pH 7.0, temperature not specified in the publication
1910
H2O2
-
at pH 7.0, temperature not specified in the publication
15
Naphthalene

-
in sodium phosphate-citrate buffer at pH 7.0 and 25°C
33
Naphthalene
-
pH 5.5, 25°C
78
Naphthalene
mutant enzyme G241D/R257K, at pH 7.0, temperature not specified in the publication
166
Naphthalene
-
in potassium phosphate buffer, pH 7.0, at 25°C
166
Naphthalene
-
pH 5.6, 22°C
229
Naphthalene
mutant enzyme F12Y/A14V/R15GA21D/V57A/L67F/V75I/I248V/F311L, at pH 7.0, temperature not specified in the publication
0.21
Pyridine

-
in 10 mM phosphate buffer (pH 7.0), temperature not specified in the publication
0.21
Pyridine
-
pH 5.6, 22°C
3 - 6
veratryl alcohol

at pH 7.0, temperature not specified in the publication
34
veratryl alcohol
-
in sodium phosphate-citrate buffer at pH 7.0 and 25°C
49
veratryl alcohol
-
pH 5.5, 25°C
85
veratryl alcohol
-
at pH 7.0 in sodium phosphate/citrate buffer, at 25°C
85
veratryl alcohol
-
in sodium citrate buffer, pH 7.0, at 25°C
88
veratryl alcohol
at pH 7.0 and 20°C
121
veratryl alcohol
-
recombinant enzyme from Saccharomyces cerevisiae, at pH 7.0, temperature not specified in the publication
203
veratryl alcohol
-
recombinant enzyme from Pichia pastoris, at pH 7.0, temperature not specified in the publication
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
500
1,2-dimethoxy-4-(methoxymethyl)benzene
-
pH 5.6, 22°C
130 - 160
1,4-dimethoxybenzene
353 - 11424
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
2510 - 7670
2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate)
5.85 - 540
2,6-dimethoxyphenol
250
2-methyl-2-butene
-
pH 5.6, 22°C
320 - 748
5-nitro-1,3-benzodioxole
2.2
Benzene
pH 7.0, temperature not specified in the publication
81 - 160
dimethylene-5-nitrobenzene
-
0.0004 - 590
ethylbenzene
500
methyl 3,4-dimethoxybenzyl ether
-
in potassium phosphate buffer (50 mM, pH 7.0), at 23°C
405
propylbenzene
-
pH not specified in the publication, temperature not specified in the publication
1.6
testosterone
at pH 7.0 and 22°C
11.6 - 386
veratryl alcohol
130
1,4-dimethoxybenzene

-
polyvinylalcohol/polyethylenglycol-gel-immobilized enzyme, at pH 7.0, temperature not specified in the publication
160
1,4-dimethoxybenzene
-
free enzyme, at pH 7.0, temperature not specified in the publication
353
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)

-
pH 4.5, 25°C
690
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
mutant enzyme G241D/R257K, at pH 4.0, temperature not specified in the publication
7670
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
-
in sodium citrate buffer, pH 4.5, at 25°C
7982
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
mutant enzyme T120V/S226G/T320N, at pH 4.4 and 30°C
8200
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
mutant enzyme F12Y/A14V/R15GA21D/V57A/L67F/V75I/I248V/F311L, at pH 4.0, temperature not specified in the publication
8200
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
-
recombinant enzyme from Saccharomyces cerevisiae, at pH 4.0, temperature not specified in the publication
8800
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
at pH 4.4 and 20°C
8891
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
mutant enzyme T120V/S226G/T320R, at pH 4.4 and 30°C
11000
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
-
recombinant enzyme from Pichia pastoris, at pH 4.0, temperature not specified in the publication
11424
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
mutant enzyme F12Y/A14V/R15G/A21D/V57A/L67F/V75I/I248V/F311L, at pH 4.4 and 30°C
2510
2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate)

