Information on EC 3.1.1.14 - chlorophyllase:

   PRINT
Please wait a moment until all data are loaded. This message will disappear when all data are loaded.
Mark a special word or phrase in this record:  
Select one or more organisms in this record:

The expected taxonomic range for this enzyme is: Eukaryota


Show additional data Do not include text mining results
Include (text mining) results (more...)
Include results (AMENDA + additional results, but less precise; more...)

Please login to have access to the AMENDA and FRENDA data

EC NUMBERCOMMENTARY
3.1.1.14-

RECOMMENDED NAMEGeneOntology No.
chlorophyllaseGO:0047746

REACTIONREACTION DIAGRAMCOMMENTARYORGANISM UNIPROT ACCESSION NO.LITERATURE
chlorophyll + H2O = phytol + chlorophyllide
show the reaction diagram
----
chlorophyll + H2O = phytol + chlorophyllide
show the reaction diagram
also catalyzes chlorophyllide transfer, e.g. converts chlorophyll to methylchlorophyllidePhaseolus vulgaris-649092
chlorophyll + H2O = phytol + chlorophyllide
show the reaction diagram
also catalyzes chlorophyllide transfer, e.g. converts chlorophyll to methylchlorophyllidePhaeodactylum tricornutum-652956
chlorophyll + H2O = phytol + chlorophyllide
show the reaction diagram
also catalyzes chlorophyllide transfer, e.g. converts chlorophyll to methylchlorophyllideCapsicum annuum-653048
chlorophyll + H2O = phytol + chlorophyllide
show the reaction diagram
also catalyzes chlorophyllide transfer, e.g. converts chlorophyll to methylchlorophyllideOlea europaea-653440
chlorophyll + H2O = phytol + chlorophyllide
show the reaction diagram
also catalyzes chlorophyllide transfer, e.g. converts chlorophyll to methylchlorophyllide, catalytic mechanism, catalytic triad is composed of Ser162, Asp191, and His262, and reveals the enzyme as a serine hydrolaseChenopodium album-653472
chlorophyll + H2O = phytol + chlorophyllide
show the reaction diagram
also catalyzes chlorophyllide transfer, e.g. converts chlorophyll to methylchlorophyllideArabidopsis thaliana-650503, 653524

REACTION TYPEORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
hydrolysisTriticum aestivum--663769
hydrolysisMusa cavendishii--665148
hydrolysisPhaeodactylum tricornutum--665784
hydrolysisPachira macrocarpa--665817
hydrolysisArabidopsis thalianaO22527-666579
hydrolysisGinkgo bilobaQ7Y0K5-667020, 667021
hydrolysis of carboxylic ester----
hydrolysis of carboxylic esterPhaseolus vulgaris--649092
hydrolysis of carboxylic esterPhaeodactylum tricornutum--652956
hydrolysis of carboxylic esterCapsicum annuum--653048
hydrolysis of carboxylic esterOlea europaea--653440
hydrolysis of carboxylic esterChenopodium album--653472
hydrolysis of carboxylic esterArabidopsis thaliana--650503, 653524
hydrolysis of carboxylic esterTriticum aestivum--663769
transesterificationPhaseolus vulgaris--80736
transesterificationAilanthus altissima--80739

PATHWAYKEGG LinkMetaCyc Link
Biosynthesis of secondary metabolites01110 -
chlorophyll a degradation I-PWY-5098
chlorophyll a degradation II-PWY-6927
chlorophyll a degradation III-PWY-7164
Metabolic pathways01100 -
Porphyrin and chlorophyll metabolism00860 -

SYSTEMATIC NAMEIUBMB Comments
chlorophyll chlorophyllidohydrolaseChlorophyllase has been found in higher plants, diatoms, and in the green algae Chlorella [3]. This enzyme forms part of the chlorophyll degradation pathway and is thought to take part in de-greening processes such as fruit ripening, leaf senescence and flowering, as well as in the turnover and homeostasis of chlorophyll [4]. This enzyme acts preferentially on chlorophyll a but will also accept chlorophyll b and pheophytins as substrates [5]. Ethylene and methyl jasmonate, which are known to accelerate senescence in many species, can enhance the activity of the hormone-inducible form of this enzyme [5].

SYNONYMSORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
AtCLH1Arabidopsis thalianaO22527-679870
AtCLH2Arabidopsis thalianaQ9M7I7-679870, 681243
Chase 1Arabidopsis thalianaO22527-666579
Chl-degrading enzymeBrassica oleracea--690299
Chlase----
ChlaseArabidopsis thaliana--650503, 653524
ChlaseBrassica oleracea--713678
ChlaseBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4-715221
ChlaseCapsicum annuum--653048
ChlaseChenopodium album--653472
ChlaseCitrus limon--694726
ChlaseCitrus limonB6DX58-716496
ChlaseCitrus sinensisQ9MV14-682323
ChlaseGinkgo bilobaQ7Y0K5-667020, 667021
ChlasePiper betle--678555
ChlaseTriticum aestivum--690844
Chlase2Arabidopsis thalianaQ9M7I7-681243
chlorophyll chlorophyllido-hydrolasePhaeodactylum tricornutum--665784
chlorophyll chlorophyllido-hydrolyase----
chlorophyll chlorophyllidohydrolaseBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4-715221
chlorophyll-chlorophyllide hydrolaseGinkgo bilobaQ7Y0K5-667021
chlorophyll-chlorophyllide hydrolasePachira macrocarpa--665817
chlorophyll-chlorophyllido hydrolaseArabidopsis thalianaO22527-666579
chlorophyll-chlorophyllido-hydrolasePhaeodactylum tricornutum--677636
chlorophyll-chlorophyllidohydrolaseTriticum aestivum--663769, 690844
chlorophyllaseArabidopsis thalianaO22527-666579
chlorophyllaseGinkgo bilobaQ7Y0K5-667020, 667021
chlorophyllaseMangifera indica--705875
chlorophyllaseMusa cavendishii--665148
chlorophyllasePachira macrocarpa--665817
chlorophyllaseTriticum aestivum--663769
Chlorophyllase-1Arabidopsis thalianaO22527-666579
CLHBrassica oleraceaQ8GTM3, Q8GTM4-716037
CLHChenopodium album--653472
CLH1Brassica oleraceaQ8GTM4-682459
CLH1Brassica oleraceaQ8GTM4isoform715221, 716037
CLH2Brassica oleraceaQ8GTM3-682459
CLH2Brassica oleraceaQ8GTM3isoform715221, 716037
CLH3Brassica oleraceaQ8GTM2-682459
CLH3Brassica oleraceaQ8GTM2isoform715221
coronatine-induced proteinArabidopsis thaliana--653524
additional informationPhaeodactylum tricornutum-the enzyme belongs to the alpha/beta-hydrolase fold family of enzymes677636

CAS REGISTRY NUMBERCOMMENTARY
9025-96-1-

ORGANISMCOMMENTARYLITERATURESEQUENCE CODESEQUENCE DB SOURCE
Ailanthus altissima-80739--Manually annotated by BRENDA team
Arabidopsis thaliana-666579O22527SwissProtManually annotated by BRENDA team
Arabidopsis thalianaecotype Columbia Col-0, gene ATHCOR1653524--Manually annotated by BRENDA team
Arabidopsis thalianaisozyme AtCLH1; isozyme AtCLH1679870O22527SwissProtManually annotated by BRENDA team
Arabidopsis thalianaisozyme AtCLH2; ecotype Columbia, isozyme AtCLH2681243Q9M7I7SwissProtManually annotated by BRENDA team
Arabidopsis thalianaisozyme AtCLH2; isozyme AtCLH2679870Q9M7I7SwissProtManually annotated by BRENDA team
Arabidopsis thalianawild-type and ethylene-insensitive mutant eti5650503--Manually annotated by BRENDA team
Auxenochlorella protothecoides-80727, 80735--Manually annotated by BRENDA team
Beta vulgarisvar. saccharifera80737--Manually annotated by BRENDA team
Brassica oleraceaCLH1; var. italica, gene CLH1682459Q8GTM4SwissProtManually annotated by BRENDA team
Brassica oleraceaCLH1; var. italica, gene CLH3682459Q8GTM2SwissProtManually annotated by BRENDA team
Brassica oleraceaCLH2; var. italica, gene CLH2682459Q8GTM3SwissProtManually annotated by BRENDA team
Brassica oleraceacultivar Italica Group Ryokutei690299--Manually annotated by BRENDA team
Brassica oleraceaisoform CLH1716037Q8GTM4SwissProtManually annotated by BRENDA team
Brassica oleraceaisoform CLH1; cultivar Green king715221Q8GTM4SwissProtManually annotated by BRENDA team
Brassica oleraceaisoform CLH2716037Q8GTM3SwissProtManually annotated by BRENDA team
Brassica oleraceaisoform CLH2; cultivar Green king715221Q8GTM3SwissProtManually annotated by BRENDA team
Brassica oleraceaisoform CLH3; cultivar Green king715221Q8GTM2SwissProtManually annotated by BRENDA team
Brassica oleraceaItalica group713678--Manually annotated by BRENDA team
Capsicum annuumcv. Agridulce653048--Manually annotated by BRENDA team
Chenopodium album-653472, 80747--Manually annotated by BRENDA team
Chenopodium album-80752Q9LE89UniprotManually annotated by BRENDA team
Chlorella regularis-80746--Manually annotated by BRENDA team
Citrus limon-694726, 80749--Manually annotated by BRENDA team
Citrus limon-716496B6DX58UniProtManually annotated by BRENDA team
Citrus sinensis-80740--Manually annotated by BRENDA team
Citrus sinensisgene clh682323Q9MV14SwissProtManually annotated by BRENDA team
Citrus unshiu-80732, 80733--Manually annotated by BRENDA team
Ginkgo biloba-667020, 667021Q7Y0K5SwissProtManually annotated by BRENDA team
Hordeum vulgare-80748--Manually annotated by BRENDA team
Mangifera indicachlorophyllase enzyme activity in the peel of ripe fruit is about 2.8fold higher than in unripe fruit suggesting that it may play a role in degreening of fruit; Var. Dasheheri705875--Manually annotated by BRENDA team
Melia azedarachL. China tree80730--Manually annotated by BRENDA team
Musa cavendishiiCavendish banana665148--Manually annotated by BRENDA team
Olea europaea3 varieties: Hojiblance, Picual, and Arbequina653440--Manually annotated by BRENDA team
Pachira macrocarpapachira chestnut665817--Manually annotated by BRENDA team
Petroselinum crispum-80740--Manually annotated by BRENDA team
Phaeodactylum tricornutum-652956, 677636, 678847, 80728, 80729, 80734, 80741, 80742, 80744, 80745, 80750, 80751, 80753, 80754, 80755--Manually annotated by BRENDA team
Phaeodactylum tricornutumBacillariphyceae665784--Manually annotated by BRENDA team
Phaseolus vulgaris-80736--Manually annotated by BRENDA team
Phaseolus vulgarisvar. contender649092--Manually annotated by BRENDA team
Piper betlefemale and male landraces678555--Manually annotated by BRENDA team
Secale cereale-80731, 80738, 80743--Manually annotated by BRENDA team
Tetragonia tetragonioides-80730--Manually annotated by BRENDA team
Triticum aestivum-677518, 690844--Manually annotated by BRENDA team
Triticum aestivumwheat663769--Manually annotated by BRENDA team

GENERAL INFORMATIONORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
physiological functionBrassica oleracea-type II chlorophyllase takes part in chlorophyll degradation in stored broccoli florets713678

SUBSTRATEPRODUCT                      REACTION DIAGRAMORGANISM UNIPROT ACCESSION NO. COMMENTARY
(Substrate)
LITERATURE
(Substrate)
COMMENTARY
(Product)
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
13-OH-chlorophyll a + H2Ophytol + 13-OH-chlorophyllide a
show the reaction diagram
Olea europaea-in varieties Hojiblanca and Picual653440-653440?
4-nitrophenyl butyrate + H2O4-nitrophenol + butyrate
show the reaction diagram
Triticum aestivum--677518--?
4-nitrophenyl decanoate + H2O4-nitrophenol + decanoate
show the reaction diagram
Triticum aestivum--677518--?
bacteriochlorophyll + H2O?
show the reaction diagram
Secale cereale--80738--ir
bacteriochlorophyll + H2O?
show the reaction diagram
Melia azedarach, Tetragonia tetragonioides--80730--?
bacteriochlorophyll + H2O?
show the reaction diagram
Secale cereale-hydrolyzes bacteriochlorophyll isolated from Rhodospirillum rubrum, but not the pigment bound to the membrane of chromatophores or spheroplasts from the bacterium. Acetone enables the enzyme to hydrolyze the bound pigment80743---
bacteriochlorophyll + H2obacteriochlorophyllide + phytol
show the reaction diagram
Ginkgo biloba--667021--?
bacteriochlorophyll a + H2Obacteriochlorophyllide a + phytol
show the reaction diagram
Secale cereale--80731-80731?
bacteriochlorophyll a + Triton X-100 + H2Obacteriochlorophyllide a tritonyl ester
show the reaction diagram
Ailanthus altissima--80739-80739?
chlorobium chlorophyll + H2O?
show the reaction diagram
Secale cereale--80738--ir
chlorophyll + H2Ochlorophyllide + ?
show the reaction diagram
Phaeodactylum tricornutum--80728-80728?
chlorophyll + H2Ochlorophyllide + ?
show the reaction diagram
Phaeodactylum tricornutum--80745, 80751--?
chlorophyll + H2Ochlorophyllide + ?
show the reaction diagram
Melia azedarach, Tetragonia tetragonioides--80730--?
chlorophyll + H2Ochlorophyllide + ?
show the reaction diagram
Citrus limon--80749--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Phaseolus vulgaris--649092-649092?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Triticum aestivum--677518, 690844--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Brassica oleracea--690299, 713678--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Phaeodactylum tricornutum--652956-652956?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Phaeodactylum tricornutum--677636, 678847--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Chenopodium album--653472-653472?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Citrus limon--694726--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Ginkgo bilobaQ7Y0K5-667020--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4-682459--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Brassica oleraceaQ8GTM3, Q8GTM4-716037--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Arabidopsis thalianaQ9M7I7-681243--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Citrus limonB6DX58-716496--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Citrus sinensisQ9MV14Chlase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated, it catalyzes the cleavage of the hydrophobic thylakoid-anchoring phytol chain of chlorophyll from the porphyrin ring, resulting in the product chlorophyllide, which retains the typical green color, chlorophyll catabolic pathway, overview682323--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Triticum aestivum-chlorophyllase catalyzes the initial hydrolysis of the phytol moiety from the pigment in the degradation of chlorophyll, overview677518--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4chlorophyllase is the first enzyme in the degradation pathway of chlorophyll, resulting in postharvest yellowing in broccoli682459--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4chlorophyllase is the first enzyme in the degradation pathway of chlorophyll, resulting in postharvest yellowing in broccoli, CLH1 is expressed during the course of broccoli postharvest senescence682459--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Arabidopsis thalianaO22527, Q9M7I7isozyme AtCLH1 is not essential for chlorophyll breakdown during plant senescence, overview679870--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Arabidopsis thalianaO22527, Q9M7I7isozyme AtCLH2 is not essential for chlorophyll breakdown during plant senescence, overview679870--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Piper betle-no gender-specific changes in chlorophyllase activity is response to low temperature stress, however, male plants show higher chlorophyll a/b ratio than female plants, overview678555--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Arabidopsis thalianaQ9M7I7the enzyme is involved in the first step of chlorophyll degradation, molecular regulation of in vivo activities, AtCLH2 might play a distinctive role in chlorophyll catabolism in vivo, overview681243--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Phaeodactylum tricornutum-the first enzyme in the chlorophyll degradation pathway in vivo catalyzes the hydrolysis of chlorophylls and pheophytins into their hydrophilic chromophore moieties chlorophyllides and pheophorbides, respectively677636--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Phaeodactylum tricornutum-chlorophyll from Spinacia oleracea678847--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Arabidopsis thalianaO22527, Q9M7I7removal of the lipophilic phytol moiety of chlorophyll679870--?
chlorophyll + H2Ochlorophyllide + phytol
show the reaction diagram
Triticum aestivum--663769--ir
chlorophyll + H2Ochlorophyllide + phytol
show the reaction diagram
Phaeodactylum tricornutum--665784--ir
chlorophyll a + CH3OH + phytolmethylchlorophyllide + ?
show the reaction diagram
Phaseolus vulgaris--80736-80736-
chlorophyll a + H2Ochlorophyllide a + phytol
show the reaction diagram
Phaseolus vulgaris--80736--r
chlorophyll a + H2Ochlorophyllide a + phytol
show the reaction diagram
Hordeum vulgare--80748-80748?
chlorophyll a + H2Ochlorophyllide a + phytol
show the reaction diagram
Secale cereale--80731-80731-
chlorophyll a + H2Ochlorophyllide a + phytol
show the reaction diagram
Secale cereale--80738--ir
chlorophyll a + H2Ochlorophyllide a + phytol
show the reaction diagram
Auxenochlorella protothecoides--80727-80727?
chlorophyll a + H2Ochlorophyllide a + phytol
show the reaction diagram
Auxenochlorella protothecoides--80735-80735?
chlorophyll a + H2Ochlorophyllide a + phytol
show the reaction diagram
Phaeodactylum tricornutum--80753-80753?
chlorophyll a + H2Ochlorophyllide a + phytol
show the reaction diagram
Phaeodactylum tricornutum--80754--?
chlorophyll a + H2Ochlorophyllide a + phytol
show the reaction diagram
Citrus unshiu--80732---
chlorophyll a + H2Ochlorophyllide a + phytol
show the reaction diagram
Citrus unshiu--80733-80733?
chlorophyll a + H2Ochlorophyllide a + phytol
show the reaction diagram
Chenopodium album--80747--?
chlorophyll a + H2Ochlorophyllide a + phytol
show the reaction diagram
Ginkgo biloba--667021--?
chlorophyll a + H2Ochlorophyllide a + phytol
show the reaction diagram
Chlorella regularis-hydrolyzes the a, i.e.132R form but not the a', i.e.132S form80746--?
chlorophyll a + H2Ophytol + chlorophyllide
show the reaction diagram
Capsicum annuum-best substrate, stereospecific for the substrate, no activity with the C13-epimer653048-653048?
chlorophyll a + H2Ophytol + chlorophyllide
show the reaction diagram
Citrus sinensisQ9MV14chlorophyll a substrate from Petroselinum sativum leaves682323--?
chlorophyll a + H2Ophytol + chlorophyllide a
show the reaction diagram
Arabidopsis thaliana--650503-650503?
chlorophyll a + H2Ophytol + chlorophyllide a
show the reaction diagram
Piper betle--678555--?
chlorophyll a + H2Ophytol + chlorophyllide a
show the reaction diagram
Olea europaea--653440chlorophyllide a production occurs only in variety Arbequina653440?
chlorophyll a + H2O?
show the reaction diagram
Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4-715221--?
chlorophyll a + Triton X-100 + H2Otritonyl ester of chlorophyllide a tritonyl ester
show the reaction diagram
Ailanthus altissima--80739-80739-
chlorophyll a/b + H2Ophytol + chlorophyllide
show the reaction diagram
Capsicum annuum--653048-653048?
chlorophyll a/b + H2Ophytol + chlorophyllide
show the reaction diagram
Arabidopsis thaliana-specific for, the enzyme is involved in the regulation of chlorophyll a and b content653524-653524?
chlorophyll aXXX ester + alcoholchlorophyllide a(alcohol) + phytol
show the reaction diagram
Auxenochlorella protothecoides--80727-80727?
chlorophyll b + H2Ochlorophyllide b + phytol
show the reaction diagram
Secale cereale--80731-80731?
chlorophyll b + H2Ochlorophyllide b + phytol
show the reaction diagram
Phaeodactylum tricornutum--80753-80753?
chlorophyll b + H2Ochlorophyllide b + phytol
show the reaction diagram
Phaeodactylum tricornutum--80754--?
chlorophyll b + H2Ochlorophyllide b + phytol
show the reaction diagram
Chenopodium album--80747--?
chlorophyll b + H2Ochlorophyllide b + phytol
show the reaction diagram
Ginkgo biloba--667021--?
chlorophyll b + H2Ochlorophyllide b + phytol
show the reaction diagram
Chlorella regularis-hydrolyzes the a, i.e. 132R form but not the a', i.e.132S form80746--?
chlorophyll b + H2Ophytol + chlorophyllide
show the reaction diagram
Capsicum annuum-stereospecific for the substrate, no activity with the C13-epimer653048-653048?
chlorophyll b + H2O?
show the reaction diagram
Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4-715221--?
p-nitrophenyl butyrate + H2Op-nitrophenol + butyrate
show the reaction diagram
Triticum aestivum--663769--?
p-nitrophenyl decanoate + H2Op-nitrophenol + decanoate
show the reaction diagram
Triticum aestivum--663769--?
p-nitrophenyl palmitate + H2Op-nitrophenol + palmitate
show the reaction diagram
Triticum aestivum--663769--?
pheophorbide a methyl ester + H2O?
show the reaction diagram
Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4-715221--?
pheophytin + H2O?
show the reaction diagram
Phaeodactylum tricornutum--80750, 80751--?
pheophytin + H2Ophytol + pheophorbide
show the reaction diagram
Phaeodactylum tricornutum--652956-652956?
pheophytin + H2Opheophorbide + ?
show the reaction diagram
Phaeodactylum tricornutum--665784--?
pheophytin a + H2O?
show the reaction diagram
Secale cereale--80738--ir
pheophytin a + H2Ophytol + pheophorbide
show the reaction diagram
Capsicum annuum--653048-653048?
pheophytin a + H2Ophytol + pheophorbide
show the reaction diagram
Olea europaea-in varieties Hojiblanca and Picual653440-653440?
pheophytin a + H2Opheophorbide a + phytol
show the reaction diagram
Ginkgo biloba--667021--?
pheophytin b + H2O?
show the reaction diagram
Secale cereale--80738--ir
pheophytin b + H2Ophytol + pheophorbide
show the reaction diagram
Capsicum annuum--653048-653048?
pheophytin b + H2O? + phytol
show the reaction diagram
Ginkgo biloba--667021--?
pyrobacteriochlorophyll a + Triton X-100 + H2Opyrobacteriochlorophyllide a tritonyl ester
show the reaction diagram
Ailanthus altissima--80739-80739?
pyrochlorophyll a + Triton X-100 + H2Opyrochlorophyllide a tritonyl ester + phytol
show the reaction diagram
Ailanthus altissima--80739-80739?
chlorophyllide a + phytolchlorophyll a + H2O
show the reaction diagram
Phaseolus vulgaris--80736-80736r
additional information?-Phaseolus vulgaris--80736---
additional information?-Phaeodactylum tricornutum-immobilized enzyme shows a higher affinity towards chlorophyll than pheophytin as substrate80751---
additional information?-Melia azedarach, Tetragonia tetragonioides-the enzyme acts preferentially with compounds having the isocyclic carbomethoxy and C-17 propionic residue facing opposite sides of the pyorphyrin macrocycle80730---
additional information?-Arabidopsis thaliana-no activity with 4-nitrophenyl esters of fatty acids and tributyrin653524-653524?
additional information?-Olea europaea-no activity with chlorophyll b in all variants653440-653440?
additional information?-Chenopodium albumQ9LE89key enzyme in chlorophyll degradation80752---
additional information?-Auxenochlorella protothecoides-the enzyme participates in the phytyl ester formation in the final step of chlorophyll biosynthesis80727---
additional information?-Beta vulgaris-first stage in the enzymic breakdown of chlorophyll in vivo may be the removal of the phytol side chain by chlorophyllase80737---
additional information?-Petroselinum crispum, Citrus sinensis-autolysis of chlorophyll appears to be brought about by enzymatic activity of chlorophyllase which upon membrane disruption and solubilization obtains access to its chlorophyll substrate80740---
additional information?-Triticum aestivum-since chlorophyll degradation is a defining feature of plant senescence, compounds inhibiting chlorophyllase activity may delay senescence, thereby improving shelf life and appearance of plant products677518---
additional information?-Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4isoform CLH1 preferably hydrolyzes Mg-free chlorophyll715221---
additional information?-Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4isoform CLH2 hydrolyzes both chlorophyll and Mg-free chlorophyll at a similar level715221---
additional information?-Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4isoform CLH3 shows very low Chlase activity715221---

NATURAL SUBSTRATESNATURAL PRODUCTSREACTION DIAGRAMORGANISM UNIPROT ACCESSION NO.COMMENTARY
(Substrate)
LITERATURE
(Substrate)
COMMENTARY
(Product)
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
13-OH-chlorophyll a + H2Ophytol + 13-OH-chlorophyllide a
show the reaction diagram
Olea europaea-in varieties Hojiblanca and Picual653440-653440?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Phaseolus vulgaris--649092-649092?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Brassica oleracea--713678--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Phaeodactylum tricornutum--678847--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Citrus sinensisQ9MV14Chlase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated, it catalyzes the cleavage of the hydrophobic thylakoid-anchoring phytol chain of chlorophyll from the porphyrin ring, resulting in the product chlorophyllide, which retains the typical green color, chlorophyll catabolic pathway, overview682323--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Triticum aestivum-chlorophyllase catalyzes the initial hydrolysis of the phytol moiety from the pigment in the degradation of chlorophyll, overview677518--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4chlorophyllase is the first enzyme in the degradation pathway of chlorophyll, resulting in postharvest yellowing in broccoli682459--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4chlorophyllase is the first enzyme in the degradation pathway of chlorophyll, resulting in postharvest yellowing in broccoli, CLH1 is expressed during the course of broccoli postharvest senescence682459--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Arabidopsis thalianaO22527, Q9M7I7isozyme AtCLH1 is not essential for chlorophyll breakdown during plant senescence, overview679870--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Arabidopsis thalianaO22527, Q9M7I7isozyme AtCLH2 is not essential for chlorophyll breakdown during plant senescence, overview679870--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Piper betle-no gender-specific changes in chlorophyllase activity is response to low temperature stress, however, male plants show higher chlorophyll a/b ratio than female plants, overview678555--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Arabidopsis thalianaQ9M7I7the enzyme is involved in the first step of chlorophyll degradation, molecular regulation of in vivo activities, AtCLH2 might play a distinctive role in chlorophyll catabolism in vivo, overview681243--?
chlorophyll + H2Ophytol + chlorophyllide
show the reaction diagram
Phaeodactylum tricornutum-the first enzyme in the chlorophyll degradation pathway in vivo catalyzes the hydrolysis of chlorophylls and pheophytins into their hydrophilic chromophore moieties chlorophyllides and pheophorbides, respectively677636--?
chlorophyll + H2Ochlorophyllide + phytol
show the reaction diagram
Triticum aestivum--663769--ir
chlorophyll a + H2Ophytol + chlorophyllide a
show the reaction diagram
Arabidopsis thaliana--650503-650503?
chlorophyll a + H2Ophytol + chlorophyllide a
show the reaction diagram
Olea europaea--653440chlorophyllide a production occurs only in variety Arbequina653440?
chlorophyll a/b + H2Ophytol + chlorophyllide
show the reaction diagram
Capsicum annuum--653048-653048?
pheophytin a + H2Ophytol + pheophorbide
show the reaction diagram
Olea europaea-in varieties Hojiblanca and Picual653440-653440?
chlorophyll a/b + H2Ophytol + chlorophyllide
show the reaction diagram
Arabidopsis thaliana-the enzyme is involved in the regulation of chlorophyll a and b content653524-653524?
additional information?-Olea europaea-no activity with chlorophyll b in all variants653440-653440?
additional information?-Chenopodium albumQ9LE89key enzyme in chlorophyll degradation80752---
additional information?-Auxenochlorella protothecoides-the enzyme participates in the phytyl ester formation in the final step of chlorophyll biosynthesis80727---
additional information?-Beta vulgaris-first stage in the enzymic breakdown of chlorophyll in vivo may be the removal of the phytol side chain by chlorophyllase80737---
additional information?-Petroselinum crispum, Citrus sinensis-autolysis of chlorophyll appears to be brought about by enzymatic activity of chlorophyllase which upon membrane disruption and solubilization obtains access to its chlorophyll substrate80740---
additional information?-Triticum aestivum-since chlorophyll degradation is a defining feature of plant senescence, compounds inhibiting chlorophyllase activity may delay senescence, thereby improving shelf life and appearance of plant products677518---

COFACTORORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATUREIMAGE
No entries in this field

METALS and IONS ORGANISM UNIPROT ACCESSION NO.COMMENTARY LITERATURE
Mg2+Phaeodactylum tricornutum-optimal concentration of MgCl2 using pheophytin as substrate is 1.8 mM80750
Mg2+Phaeodactylum tricornutum-in combination with dithiothreitol Mg2+ can activate chlorophyllase-catalyzed chlorophyll hydrolysis80742, 80744, 80745, 80753, 80755
additional informationArabidopsis thaliana-divalent cations stimulate653524

INHIBITORSORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
4-hydroxymercuribenzoateCapsicum annuum-93% inhibition at 1 mM, 24 h preincubation653048 2D-image
4-hydroxymercuribenzoateTriticum aestivum--677518 2D-image
acetoneArabidopsis thalianaQ9M7I7activates at lower concentration, Chlase2 reaches its maximal activity in 40% acetone, in 40-60% acetone the activity is reduced, overview681243 2D-image
beta-carotenePhaeodactylum tricornutum-in absence of other lipids, inhibits chlorophyl a conversion80742 2D-image
canola oilPhaeodactylum tricornutum-presence of 10%, 20%, and 30% of canola oil decreased the activity of entrapped chlorophyllase by 60%, 75%, and 80%, respectively678847-
Co2+Capsicum annuum-56% inhibition at 0.01 mM, 24 h preincubation653048 2D-image
concanavalin APhaeodactylum tricornutum--80744-
Cu2+Capsicum annuum-55% inhibition at 0.01 mM, 24 h preincubation653048 2D-image
Cu2+Triticum aestivum--677518 2D-image
diisopropyl fluorophosphateChenopodium album-irreversible, 91% inhibition at 10 mM, 1 h preincubation at pH 7.0 and 30C653472 2D-image
diisopropyl fluorophosphateTriticum aestivum--677518 2D-image
diisopropyl fluorophosphatePhaeodactylum tricornutum-noncompeptitive80754 2D-image
diisopropyl fluorophosphatePhaeodactylum tricornutum--80753, 80755 2D-image
Eupergit CPhaeodactylum tricornutum-immobilization support665784-
Eupergit C/EDAPhaeodactylum tricornutum-immobilization support665784-
Fe2+Capsicum annuum-89% inhibition at 0.01 mM, 24 h preincubation653048-
Fe2+Triticum aestivum--677518-
Fe3+Capsicum annuum-13% inhibition at 0.01 mM, 24 h preincubation653048-
Fe3+Triticum aestivum--677518-
Hg2+Capsicum annuum-85% inhibition at 0.01 mM, 24 h preincubation653048 2D-image
Hg2+Triticum aestivum--677518 2D-image
iodoacetamideChenopodium album-irreversible, 6% inhibition at 10 mM, 1 h preincubation at pH 7.0 and 30C653472 2D-image
iodoacetamideTriticum aestivum--677518 2D-image
iodoacetamidePhaeodactylum tricornutum--80755 2D-image
levulinic acidPhaseolus vulgaris-inhibits the chlorophyll synthesis in greening leaves, alters the chlorophyll a/chlorophyll b ratio649092 2D-image
Mg2+Capsicum annuum-12% inhibition at 0.01 mM, 24 h preincubation653048 2D-image
Mg2+Triticum aestivum--677518 2D-image
Mg2+Phaeodactylum tricornutum-eliminates the activating effect of lecithin80745 2D-image
N-ethylmaleimideCapsicum annuum-13% inhibition at 1 mM, 24 h preincubation653048 2D-image
N-ethylmaleimideChenopodium album-irreversible, 15.9% inhibition at 10 mM, 1 h preincubation at pH 7.0 and 30C653472 2D-image
N-ethylmaleimideTriticum aestivum--677518 2D-image
NaF3(CN)6Secale cereale-2 mM, 17% inhibition80738-
NEMPhaeodactylum tricornutum--80755 2D-image
PCMBChenopodium album-irreversible, 92.6% inhibition at 1 mM, 1 h preincubation at pH 7.0 and 30C653472 2D-image
PCMBSecale cereale--80731, 80738 2D-image
phenylmethanesulfonyl fluorideTriticum aestivum--677518 2D-image
pheophytin bCapsicum annuum-substrate inhibition above 0.005 mM653048 2D-image
phosphatidyl glycerolPhaeodactylum tricornutum-and sulfoquinovosyldiacylglycerol, inactivation in a cooperative manner80728 2D-image
phytolPhaseolus vulgaris-in methanol, hydrolysis of chlorophyll a80736 2D-image
phytolPhaeodactylum tricornutum-uncompetitive inhibition80750 2D-image
phytolPhaeodactylum tricornutum--80753 2D-image
PMSFChenopodium album-irreversible, 89.2% inhibition at 10 mM, 1 h preincubation at pH 7.0 and 30C653472 2D-image
refined bleached deodorized canola oilPhaeodactylum tricornutum-20%665784-
SulfoquinovosyldiacylglycerolPhaeodactylum tricornutum-and phosphatidyl glycerol, inactivation in a cooperative manner80728 2D-image
Triton X-100Arabidopsis thaliana-strong inhibition at 0.2-1.0%653524 2D-image
Triton X-100Phaseolus vulgaris--80736 2D-image
Zn2+Capsicum annuum-60% inhibition at 0.01 mM, 24 h preincubation653048 2D-image
Zn2+Triticum aestivum--677518 2D-image
Mn2+Capsicum annuum-67% inhibition at 0.01 mM, 24 h preincubation653048 2D-image
additional informationCapsicum annuum-poor inhibition by methyl methanethiosulfonate and iodoacetamide653048-
additional informationGinkgo biloba-the expression level and the activity of Chlase decrease significantly with the progress of the leaf-yellowing667020-
additional informationTriticum aestivum-inhibitory effects on recombinant enzymes purified by microtiter plate method and by affinity chromatography, respectively, overview, no inhibition by iodoacetic acid, iodoacetamide, 2-mercaptoethanol, and DTT677518-

ACTIVATING COMPOUNDORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
2-mercaptoethanolCapsicum annuum-13% stimulation at 1 mM, 24 h preincubation653048 2D-image
acetonePhaeodactylum tricornutum-the activity of entrapped chlorophyllase increased with increasing acetone concentration from 6.5 to 20%, however, further increase of acetone leads to a decrease in chlorophyllase activity. Free chlorophyllase reaches its highest activity at acetone concentration of 10% in a medium consisting of water, acetone, and canola oil, overview678847 2D-image
acetoneArabidopsis thalianaQ9M7I7activates at lower concentration, Chlase2 reaches its maximal activity in 40% acetone, in 40-60% acetone the activity is reduced, overview681243 2D-image
acetoneSecale cereale-30% acetone stimulates hydrolysis of bacteriochlorophyll by 50%, stimulates hydrolysis of chlorophyll a by about 400%80731 2D-image
acetoneBeta vulgaris-presence of a solvent such as acetone is essential for enzyme action80737 2D-image
beta-carotenePhaeodactylum tricornutum-increases hydrolytic activity80750 2D-image
dithiothreitolCapsicum annuum-13% stimulation at 1 mM, 24 h preincubation653048 2D-image
dithiothreitolPhaeodactylum tricornutum-in combination with Mg2+ dithiothreitol can activate chlorophyllase-catalyzed chlorophyll hydrolysis80742, 80744, 80745, 80753, 80755 2D-image
fulvic acidPachira macrocarpa-0.125-0.5 mg/ml665817 2D-image
humic acidPachira macrocarpa-0.125-0.5 mg/ml665817 2D-image
huminPachira macrocarpa-0.125-0.5 mg/ml665817-
L-alpha-phosphatidyl-DL-glycerolPhaeodactylum tricornutum-increases hydrolytic activity80750 2D-image
L-alpha-phosphatidylcholinePhaeodactylum tricornutum-increases hydrolytic activity80750 2D-image
lecithinPhaeodactylum tricornutum-enhances hydrolysis of chlorophyll80744 2D-image
LipidsPhaeodactylum tricornutum-no or slight activity in absence of lipids. Activation by mixed spinach chloroplast lipids and also by varying degrees by several single plant lipids, monogalactosyl diacylglycerol, digalactosyl diacylglycerol, phosphatidylglycerol and to a lesser extent, phosphatidylcholine and sulfoquinovosyl diacylglycerol80742-
LipidsPhaeodactylum tricornutum-plant membrane lipids, including phosphatidylserine, phosphatidylglycerol, and beta-carotene increase activity80753-
woundingArabidopsis thaliana-induces enzyme expression from gene ATHCOR1 in leaves653524-

KM VALUE [mM]KM VALUE [mM] MaximumSUBSTRATEORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
0.05-4-nitrophenyl decanoateTriticum aestivum-pH 8.0, 25C, recombinant enzyme purified by affinity chromatography677518 2D-image
0.069-4-nitrophenyl decanoateTriticum aestivum-pH 8.0, 25C, recombinant enzyme purified by microtiter plate method677518 2D-image
0.0334-bacteriochlorophyllGinkgo biloba--667021 2D-image
0.004-bacteriochlorophyll aSecale cereale-pH 7.5, 30C80731 2D-image
0.006-ChlorophyllPhaeodactylum tricornutum-soluble enzyme80751 2D-image
0.01-ChlorophyllPhaeodactylum tricornutum-immobilized enzyme80751 2D-image
0.0123-ChlorophyllPhaeodactylum tricornutum-free enzyme in 20 mM sodium phosphate buffer pH 8665784 2D-image
0.0186-ChlorophyllPhaeodactylum tricornutum-free enzyme in PBS-hexane mixture (60/40, v/v) containing 75 mM Span85665784 2D-image
0.0189-ChlorophyllPhaeodactylum tricornutum-immobilized enzyme in PBS-hexane mixture (60/40, v/v) containing 75 mM Span85665784 2D-image
0.0225-ChlorophyllPhaeodactylum tricornutum-immobilized enzyme in 20 mM sodium phosphate buffer pH 8665784 2D-image
0.0245-ChlorophyllPhaeodactylum tricornutum-free enzyme in PBS-hexane mixture (70/30, v/v)665784 2D-image
0.0246-ChlorophyllPhaeodactylum tricornutum-immobilized enzyme in PBS-hexane mixture (70/30, v/v)665784 2D-image
0.278-ChlorophyllCitrus limon--80749 2D-image
69-ChlorophyllTriticum aestivum-at 25C663769 2D-image
0.002-chlorophyll aAuxenochlorella protothecoides--80727 2D-image
0.00265-chlorophyll aCitrus unshiu--80732 2D-image
0.00375-chlorophyll aCitrus unshiu--80732 2D-image
0.004-chlorophyll aChenopodium album-type 1 chlorophyllase80747 2D-image
0.0046-chlorophyll aChenopodium album-type 2 chlorophyllase80747 2D-image
0.011-chlorophyll aCapsicum annuum-pH 7.5, 35C653048 2D-image
0.0113-chlorophyll aGinkgo biloba--667021 2D-image
0.012-chlorophyll aSecale cereale-pH 7.5, 30C80731 2D-image
0.308-chlorophyll aBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH2, in 100 mM sodium phosphate, pH 7.4, at 40C715221 2D-image
0.466-chlorophyll aBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH1, in 100 mM sodium phosphate, pH 7.4, at 40C715221 2D-image
0.0031-chlorophyll bChenopodium album-type 1 chlorophyllase80747 2D-image
0.004-chlorophyll bCapsicum annuum-pH 7.5, 35C653048 2D-image
0.0044-chlorophyll bChenopodium album-type 2 chlorophyllase80747 2D-image
0.011-chlorophyll bGinkgo biloba--667021 2D-image
0.311-chlorophyll bBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH2, in 100 mM sodium phosphate, pH 7.4, at 40C715221 2D-image
570-p-nitrophenyl butyrateTriticum aestivum-final concentration of 10% v/v acetonitrile at 25C663769 2D-image
0.52-p-nitrophenyl decanoateTriticum aestivum-final concentration of 10% v/v acetonitrile at 37C663769 2D-image
0.2-p-nitrophenyl palmitateTriticum aestivum-final concentration of 10% v/v acetonitrile at 37C663769 2D-image
0.0764-pheophorbide a methyl esterBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH1, in 100 mM sodium phosphate, pH 7.4, at 40C715221-
0.143-pheophorbide a methyl esterBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH2, in 100 mM sodium phosphate, pH 7.4, at 40C715221-
0.000206-pheophytinPhaeodactylum tricornutum--80750 2D-image
0.005-pheophytinPhaeodactylum tricornutum-soluble enzyme80751 2D-image
0.09-pheophytinPhaeodactylum tricornutum-immobilized enzyme80751 2D-image
0.0027-pheophytin aCapsicum annuum-pH 7.5, 35C653048 2D-image
0.0123-pheophytin aGinkgo biloba--667021 2D-image
0.015-pheophytin aSecale cereale--80738 2D-image
0.0055-pheophytin bGinkgo biloba--667021 2D-image
0.0064-pheophytin bCapsicum annuum-pH 7.5, 35C653048 2D-image
0.652-chlorophyll bBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH1, in 100 mM sodium phosphate, pH 7.4, at 40C715221 2D-image
additional information-additional informationTriticum aestivum-steady state kinetics, the recombinant immobilized fusion protein displays kinetic parameters similar to those of recombinant enzyme purified by affnity chromatography, overview677518-
additional information-additional informationPhaeodactylum tricornutum-steady-state and non-steady-state kinetics of free enzyme and of enzyme trapped in a sol-gel medium, overview678847-
additional information-additional informationPhaeodactylum tricornutum--80754-

TURNOVER NUMBER [1/s] TURNOVER NUMBER MAXIMUM[1/s] SUBSTRATEORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
8.05-4-nitrophenyl decanoateTriticum aestivum-pH 8.0, 25C, recombinant enzyme purified by affinity chromatography677518 2D-image
9.43-4-nitrophenyl decanoateTriticum aestivum-pH 8.0, 25C, recombinant enzyme purified by microtiter plate method677518 2D-image
566-ChlorophyllTriticum aestivum--663769 2D-image
0.0024-chlorophyll aBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH2, in 100 mM sodium phosphate, pH 7.4, at 40C715221 2D-image
0.072-chlorophyll aBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH1, in 100 mM sodium phosphate, pH 7.4, at 40C715221 2D-image
0.0037-chlorophyll bBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH2, in 100 mM sodium phosphate, pH 7.4, at 40C715221 2D-image
0.072-chlorophyll bBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH1, in 100 mM sodium phosphate, pH 7.4, at 40C715221 2D-image
10.3-p-nitrophenyl butyrateTriticum aestivum--663769 2D-image
0.52-p-nitrophenyl decanoateTriticum aestivum--663769 2D-image
0.2-p-nitrophenyl palmitateTriticum aestivum--663769 2D-image
0.0039-pheophorbide a methyl esterBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH2, in 100 mM sodium phosphate, pH 7.4, at 40C715221-
0.259-pheophorbide a methyl esterBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH1, in 100 mM sodium phosphate, pH 7.4, at 40C715221-

kcat/KM VALUE [1/mMs-1]kcat/KM VALUE [1/mMs-1] MaximumSUBSTRATEORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
0.0078-chlorophyll aBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH2, in 100 mM sodium phosphate, pH 7.4, at 40C7152218515
0.1551-chlorophyll aBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH1, in 100 mM sodium phosphate, pH 7.4, at 40C7152218515
0.0119-chlorophyll bBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH2, in 100 mM sodium phosphate, pH 7.4, at 40C71522132257
0.1105-chlorophyll bBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH1, in 100 mM sodium phosphate, pH 7.4, at 40C71522132257
0.0272-pheophorbide a methyl esterBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH2, in 100 mM sodium phosphate, pH 7.4, at 40C7152210
3.397-pheophorbide a methyl esterBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH1, in 100 mM sodium phosphate, pH 7.4, at 40C7152210

Ki VALUE [mM]Ki VALUE [mM] MaximumINHIBITORORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
No entries in this field

IC50 VALUE [mM]IC50 VALUE [mM] MaximumINHIBITORORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE IMAGE
No entries in this field

SPECIFIC ACTIVITY [µmol/min/mg] SPECIFIC ACTIVITY MAXIMUM ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
0.00072-Phaseolus vulgaris-etiolated leaf649092
0.074-Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4mutant enzyme H247A, in 100 mM sodium phosphate, pH 7.4, at 40C715221
0.149-Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4mutant enzyme H239A, in 100mM sodium phosphate, pH 7.4, at 40C715221
0.372-Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4mutant enzyme H66A, in 100 mM sodium phosphate, pH 7.4, at 40C715221
0.48-Secale cereale--80731
0.52-Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4mutant enzyme H226A, in 100mM sodium phosphate, pH 7.4, at 40C715221
0.96-Auxenochlorella protothecoides--80727, 80735
2-Citrus unshiu--80733
7.43-Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4wild type isoform CLH2, in 100 mM sodium phosphate, pH 7.4, at 40C715221
9.79-Phaeodactylum tricornutum-enzyme isolated at the exponential growth phase80755
15-Triticum aestivum-21 chlorophyllide a at 25C, 10 chlorophyllide b at 25C663769
35.55-Phaseolus vulgaris-etioplast80736
41.3-Phaseolus vulgaris-chloroplast80736
134.4-Phaeodactylum tricornutum-enzyme isolated at the stationary growth phase80755
322-Phaeodactylum tricornutum-optimization of chlorophyllase-catalyzed hydrolysis of chlorophyll in monophasic organic solvent media, the catalytic efficiency of chlorophyllase in the undiluted organic solvent mixture is lower than that in the aqueous medium, overview677636
additional information-Olea europaea-enzyme activity at different growth phases and ripening states, overview653440
additional information-Triticum aestivum-development of a continuous assay system, replacing chlorophyll with p-nitrophenyl-ester substrates eliminates the extraction step and allows for continuous measurement of chlorophyllase activity in the multiwell plate format, overview677518
additional information-Phaeodactylum tricornutum-comparison of the catalytic performance of purified free enzyme and purified enzyme trapped in a sol-gel medium, overview678847
additional information-Citrus unshiu--80732
additional information-Chlorella regularis--80746
additional information-Phaeodactylum tricornutum--80753, 80754

pH OPTIMUMpH MAXIMUMORGANISM UNIPROT ACCESSION NO. COMMENTARYLITERATURE
67.5Secale cereale-hydrolysis of bacteriochlorophyll a80731
68Secale cereale--80738
68.5Auxenochlorella protothecoides--80727, 80735
6.67.6Chenopodium album-chlorophyll b, chlorophyllase type 1 and type 280747
6.68.6Chenopodium album-hydrolysis of chlorophyll a, chlorophyllase type 1 and type 280747
78.5Secale cereale-hydrolysis of chlorophyll a80731
7-Phaseolus vulgaris-assay at649092
7-Arabidopsis thaliana-assay at653524
7-Triticum aestivum-assay at, substrate chlorophyll677518
7-Piper betle-assay at678555
7-Arabidopsis thalianaQ9M7I7assay at681243
7-Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4isoform CLH1715221
7-Citrus unshiu-with both phosphate buffer and borate buffer80732, 80733
7.4-Citrus sinensisQ9MV14assay at682323
7.58Beta vulgaris-soluble enzyme80737
7.5-Ginkgo biloba--667021
7.8-Citrus limon--80749
8-Phaeodactylum tricornutum-activity and stability decrease significantly above or below pH 8.0665784
8-Triticum aestivum-assay at, substrate 4-nitrophenyl esters677518
8-Phaeodactylum tricornutum-assay at677636, 678847
8-Arabidopsis thalianaO22527, Q9M7I7assay at; assay at679870
8-Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4isoform CLH2715221
8-Phaeodactylum tricornutum-immobilized enzyme80751
8-Phaeodactylum tricornutum--80753
8-Phaeodactylum tricornutum-enzyme form FI'80754
8.5-Capsicum annuum--653048
8.5-Phaeodactylum tricornutum-enzyme fraction FII' and FIII'80754
8.5-Phaeodactylum tricornutum--80755

pH RANGEpH RANGE MAXIMUMORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
6.28.1Citrus unshiu-50% of maximal activity at pH 6.2 and 8.180732, 80733
6.48.7Beta vulgaris-pH 6.4: about 70% of maximal activity, pH 8.7: about 80% of maximal activity, soluble enzyme80737
711.5Capsicum annuum-35% of maximal activity at pH 7.0, 60& of maximal activity at pH 11.5653048
7.58.8Phaeodactylum tricornutum-pH 7.5: about 35% of maximal activity, pH 8.8: about 65% of maximal activity80755

TEMPERATURE OPTIMUMTEMPERATURE OPTIMUM MAXIMUMORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
2030Beta vulgaris--80737
20-Citrus unshiu--80732
25-Arabidopsis thaliana-assay at653524
25-Triticum aestivum-assay at677518
25-Arabidopsis thalianaO22527, Q9M7I7assay at; assay at679870
30-Phaeodactylum tricornutum-free enzyme and of enzyme trapped in a sol-gel medium678847
30-Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4isoform CLH1715221
30-Secale cereale--80731
31-Phaeodactylum tricornutum--80753
35-Phaseolus vulgaris-assay at649092
35-Phaeodactylum tricornutum-assay at652956
35-Phaeodactylum tricornutum--677636
35-Phaeodactylum tricornutum-immobilized enzyme80751
40-Ginkgo biloba--667021
40-Piper betle-assay at678555
40-Arabidopsis thalianaQ9M7I7assay at681243
45-Auxenochlorella protothecoides--80735
50-Capsicum annuum--653048
60-Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4isoform CLH2715221

TEMPERATURE RANGE TEMPERATURE MAXIMUM ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
045Beta vulgaris-0C: about 35% of maximal activity, 45C: about 50% of maximal activity80737
1075Triticum aestivum--663769
2050Phaeodactylum tricornutum--678847
2545Phaeodactylum tricornutum--677636
3050Ginkgo biloba--667021
3070Capsicum annuum--653048

pI VALUEpI VALUE MAXIMUMORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
5.7-Triticum aestivum-calculation from sequence of cDNA663769

SOURCE TISSUE ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE SOURCE
cauline leafArabidopsis thalianaQ9M7I7-681243Manually annotated by BRENDA team
floretBrassica oleracea--682459, 690299, 713678, 715221Manually annotated by BRENDA team
floretBrassica oleraceaQ8GTM3, Q8GTM4; 716037Manually annotated by BRENDA team
flowerArabidopsis thaliana-developing, constitutive expression of gene AtChl2 and gene ATHCOR1, expression of recmbinant enzyme in mutant transgenic plants653524Manually annotated by BRENDA team
flowerArabidopsis thalianaQ9M7I7-681243Manually annotated by BRENDA team
flower budArabidopsis thaliana-AtChl2653524Manually annotated by BRENDA team
flower budArabidopsis thalianaQ9M7I7-681243Manually annotated by BRENDA team
fruitCapsicum annuum-green, fresh or ripening653048Manually annotated by BRENDA team
fruitOlea europaea-olives, enzyme activity depends on the growth phase and ripening state653440Manually annotated by BRENDA team
fruitCitrus limon--694726Manually annotated by BRENDA team
fruitCitrus limonB6DX58unripe fruit peel716496Manually annotated by BRENDA team
fruitCitrus unshiu--80732, 80733Manually annotated by BRENDA team
fruit peelCitrus limon--694726Manually annotated by BRENDA team
leafPhaseolus vulgaris-of etiolated yound plants649092Manually annotated by BRENDA team
leafArabidopsis thaliana-low content of ATHCOR1, expression of AtChl2653524Manually annotated by BRENDA team
leafTriticum aestivum-etiolated seedling663769Manually annotated by BRENDA team
leafPachira macrocarpa-acetone powder665817Manually annotated by BRENDA team
leafGinkgo bilobaQ7Y0K5-667020, 667021Manually annotated by BRENDA team
leafPiper betle-the chlorophyll content is higher in female plants compared to male plants, male plants always show higher activities of Chlase678555Manually annotated by BRENDA team
leafArabidopsis thalianaO22527, Q9M7I7green, isozyme AtCLH1 expression analysis; green, isozyme AtCLH2 expression analysis679870Manually annotated by BRENDA team
leafArabidopsis thaliana--650503, 681243Manually annotated by BRENDA team
leafBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4-682459Manually annotated by BRENDA team
leafPhaseolus vulgaris--80736Manually annotated by BRENDA team
leafBeta vulgaris--80737Manually annotated by BRENDA team
leafCitrus sinensis--682323, 80740Manually annotated by BRENDA team
leafPetroselinum crispum--80740Manually annotated by BRENDA team
leafHordeum vulgare-highest activity at days 4-6 of senescence80748Manually annotated by BRENDA team
leafCitrus limon--80749Manually annotated by BRENDA team
rosette leafArabidopsis thalianaQ9M7I7-681243Manually annotated by BRENDA team
seedlingSecale cereale--80731, 80738, 80743Manually annotated by BRENDA team
stemArabidopsis thalianaQ9M7I7-681243Manually annotated by BRENDA team
leafChenopodium album--80747, 80752Manually annotated by BRENDA team
additional informationArabidopsis thaliana-not in root653524Manually annotated by BRENDA team
additional informationPiper betle-developmental, annual, and gender activity differences, overview, Chlase activity is low in october and increases with the onset of winter, the highest Chlase activity is observed in december, more pronounced in male plants, overview678555Manually annotated by BRENDA team
additional informationArabidopsis thalianaQ9M7I7spatial and temporal expression patterns of AtCLH2 in wild type plants, overview681243Manually annotated by BRENDA team
additional informationBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4CLH1 is expressed during the course of broccoli postharvest senescence682459Manually annotated by BRENDA team

LOCALIZATION ORGANISM UNIPROT ACCESSION NO. COMMENTARY GeneOntology No. LITERATURE SOURCE
chloroplastCapsicum annuum--9507653048Manually annotated by BRENDA team
chloroplastGinkgo biloba-thylakoid membrane9507667021Manually annotated by BRENDA team
chloroplastPiper betle--9507678555Manually annotated by BRENDA team
chloroplastBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4isoform CLH2; isoforms CLH19507715221Manually annotated by BRENDA team
chloroplastCitrus limonB6DX58-9507716496Manually annotated by BRENDA team
chloroplastMelia azedarach, Tetragonia tetragonioides--950780730Manually annotated by BRENDA team
chloroplastPhaseolus vulgaris--9507649092, 80736Manually annotated by BRENDA team
chloroplastCitrus sinensis, Petroselinum crispum--950780740Manually annotated by BRENDA team
chloroplast membranePhaeodactylum tricornutum--31969677636, 678847Manually annotated by BRENDA team
chloroplast membraneCitrus sinensisQ9MV14-31969682323Manually annotated by BRENDA team
chromoplastCapsicum annuum--9509653048Manually annotated by BRENDA team
cytoplasmic vesicleArabidopsis thalianaO22527, Q9M7I7cytoplasmic; cytoplasmic31410679870Manually annotated by BRENDA team
etioplastPhaseolus vulgaris--951380736Manually annotated by BRENDA team
plasma membraneBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4isoform CLH35886715221Manually annotated by BRENDA team
plastidCitrus limon--9536694726Manually annotated by BRENDA team
protoplastCitrus limonB6DX58--716496Manually annotated by BRENDA team
thylakoid membraneCapsicum annuum-intrinsic42651653048Manually annotated by BRENDA team
thylakoid membranePhaeodactylum tricornutum--4265180729, 80755Manually annotated by BRENDA team
membranePhaeodactylum tricornutum--16020652956Manually annotated by BRENDA team
additional informationArabidopsis thalianaO22527, Q9M7I7no localization in chloroplasts of isozyme AtCLH1; no localization in chloroplasts of isozyme AtCLH2-679870Manually annotated by BRENDA team

PDBSCOPCATHORGANISM
No entries in this field

MOLECULAR WEIGHT MOLECULAR WEIGHT MAXIMUM ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
26000-Phaeodactylum tricornutum-gel filtration80729
33000-Citrus limon-mature enzyme, SDS-PAGE694726
33800-Triticum aestivum-calculated molecular weight690844
33880-Triticum aestivum-calculation from sequence of cDNA663769
35000-Citrus limon-precursor enzyme, SDS-PAGE694726
37110-Ginkgo biloba-calculated from amino acid sequence667020
38000-Ginkgo biloba-SDS-PAGE and gel filtration; SDS/PAGE and gel-filtration chromatography667020
38000-Auxenochlorella protothecoides--80735
39000-Secale cereale-gel filtration80731
110000-Citrus unshiu-gel filtration80732, 80733
130000-Chlorella regularis-gel filtration80746
158000-Citrus limon-gel filtration80749

SUBUNITS ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
?Arabidopsis thalianaQ9M7I7x * 35000, recombinant AtCLH2, SDS-PAGE681243
?Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4x * 23500, isoform CLH3, calculated from amino acid sequence; x * 34700, isoform CLH1, calculated from amino acid sequence; x * 35300, isoform CLH2, calculated from amino acid sequence; x * 66200, isoform CLH3 as MBP-fusion protein, SDS-PAGE; x * 77400, isoform CLH1 as MBP-fusion protein, SDS-PAGE; x * 78000, isoform CLH2 as MBP-fusion protein, SDS-PAGE715221
?Citrus limonB6DX58x * 32000, recombinant enzyme, SDS-PAGE716496
?Phaseolus vulgaris-x * 30000, SDS-PAGE80736
?Chenopodium album-x * 43000 + x * 46000, SDS-PAGE80747
?Phaeodactylum tricornutum-x * 43000 + x * 46000, SDS-PAGE80753
dimerChlorella regularis-2 * 65000, SDS-PAGE80746
tetramerCitrus unshiu-4 * 27000, SDS-PAGE80732, 80733

POSTTRANSLATIONAL MODIFICATION ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
no modificationGinkgo bilobaQ7Y0K5-667020, 667021
no modificationPachira macrocarpa--665817
glycoproteinPhaeodactylum tricornutum--652956, 677636
side-chain modificationPhaeodactylum tricornutum-glycoprotein80729, 80734
side-chain modificationPhaeodactylum tricornutum-glycoprotein; the sugar group not only stabilizes the enzyme, but also is essential for the manifestation of enzyme activity80744
additional informationCitrus limonB6DX58the mature form is N-terminally processed after amino acids 21, 20 or 19716496

Crystallization/COMMENTARY ORGANISM UNIPROT ACCESSION NO. LITERATURE
No entries in this field

pH STABILITYpH STABILITY MAXIMUM ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
3-Beta vulgaris-rapid inactivation80737
58Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4isoform CLH1715221
68Beta vulgaris-0C, loss of 2% of activity per day80737
69Arabidopsis thalianaQ9M7I7isozyme AtCLH2681243
69Secale cereale-4C, 24 h, stable80731
7.5-Secale cereale-stable in presence or absence of 30% acetone80731
810Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4isoform CLH2 shows about 80% of activity at pH 9.0 and is stable between pH 8.0 and 10.0715221
8-Phaeodactylum tricornutum-stability decreases significantly above or below pH 8.0665784

TEMPERATURE STABILITYTEMPERATURE STABILITY MAXIMUM ORGANISM UNIPROT ACCESSION NO. COMMENTARYLITERATURE
4-Arabidopsis thaliana-24 h exposure at 4C followed by 10 d of recovery, leads to overall reduced enzyme activity with the eti5 mutant plants being more sensitive, during the stress time and the first day of recovery the enzyme activity is highly reduced, the enzyme activity is more affected during the experiment time in wild-type plants, overview650503
20-Beta vulgaris-24 h, 30-50% loss of activity80737
30-Secale cereale-not stable above a 10% concentration of acetone80731
3550Phaeodactylum tricornutum-enzyme half-life in the neat organic solvent compared to that in the aqueous medium in the first environment at temperature ranging from 35 to 50C is increased by 5.0 to 15.0 times, overview677636
38-Arabidopsis thaliana-24 h exposure at 4C followed by 10 d of recovery, leads to overall reduced enzyme activity with the eti5 mutant plants being more sensitive, during the stress time and the first day of recovery the enzyme activity is highly reduced, the enzyme activity is more affected during the experiment time in wild-type plants, overview650503
40-Capsicum annuum-stable for 1 h653048
45-Beta vulgaris-1 h, pH 7, citrate buffer, stable. Complete loss of activity in presence of 40% acetone80737
50-Capsicum annuum-degradation after 40 min, more rapid at higher temperatures653048
60-Brassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4after incubation at 60C for 10 min, isoform CLH1 loses about 50% of activity; after incubation at 60C for 10 min, isoform CLH2 loses about 50% of activity715221
60-Citrus unshiu-10 min, 50% loss of activity80732
60-Beta vulgaris-10 min, 40% loss of activity80737
65-Beta vulgaris-destroyed within 10 min80737
additional information-Phaeodactylum tricornutum-association of chlorophyllase with mixed monogalactosyldiacylglycerol and phosphatidylglycerol and also with mixed digalactosyldiacylglycerol and phosphatidylglycerol leads to highly increased heat stability. Single lipids are shown to have a much lower or no stabilizing influence. Only with phosphatidylglycerol, in the absence of Mg2+, is any notable enzyme stabilization observed80741

GENERAL STABILITYORGANISM UNIPROT ACCESSION NO.LITERATURE
60% loss of activity after dialysis against distilled water in the cold for 48 hBeta vulgaris-80737
stabilized by chlorophyllPhaeodactylum tricornutum-80745

ORGANIC SOLVENT ORGANISM UNIPROT ACCESSION NO. COMMENTARY LITERATURE
AcetoneArabidopsis thaliana-strong reduction of activity at above 40%653524

OXIDATION STABILITY ORGANISM UNIPROT ACCESSION NO. LITERATURE
No entries in this field

STORAGE STABILITY ORGANISM UNIPROT ACCESSION NO. LITERATURE
4C, stableArabidopsis thaliana-653524
-20C, stable for at least 1 year without loss of activityCapsicum annuum-653048
25C, loss of 50% activity within 6 daysCapsicum annuum-653048
4C, loss of 50% within 18 daysCapsicum annuum-653048
-80C, 25 mM Tris buffer, pH 8.0, 100 mM NaClTriticum aestivum-663769

Purification/COMMENTARY ORGANISM UNIPROT ACCESSION NO. LITERATURE
recombinant isozyme AtCLH2 from Escherichia coli strain BL21 (DE3)Arabidopsis thalianaQ9M7I7681243
recombinant maltose-binding fusion protein from Escherichia coliArabidopsis thaliana-653524
-Auxenochlorella protothecoides-80727, 80735
partialBeta vulgaris-80737
amylose resin affinity column chromatography and DEAE Sepharose column chromatography; amylose resin affinity column chromatography and DEAE Sepharose column chromatography; amylose resin affinity column chromatography and DEAE Sepharose column chromatographyBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4715221
partiallyCapsicum annuum-653048
2 isoenzymes: type 1 chlorophyllase and type 2 chlorophyllaseChenopodium album-80747
no isoenzymesChlorella regularis-80746
partialCitrus limon-80749
protein-A agarose bead immunoprecipitationCitrus limon-694726
recombinant enzymes in the membrane fraction from Nicotiana tabacum chloroplasts by ultracentrifugationCitrus sinensisQ9MV14682323
-Citrus unshiu-80732, 80733
cold acetone extraction and column chromatographyPachira macrocarpa-665817
-Phaeodactylum tricornutum-80729, 80755
partialPhaeodactylum tricornutum-80750, 80753, 80754
-Phaseolus vulgaris-80736
-Secale cereale-80731, 80743
partialSecale cereale-80738
Ni2+-NTA column chromatographyTriticum aestivum-690844
recombinant His6-tagged enzyme from Escherichia coli strain BL21(DE3) by nickel affinity chromatography, or by using a microtiter plate purification method with immobilization of the enzyme, overviewTriticum aestivum-677518

Cloned/COMMENTARY ORGANISM UNIPROT ACCESSION NO. LITERATURE
expression of gene ATHCOR1 in Escherichia coli BL21 as maltose-binding protein fusion protein, cloning of the gene into an expression vector for transformation of Arabidopsis thaliana plantsArabidopsis thaliana-653524
gene chl1, DNA and amino acid sequence determination and anaylsis, transient expression of isozyme AtCLH1 as GFP-tagged protein, e.g. in senescent mesophyll protoplasts, expression analysis; gene chl2, DNA and amino acid sequence determination and anaylsis, transient expression of isozyme AtCLH2 as GFP-tagged protein, e.g. in senescent mesophyll protoplasts, expression analysisArabidopsis thalianaO22527, Q9M7I7679870
gene chl2, expression anaylsis, recombinant expression in Escherichia coli strain BL21 (DE3)Arabidopsis thalianaQ9M7I7681243
expressed in Escherichia coli Rosseta-Gami B (DE3) cells; expressed in Escherichia coli Rosseta-Gami B (DE3) cells; expressed in Escherichia coli Rosseta-Gami B (DE3) cellsBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4715221
expression of antisense construct of gene CLH3 in broccoli plants using Agrobacterium tumefaciens-mediated transformation; expression of antisense constructs of gene CLH1 in broccoli plants using Agrobacterium tumefaciens-mediated transformation; expression of antisense constructs of gene CLH2 in broccoli plants using Agrobacterium tumefaciens-mediated transformationBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4682459
expression in Escherichia coliChenopodium albumQ9LE8980752
expression of wild-type and mutant enzymes in Escherichia coliChenopodium album-653472
expressed in Escherichia coliCitrus limonB6DX58716496
Chlase gene, DNA and amino acid sequence determination and anaylsis, expression of precursor full-length wild-type Chlase and of a mutant ChlaseDELTAN lacking the N-terminal 21 amino acids, which corresponds to the mature enzyme, in two heterologous plant systems: in Cucurbita pepo cv. Maayan plants using a ZYMV-based viral vector infective clone system and inoculation of cotyledons, and transiently in Nicotiana tabacum cv. Samsun NN chloroplast membranes of protoplasts, expression of full-length and truncated enzyme versions as thioredoxin fusion proteins in Escherichia coliCitrus sinensisQ9MV14682323
expressed in Escherichia coliGinkgo biloba-667021
expressed in Escherichia coli; expressed in Escherichia coli strain BL21(DE3)Ginkgo biloba-667020
expressed in Escherichia coli BL21 (DE3) cellsTriticum aestivum-690844
expression as His6-tagged enzyme in Escherichia coli strain BL21(DE3)Triticum aestivum-677518
expression in Escherichia coliTriticum aestivum-663769

EXPRESSION ORGANISM UNIPROT ACCESSION NO. LITERATURE
chlorophyllase type I is suppressed in UV-B treated broccoli on day 4Brassica oleracea-713678
in the case of isoform CLH1, an important decrease in expression is observed after day 0, since an over 50fold drop is found from day 0 to day 3 of control florets after hormone-treatment (100ppm 6-benzylaminopurine)Brassica oleraceaQ8GTM3, Q8GTM4716037
expression pattern of isoform CLH2 shows an expression increase in senescent tissue and is higher in stem tissue than in inflorescences; isoform CLH1 shows a higher expression in presenescent tissue compared to senescent tissue and stemBrassica oleraceaQ8GTM3, Q8GTM4716037

ENGINEERINGORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
D170ABrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4inactive; inactive715221
H226ABrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4the mutation causes almost complete loss of Chlase activity; the mutation causes almost complete loss of Chlase activity715221
H239ABrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4the mutation causes almost complete loss of Chlase activity; the mutation causes almost complete loss of Chlase activity715221
H247ABrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4the mutation causes almost complete loss of Chlase activity; the mutation causes almost complete loss of Chlase activity715221
S141ABrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4inactive; inactive715221
C234AChenopodium album-site-directed mutagenesis, highly reduced activity compared to the wild-type enzyme653472
C248AChenopodium album-site-directed mutagenesis, highly reduced activity compared to the wild-type enzyme653472
C282AChenopodium album-site-directed mutagenesis, highly reduced activity compared to the wild-type enzyme653472
D191NChenopodium album-site-directed mutagenesis, inactive mutant653472
D264NChenopodium album-site-directed mutagenesis, highly reduced activity compared to the wild-type enzyme653472
H100AChenopodium album-site-directed mutagenesis, highly reduced activity compared to the wild-type enzyme653472
H161AChenopodium album-site-directed mutagenesis, inactive mutant653472
H241AChenopodium album-site-directed mutagenesis, about 90% reduced activity compared to the wild-type enzyme653472
H254AChenopodium album-site-directed mutagenesis, nearly inactive mutant653472
H254YChenopodium album-site-directed mutagenesis, about 90% reduced activity compared to the wild-type enzyme653472
H262AChenopodium album-site-directed mutagenesis, nearly inactive mutant653472
H262YChenopodium album-site-directed mutagenesis, nearly inactive mutant653472
H81AChenopodium album-site-directed mutagenesis, about 85% reduced activity compared to the wild-type enzyme653472
S162AChenopodium album-site-directed mutagenesis, nearly inactive mutant653472
additional informationArabidopsis thaliana-gene ATHCOR1: construction of transgenic Arabidopsis thaliana plants overexpressing the enzyme via infection with Agrobacterium tumefaciens and transformation, sense and antisense orientation, the sense mutation changed the chlorophyll a to chlorophyll b ratio, overview, gene AtCLH2: cloning and analysis653524
additional informationArabidopsis thalianaO22527, Q9M7I7construction of T-DNA insertion clh1 and clh2 single and double knockout lines, which are still able to degrade chlorophyll during senescence, phenotypes, overview; construction of T-DNA insertion clh1 and clh2 single and double knockout lines, which are still able to degrade chlorophyll during senescence, phenotypes, overview679870
additional informationArabidopsis thalianaQ9M7I7inhibition of expression of AtCLH2 by RNA interference, transfection using Agrobacterium tumefaciens strain LBA4404, AtCLH2 RNAi plants show decreased contents of chlorophyllide without a substantial change in the total amount of the extractable chlorophyll and consequently presented lower chlorophyllide to chlorophyll ratios in their leaves, phenotype, overview681243
H66ABrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4the mutation causes almost complete loss of Chlase activity; the mutation causes almost complete loss of Chlase activity715221
additional informationBrassica oleraceaQ8GTM2, Q8GTM3, Q8GTM4a chimeric construct with the antisense gene BoCLH1, driven by the CaMV 35S promoter and Nos-terminator and harboring the hygromycin resistance gene, is used for Agrobacterium tumefaciens-mediated transformation, effects of the antisense BoCLH1 gene on the postharvest senescence of broccoli, phenotype with slower postharvest yellowing during storage in the dark at 20C, overview; no effects on yellowing by antisense construct of gene CHL2; no effects on yellowing by antisense constructs of gene CHL3682459
S167AChenopodium album-site-directed mutagenesis, about 50% reduced activity compared to the wild-type enzyme653472
additional informationCitrus sinensisQ9MV14expression of full-length citrus Chlase results in limited chlorophyll breakdown in tobacco protoplasts and no visible leaf phenotype in whole plants, whereas expression of a Chlase version lacking the N-terminal 21 amino acids, i.e. ChlaseDELTAN, which corresponds to the mature protein, leads to extensive chlorophyll breakdown in both tobacco protoplasts and squash leaves, mutant ChlaseDELTAN-expressing squash leaves display a dramatic chlorotic phenotype in plants grown under low-intensity light, whereas under natural light a lesion-mimic phenotype occurrs, which follows the accumulation of chlorophyllide, a photodynamic chlorophyll breakdown product, phenotypes, overview682323
additional informationPhaeodactylum tricornutum-optimization of chlorophyllase-catalyzed hydrolysis of chlorophyll in monophasic organic solvent media, best in a mixture of hexane/2-octanone of 98.3:1.7 v/v, overview677636
additional informationPhaeodactylum tricornutum-entrapping of the enzyme in tetramethoxysilane-based sol-gel in the presence of lipid, acetone is used to introduce the substrate-chlorophyll into aqueous reaction medium in solubilized form, the entrapped chlorophyllase is less sensitive toward the denaturing effect of acetone in the bulk phase than the free enzyme, sol-gel at wet-stage, diffusion coefficient and partition coefficient of chlorophyll in sol-gel, overview678847

Renatured/COMMENTARYORGANISM UNIPROT ACCESSION NO.LITERATURE
No entries in this field

APPLICATIONORGANISM UNIPROT ACCESSION NO.COMMENTARYLITERATURE
synthesisAuxenochlorella protothecoides-useful tool for preparing chlorophyllides and chlorophyll derivatives esterified with various alcohols80727
agriculturePhaeodactylum tricornutum-removal of green pigments from canola oil665784
biotechnologyPhaeodactylum tricornutum-encapsulation of the enzyme in micelles of different media within alginate hydrogels increases the enzyme activity in e.g. Tris buffer or hexane, extent of enhancement of the partition coefficient depends on the amount and hydrophobicity of the components intrduced into alginate, affecting the hydrophobic-hydrophilic balance of the gel652956
agricultureTriticum aestivum-manipulation of chlorophyll degradation663769

REF. AUTHORS TITLE JOURNAL VOL. PAGES YEAR ORGANISM (UNIPROT ACCESSION NO.)LINK TO PUBMEDSOURCE
80727Shioi, Y.; Sasa, T.Purification of solubilized chlorophyllase from Chlorella protothecoidesMethods Enzymol.123421-4271986Auxenochlorella protothecoides PubMed
80728Lambers, J.W.J.; Terpstra, W.Inactivation of chlorophyllase by negatively charged plant membrane lipidsBiochim. Biophys. Acta831225-2351985Phaeodactylum tricornutum PubMed
80729Lambers, J.W.J.; Velthuis, H.W.; Terpstra, W.Molecular mass estimation of chlorophyllase in situ by radiation inactivation analysis. Studies on the composition of the isolated enzymeBiochim. Biophys. Acta831213-2241985Phaeodactylum tricornutum-
80730Fiedor, L.; Rosenbach-Belkin, V.; Scherz, A.The stereospecific interaction between chlorophylls and chlorophyllase. Possible implication for chlorophyll biosynthesis and degradationJ. Biol. Chem.26722043-220471992Melia azedarach, Tetragonia tetragonioides PubMed
80731Tanaka, K.; Kakuno, T.; Yamashita, J.; Horio, T.Purification and properties of chlorophyllase from greened rye seedlingsJ. Biochem.921763-17731982Secale cereale PubMed
80732Shimokawa, K.Hydrophobic chromatographic purification of ethylene-enhanced chlorophyllase from Citrus unshiu fruitsBiochemistry21543-5451982Citrus unshiu-
80733Shimokawa, K.Purification of ethylene-enhanced chlorophyllase from Citrus unshiu fruitsAgric. Biol. Chem.452357-23591981Citrus unshiu-
80734Terpstra, W.Identification of chlorophyllase as a glycoproteinFEBS Lett.126231-2351981Phaeodactylum tricornutum-
80735Shioi, Y.; Tamai, H.; Sasa, T.A simple purification method for the preparation of solubilized chlorophyllase from Chlorella protothecoidesAnal. Biochem.10574-791980Auxenochlorella protothecoides PubMed
80736Moll, W.A.W.; Stegwee, D.The activity of Triton X-100 soluble chlorophyllase in liposomesPlanta14075-801978Phaseolus vulgaris PubMed
80737Holden, M.The breakdown of chlorophyll by chlorophyllaseBiochem. J.78359-3641961Beta vulgaris PubMed
80738Klein, A.O.; Vishniac, W.Activity and partial purification of chlorophyllase in aqueous systemsJ. Biol. Chem.2362544-25471961Secale cereale PubMed
80739Michalski, T.J.; Bradshaw, C.; Hunt, J.E.; Norris, J.R.; Katz, J.J.Triton X-100 reacts with chlorophyll in the presence of chlorophyllaseFEBS Lett.22672-761987Ailanthus altissima-
80740Amir-Shapira, D.; Goldschmidt, E.E.; Altman, A.Autolysis of chlorophyll in aqueous and detergent suspension of chloroplast fragmentsPlant Sci.43201-2061986Citrus sinensis, Petroselinum crispum-
80741Lambers, J.W.J.; Verkleij, A.J.; Terpstra, W.Reconstitution of chlorophyllase with mixed plant lipids in the presence and absence of Mg2+. Influence of single and mixed plant lipids on enzymatic stabilityBiochim. Biophys. Acta7861-81984Phaeodactylum tricornutum-
80742Terpstra, W.; Lambers, J.W.J.Interactions between chlorophyllase, chlorophyll a, plant lipids and Mg2+Biochim. Biophys. Acta74623-311983Phaeodactylum tricornutum-
80743Tanaka, K.; Kakuno, T.; Yamashita, J.; Horio, T.Action of chlorophyllase purified from rye seedlings on light-harvesting bacteriochlorophyll of chromatophores and spheroplasts from Rhodospirillum rubrumJ. Biochem.93159-1671983Secale cereale PubMed
80744Terpstra, W.Studies on chlorophyllase. The mechanism of the action of lecithin liposomes on enzyme activity and the function of the carbohydrate moiety of the enzymeBiochim. Biophys. Acta681233-2411982Phaeodactylum tricornutum-
80745Terpstra, W.Influence of lecithin liposomes on chlorophyllase-catalyzed chlorophyll hydrolysis: comparison of intramembraneous and solubilized Phaeodactylum chlorophyllaseBiochim. Biophys. Acta60036-471980Phaeodactylum tricornutum PubMed
80746Nishiyama, Y.; Kitamura, M.; Tamura, S.; Watanabe, T.Purification and substrate specificity of chlorophyllase from Chlorella regularisChem. Lett.169-721994Chlorella regularis-
80747Tsuchiya, T.; Ohta, H.; Masuda, T.; Mikami, B.; Kita, N.; Shioi, Y.; Takamiya, K.Purification and characterization of two isozymes of chlorophyllase from mature leaves of Chenopodium albumPlant Cell Physiol.381026-10311997Chenopodium album-
80748Scheumann, V.; Schoch, S.; Rudiger, W.Chlorophyll b reduction during senescence of barley seedlingsPlanta209364-3701999Hordeum vulgare PubMed
80749Fernandez-Lopez, J.A.; Almela, L.; Almansa, M.S.; Lopez-Roca, J.M.Partial purification and properties of chlorophyllase from chlorotic Citrus limon leavesPhytochemistry31447-4491992Citrus limon-
80750Samaha, H.; Kermasha, S.Biocatalysis of chlorophyllase in a ternary micellar system containing Span 85 using purified and oxidized pheophytins as substratesJ. Biotechnol.55181-1911997Phaeodactylum tricornutum-
80751Gaffar, R.; Kermasha, S.; Bisakowski, B.Biocatalysis of immobilized chlorophyllase in a ternary micellar systemJ. Biotechnol.7445-551998Phaeodactylum tricornutum-
80752Tsuchiya, T.; Ohta, H.; Okawa, K.; Iwamatsu, A.; Shimada, H.; Masuda, T.; Takamiya, K.Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonateProc. Natl. Acad. Sci. USA9615362-153671999Chenopodium album, Chenopodium album (Q9LE89) PubMed
80753Khalyfa, A.; Kermasha, S.; Marsot, P.; Goetghebeur, M.Purification and characterization of chlorophyllase from alga Phaeodactylum tricornutum by preparative native electrophoresisAppl. Biochem. Biotechnol.5311-271995Phaeodactylum tricornutum-
80754Khalyfa, A.; Kermasha, S.; Khamessan, A.; Marsot, P.; Alli, I.Purification and characterization of chlorophyllase from alga (Phaeodactylum tricornutum) by preparative isoelectric focusingBiosci. Biotechnol. Biochem.57433-4371993Phaeodactylum tricornutum-
80755Kermasha, S.; Khalyfa, A.; Marsot, P.; Alli, I.; Fournier, R.Biomass production, purification and characterization of chlorophyllase from alga (Phaeodactylum tricornutum)Biotechnol. Appl. Biochem.15142-1591992Phaeodactylum tricornutum-
649092El-Saht, H.M.Effects of delta-aminolevulinic acid on pigment formation and chlorophyllase activity in French bean leafActa Biol. Hung.5183-902000Phaseolus vulgaris PubMed
650503Todorov, D.T.; Karanov, E.N.; