Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search Crystallization (Commentary)

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 10 of 15 > >>
EC Number Crystallization (Commentary)
Show all pathways known for 4.4.1.5Display the word mapDisplay the reaction diagram Show all sequences 4.4.1.5-
Show all pathways known for 4.4.1.5Display the word mapDisplay the reaction diagram Show all sequences 4.4.1.52.0 A resolution
Show all pathways known for 4.4.1.5Display the word mapDisplay the reaction diagram Show all sequences 4.4.1.5a comparison of the X-ray structures of the Escherichia coli GlxI reconstituted with Zn2+ (inactive) and with the activating metals Co2+, Cd2+, Ni2+ reveals that all activating metals have an octahedral environment, but the Zn2+-bound form of the enzyme results in antrigonal bipyramidal five-coordinate environment around the metal. GlxI, containing activating metals all have two water molecules bound to the active site metal along with four protein side chains making up the homodimer of the enzyme: His5 A-subunit, Glu56 A-subunit, His74 B-subunit, Glu122 B-subunit. The inactive Zn2+-bound enzyme has the same four protein side chains bound to the metal, but only one water molecule is coordinated to the Zn2+
Show all pathways known for 4.4.1.5Display the word mapDisplay the reaction diagram Show all sequences 4.4.1.5complex with methyl-gerfelin, structural resolution at 1.7 A. The model contains one protein homodimer, two zinc ions, and two methyl-gerfelin molecules in an asymmetric unit. The two active sites of the homodimer are located at the dimer interface and are characterized by a zinc-ion-binding site, a glutathione-binding site, and a hydrophobic pocket. In the active site, the zinc ion is on octahedral coordination and is bound by Gln34, Glu100, His127, Glu173 and two hydroxyl groups of methyl-gerfelin directly
Show all pathways known for 4.4.1.5Display the word mapDisplay the reaction diagram Show all sequences 4.4.1.5crystal sructure of glyoxalase I in complex with S-(N-hydroxy-N-p-bromophenylcarbamoyl)glutathione and S-p-nitrobenzyloxycarbonylglutathione at 2.0 and 1.72 A, respectively
Show all pathways known for 4.4.1.5Display the word mapDisplay the reaction diagram Show all sequences 4.4.1.5crystal structure of glyoxalase I complexed with S-benzylglutathione and S-(N-p-iodophenyl-N-hydroxycarbamoyl)glutathione
Show all pathways known for 4.4.1.5Display the word mapDisplay the reaction diagram Show all sequences 4.4.1.5crystallization of apo GlxI and GlxI complexed with Ni2+ Co2+, Cd2+, Zn2+, and seleno-L-methionine-Ni2+ by vapor diffusion in hanging drops, 0.005 ml protein solution at 12-37 mg/ml is mixed with an equal volume of well solution containing 5-10% polyethylene glycol 1000 and 5-10% polyethylene glycol 8000, crystals diffract to 1.5-2.5 A, Zn2+-GlxI complex has trigonal bipyramidal instead of octhedral coordination with Ni2+, Co2+ and Cd2+ and is inactive
Show all pathways known for 4.4.1.5Display the word mapDisplay the reaction diagram Show all sequences 4.4.1.5molecular docking of all inhibitors tested into crystal structure, PDB entry 1QIN. In the binding model of the three-ring curcumin derivatives, two rings lay in the opening of the active site, the third is buried into hydrophobic pocket site. 6 ns molecular dynamics simulations of compound (1E,6E)-4-(3,4-dimethoxybenzylidene)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione show two important hydrogen bonds: one is between hydroxyl oxygen atom of compound (1E,6E)-4-(3,4-dimethoxybenzylidene)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione and the nitrogen atom in residue Arg37, and one between the hydroxyl oxygen of the compound inside the hydrophobic pocket and the carbonyl oxygen of residue Met179. The original hydrogen bond disappears but a new and stable one is formed. The average distance from Zn2+ to outer carbonyl oxygen of compound (1E,6E)-4-(3,4-dimethoxybenzylidene)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione is about 2.095 A during 6 ns simulation. Pi-pi stacking interaction is observed between a phenyl ring of the ligand and residue Phe67
Show all pathways known for 4.4.1.5Display the word mapDisplay the reaction diagram Show all sequences 4.4.1.5purified recombinant His6-tagged enzyme with bound Zn2+ or Ni2+, sitting drop vapor diffusion, in 20% v/v isopropyl alcohol and 30% w/v PEG3350 in 0.1 M HEPES buffer, pH 7.5, X-ray diffraction structure determination and analysis at 2.45 A and 2.06 A resolution, respectively. The Ni2+-bound non-His-tagged CLO GlxI structure is solved by molecular replacement using the Zn2+-bound structure as search model
Show all pathways known for 4.4.1.5Display the word mapDisplay the reaction diagram Show all sequences 4.4.1.5recombinant enzyme in complex with S-benzyl-glutathione
Results 1 - 10 of 15 > >>