-
in sodium phosphate-citrate buffer at pH 4.5 and 25°C
7670
2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate)
-
at pH 4.5 in sodium phosphate/citrate buffer, in the presence of 5 mM benzyl alcohol, at 25°C
5.85
2,6-dimethoxyphenol

-
in sodium phosphate-citrate buffer at pH 4.5 and 25°C
160
2,6-dimethoxyphenol
mutant enzyme G241D/R257K, at pH 7.0, temperature not specified in the publication
361
2,6-dimethoxyphenol
-
at pH 7.0 in sodium phosphate/citrate buffer, at 25°C
361
2,6-dimethoxyphenol
-
in sodium citrate buffer, pH 7.0, at 25°C
529
2,6-dimethoxyphenol
-
pH 5.5, 25°C
540
2,6-dimethoxyphenol
mutant enzyme F12Y/A14V/R15GA21D/V57A/L67F/V75I/I248V/F311L, at pH 7.0, temperature not specified in the publication
320
5-nitro-1,3-benzodioxole

at pH 6.5 and 20°C
393
5-nitro-1,3-benzodioxole
mutant enzyme T120V/S226G/T320R, at pH 4.4 and 30°C
406
5-nitro-1,3-benzodioxole
mutant enzyme F12Y/A14V/R15G/A21D/V57A/L67F/V75I/I248V/F311L, at pH 4.4 and 30°C
590
5-nitro-1,3-benzodioxole
-
recombinant enzyme from Pichia pastoris, at pH 7.0, temperature not specified in the publication
700
5-nitro-1,3-benzodioxole
-
recombinant enzyme from Saccharomyces cerevisiae, at pH 7.0, temperature not specified in the publication
748
5-nitro-1,3-benzodioxole
mutant enzyme T120V/S226G/T320N, at pH 4.4 and 30°C
124
benzyl alcohol

-
recombinant enzyme from Saccharomyces cerevisiae, at pH 7.0 temperature not specified in the publication
174
benzyl alcohol
at pH 7.0 and 20°C
190
benzyl alcohol
-
recombinant enzyme from Pichia pastoris, at pH 7.0 temperature not specified in the publication
269
benzyl alcohol
-
at pH 7.0 in sodium phosphate/citrate buffer, at 25°C
269
benzyl alcohol
-
in sodium citrate buffer, pH 7.0, at 25°C
277
benzyl alcohol
-
in sodium phosphate-citrate buffer at pH 7.0 and 25°C
525
benzyl alcohol
-
pH 5.5, 25°C
2
Cyclohexane

-
pH 5.6, 22°C
3.2
Cyclohexane
-
at pH 7.0 and 22°C
43
Cyclohexane
-
at pH 7.0 and 22°C
72
Cyclohexane
at pH 7.0 and 22°C
0.39
Cyclohexanol

-
at pH 7.0 and 22°C
0.97
Cyclohexanol
at pH 7.0 and 22°C
1.7
Cyclohexanol
-
at pH 7.0 and 22°C
160
diclofenac

-
free enzyme, at pH 7.0, temperature not specified in the publication
210
diclofenac
-
polyvinylalcohol/polyethylenglycol-gel-immobilized enzyme, at pH 7.0, temperature not specified in the publication
81
dimethylene-5-nitrobenzene

-
free enzyme, at pH 7.0, temperature not specified in the publication
-
160
dimethylene-5-nitrobenzene
-
polyvinylalcohol/polyethylenglycol-gel-immobilized enzyme, at pH 7.0, temperature not specified in the publication
-
0.0004
ethylbenzene

pH 5.0, 25°C
0.0015
ethylbenzene
pH 7.0, 25°C
0.006
ethylbenzene
pH 10.0, 25°C
590
ethylbenzene
-
pH not specified in the publication, temperature not specified in the publication
0.0016
H2O2

-
pH 7, 30°C, wild-type enzyme
0.004
H2O2
-
pH 5, 30°C, wild-type enzyme
0.006
H2O2
-
pH 10, 30°C, wild-type enzyme
0.0096
H2O2
-
pH 10, 30°C, mutant enzyme F310A/F320Q
0.0097
H2O2
-
pH 5, 30°C, mutant enzyme F310A/F320Q
0.011
H2O2
-
pH 7, 30°C, mutant enzyme F310A/F320Q
24.2
H2O2
-
pH 5.5, 25°C
57.5
H2O2
-
at pH 7.0, temperature not specified in the publication
160
H2O2
at pH 7.0, temperature not specified in the publication
167
H2O2
-
at pH 7.0, temperature not specified in the publication
211
H2O2
at pH 7.0 and 20°C
279
H2O2
-
at pH 7.0 in sodium phosphate/citrate buffer, at 25°C
279
H2O2
-
in sodium citrate buffer, pH 7.0, at 25°C
360
H2O2
mutant enzyme G241D/R257K, with 2,6-dimethoxyphenol as cosubstrate, at pH 7.0, temperature not specified in the publication
392
H2O2
-
in the presence of 5 mM benzyl alcohol, in sodium phosphate-citrate buffer at pH 7.0 and 25°C
442
H2O2
-
recombinant enzyme from Pichia pastoris, with benzyl alcohol as cosubstrate, at pH 7.0, temperature not specified in the publication
500
H2O2
mutant enzyme F12Y/A14V/R15GA21D/V57A/L67F/V75I/I248V/F311L, with 2,6-dimethoxyphenol as cosubstrate, at pH 7.0, temperature not specified in the publication
500
H2O2
-
recombinant enzyme from Saccharomyces cerevisiae, with benzyl alcohol as cosubstrate, at pH 7.0, temperature not specified in the publication
25.7
Naphthalene

-
in sodium phosphate-citrate buffer at pH 7.0 and 25°C
42.5
Naphthalene
-
pH 5.5, 25°C
400
Naphthalene
mutant enzyme F12Y/A14V/R15GA21D/V57A/L67F/V75I/I248V/F311L, at pH 7.0, temperature not specified in the publication
517
Naphthalene
-
in potassium phosphate buffer, pH 7.0, at 25°C
520
Naphthalene
-
pH 5.6, 22°C
620
Naphthalene
mutant enzyme G241D/R257K, at pH 7.0, temperature not specified in the publication
3
Pyridine

-
pH 5.6, 22°C
3.04
Pyridine
-
in 10 mM phosphate buffer (pH 7.0), temperature not specified in the publication
11.6
veratryl alcohol

at pH 7.0, temperature not specified in the publication
15
veratryl alcohol
-
recombinant enzyme from Saccharomyces cerevisiae, at pH 7.0, temperature not specified in the publication
17
veratryl alcohol
at pH 7.0 and 20°C
32
veratryl alcohol
-
recombinant enzyme from Pichia pastoris, at pH 7.0, temperature not specified in the publication
35.8
veratryl alcohol
-
at pH 7.0 in sodium phosphate/citrate buffer, at 25°C
35.8
veratryl alcohol
-
in sodium citrate buffer, pH 7.0, at 25°C
176
veratryl alcohol
-
pH 5.5, 25°C
386
veratryl alcohol
-
in sodium phosphate-citrate buffer at pH 7.0 and 25°C
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Hofrichter, M.; Ullrich, R.
Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance
Appl. Microbiol. Biotechnol.
71
276-288
2006
Agrocybe aegerita
brenda
Piontek, K.; Ullrich, R.; Liers, C.; Diederichs, K.; Plattner, D.A.; Hofrichter, M.
Crystallization of a 45 kDa peroxygenase/peroxidase from the mushroom Agrocybe aegerita and structure determination by SAD utilizing only the haem iron
Acta Crystallogr. Sect. F
66
693-698
2010
Agrocybe aegerita
brenda
Ullrich, R.; Nuske, J.; Scheibner, K.; Spantzel, J.; Hofrichter, M.
Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes
Appl. Environ. Microbiol.
70
4575-4581
2004
Agrocybe aegerita
brenda
Anh, D.H.; Ullrich, R.; Benndorf, D.; Svatos, A.; Muck, A.; Hofrichter, M.
The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation
Appl. Environ. Microbiol.
73
5477-5485
2007
Coprinellus radians
brenda
Kluge, M.G.; Ullrich, R.; Scheibner, K.; Hofrichter, M.
Spectrophotometric assay for detection of aromatic hydroxylation catalyzed by fungal haloperoxidase-peroxygenase
Appl. Microbiol. Biotechnol.
75
1473-1478
2007
Agrocybe aegerita
brenda
Kluge, M.; Ullrich, R.; Dolge, C.; Scheibner, K.; Hofrichter, M.
Hydroxylation of naphthalene by aromatic peroxygenase from Agrocybe aegerita proceeds via oxygen transfer from H2O2 and intermediary epoxidation
Appl. Microbiol. Biotechnol.
81
1071-1076
2009
Agrocybe aegerita
brenda
Aranda, E.; Kinne, M.; Kluge, M.; Ullrich, R.; Hofrichter, M.
Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases
Appl. Microbiol. Biotechnol.
82
1057-1066
2009
Agrocybe aegerita, Coprinellus radians
brenda
Pecyna, M.J.; Ullrich, R.; Bittner, B.; Clemens, A.; Scheibner, K.; Schubert, R.; Hofrichter, M.
Molecular characterization of aromatic peroxygenase from Agrocybe aegerita
Appl. Microbiol. Biotechnol.
84
885-897
2009
Agrocybe aegerita (B9W4V6), Agrocybe aegerita
brenda
Kinne, M.; Zeisig, C.; Ullrich, R.; Kayser, G.; Hammel, K.E.; Hofrichter, M.
Stepwise oxygenations of toluene and 4-nitrotoluene by a fungal peroxygenase
Biochem. Biophys. Res. Commun.
397
18-21
2010
Agrocybe aegerita
brenda
Aranda, E.; Ullrich, R.; Hofrichter, M.
Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases
Biodegradation
21
267-281
2010
Agrocybe aegerita, Coprinellus radians
brenda
Ullrich, R.; Liers, C.; Schimpke, S.; Hofrichter, M.
Purification of homogeneous forms of fungal peroxygenase
Biotechnol. J.
4
1619-1626
2009
Agrocybe aegerita
brenda
Peng, L.; Wollenberger, U.; Hofrichter, M.; Ullrich, R.; Scheibner, K.; Scheller, F.W.
Bioelectrocatalytic properties of Agrocybe aegerita peroxygenase
Electrochim. Acta
55
7809-7813
2010
Agrocybe aegerita
-
brenda
Ullrich, R.; Hofrichter, M.
The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene
FEBS Lett.
579
6247-6250
2005
Agrocybe aegerita
brenda
Ullrich, R.; Dolge, C.; Kluge, M.; Hofrichter, M.
Pyridine as novel substrate for regioselective oxygenation with aromatic peroxygenase from Agrocybe aegerita
FEBS Lett.
582
4100-4106
2008
Agrocybe aegerita
brenda
Kinne, M.; Poraj-Kobielska, M.; Ralph, S.A.; Ullrich, R.; Hofrichter, M.; Hammel, K.E.
Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase
J. Biol. Chem.
284
29343-29349
2009
Agrocybe aegerita
brenda
Kinne, M.; Ullrich, R.; Hammel, K.E.; Scheibner, K.; Hofrichter, M.
Regioselective preparation of (R)-2-(4-hydroxyphenoxy)propionic acid with a fungal peroxygenase
Tetrahedron Lett.
49
5950-5953
2008
Agrocybe aegerita
-
brenda
Groebe, G.; Ullrich, R.; Pecyna, M.J.; Kapturska, D.; Friedrich, S.; Hofrichter, M.; Scheibner, K.
High-yield production of aromatic peroxygenase by the agaric fungus Marasmius rotula
AMB Express
1
31
2011
Marasmius rotula
brenda
Karich, A.; Kluge, M.; Ullrich, R.; Hofrichter, M.
Benzene oxygenation and oxidation by the peroxygenase of Agrocybe aegerita
AMB Express
3
5
2013
Agrocybe aegerita (B9W4V6), Agrocybe aegerita
brenda
Yarman, A.; Groebe, G.; Neumann, B.; Kinne, M.; Gajovic-Eichelmann, N.; Wollenberger, U.; Hofrichter, M.; Ullrich, R.; Scheibner, K.; Scheller, F.W.
The aromatic peroxygenase from Marasmius rutola - a new enzyme for biosensor applications
Anal. Bioanal. Chem.
402
405-412
2012
Marasmius rotula
brenda
Babot, E.D.; del Rio, J.C.; Kalum, L.; Martinez, A.T.; Gutierrez, A.
Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea
Biotechnol. Bioeng.
110
2323-2332
2013
Coprinopsis cinerea
brenda
Peter, S.; Kinne, M.; Ullrich, R.; Kayser, G.; Hofrichter, M.
Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase
Enzyme Microb. Technol.
52
370-376
2013
Agrocybe aegerita
brenda
Hayakawa, S.; Matsumura, H.; Nakamura, N.; Yohda, M.; Ohno, H.
Identification of the rate-limiting step of the peroxygenase reactions catalyzed by the thermophilic cytochrome P450 from Sulfolobus tokodaii strain 7
FEBS J.
281
1409-1416
2014
Sulfurisphaera tokodaii, Sulfurisphaera tokodaii 7
brenda
Kluge, M.; Ullrich, R.; Scheibner, K.; Hofrichter, M.
Stereoselective benzylic hydroxylation of alkylbenzenes and epoxidation of styrene derivatives catalyzed by the peroxygenase of Agrocybe aegerita
Green Chem.
14
440-446
2012
Agrocybe aegerita
-
brenda
Kluge, M.; Ullrich, R.; Scheibner, K.; Hofrichter, M.
Formation of naphthalene hydrates in the enzymatic conversion of 1,2-dihydronaphthalene by two fungal peroxygenases and subsequent naphthalene formation
J. Mol. Catal. B
103
56-60
2013
Agrocybe aegerita, Coprinellus radians
-
brenda
Molina-Espeja, P.; Garcia-Ruiz, E.; Gonzalez-Perez, D.; Ullrich, R.; Hofrichter, M.; Alcalde, M.
Directed evolution of unspecific peroxygenase from Agrocybe aegerita
Appl. Environ. Microbiol.
80
3496-3507
2014
Agrocybe aegerita (B9W4V6), Agrocybe aegerita
brenda
Poraj-Kobielska, M.; Peter, S.; Leonhardt, S.; Ullrich, R.; Scheibner, K.; Hofrichter, M.
Immobilization of unspecific peroxygenases (EC 1.11.2.1) in PVA/PEG gel and hollow fiber modules
Biochem. Eng. J.
98
144-150
2015
Agrocybe aegerita
-
brenda
Kiebist, J.; Holla, W.; Heidrich, J.; Poraj-Kobielska, M.; Sandvoss, M.; Simonis, R.; Groebe, G.; Atzrodt, J.; Hofrichter, M.; Scheibner, K.
One-pot synthesis of human metabolites of SAR548304 by fungal peroxygenases
Bioorg. Med. Chem.
23
4324-4332
2015
Marasmius rotula
brenda
Lucas, F.; Babot, E.; Canellas, M.; Del Rio, J.; Kalum, L.; Ullrich, R.; Hofrichter, M.; Guallar, V.; Martinez, A.; Gutierrez, A.
Molecular determinants for selective C25-hydroxylation of vitamins D2 and D3 by fungal peroxygenases
Catal. Sci. Technol.
6
288-295
2015
Coprinopsis cinerea, Agrocybe aegerita
-
brenda
Molina-Espeja, P.; Canellas, M.; Plou, F.J.; Hofrichter, M.; Lucas, F.; Guallar, V.; Alcalde, M.
Synthesis of 1-naphthol by a natural peroxygenase engineered by directed evolution
ChemBioChem
17
341-349
2016
Agrocybe aegerita (B9W4V6)
brenda
Kiebist, J.; Schmidtke, K.U.; Zimmermann, J.; Kellner, H.; Jehmlich, N.; Ullrich, R.; Zaender, D.; Hofrichter, M.; Scheibner, K.
A peroxygenase from Chaetomium globosum catalyzes the selective oxygenation of testosterone
ChemBioChem
18
563-569
2017
Chaetomium globosum (Q2HHI5), Chaetomium globosum, Chaetomium globosum ATCC 6205 (Q2HHI5)
brenda
Hofrichter, M.; Ullrich, R.
Oxidations catalyzed by fungal peroxygenases
Curr. Opin. Chem. Biol.
19
116-125
2014
Coprinellus radians, Marasmius rotula, Agrocybe aegerita (B9W4V6)
brenda
Molina-Espeja, P.; Ma, S.; Mate, D.M.; Ludwig, R.; Alcalde, M.
Tandem-yeast expression system for engineering and producing unspecific peroxygenase
Enzyme Microb. Technol.
73-74
29-33
2015
Agrocybe aegerita
brenda
Carro, J.; Ferreira, P.; Rodriguez, L.; Prieto, A.; Serrano, A.; Balcells, B.; Arda, A.; Jimenez-Barbero, J.; Gutierrez, A.; Ullrich, R.; Hofrichter, M.; Martinez, A.T.
5-hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase
FEBS J.
282
3218-3229
2015
Agrocybe aegerita, Agrocybe aegerita DSM 22459
brenda
Peter, S.; Karich, A.; Ullrich, R.; Groebe, G.; Scheibner, K.; Hofrichter, M.
Enzymatic one-pot conversion of cyclohexane into cyclohexanone Comparison of four fungal peroxygenases
J. Mol. Catal. B
103
47-51
2014
Coprinopsis cinerea, Marasmius rotula, Agrocybe aegerita (B9W4V6)
-
brenda
Karich, A.; Scheibner, K.; Ullrich, R.; Hofrichter, M.
Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction
J. Mol. Catal. B
134
238-246
2016
Coprinopsis cinerea, Marasmius rotula, Agrocybe aegerita (B9W4V6)
-
brenda
Wang, X.; Ullrich, R.; Hofrichter, M.; Groves, J.T.
Heme-thiolate ferryl of aromatic peroxygenase is basic and reactive
Proc. Natl. Acad. Sci. USA
112
3686-3691
2015
Agrocybe aegerita (B9W4V6), Agrocybe aegerita
brenda
Mate, D.M.; Palomino, M.A.; Molina-Espeja, P.; Martin-Diaz, J.; Alcalde, M.
Modification of the peroxygenative peroxidative activity ratio in the unspecific peroxygenase from Agrocybe aegerita by structure-guided evolution
Protein Eng. Des. Sel.
30
191-198
2017
Agrocybe aegerita (B9W4V6), Agrocybe aegerita
brenda
Hayakawa, S.; Matsumura, H.; Nakamura, N.; Yohda, M.; Ohno, H.
Identification of the rate-limiting step of the peroxygenase reactions catalyzed by the thermophilic cytochrome P450 from Sulfolobus tokodaii strain 7
FEBS J.
281
1409-1416
2014
Sulfurisphaera tokodaii (Q972I2), Sulfurisphaera tokodaii 7 (Q972I2)
brenda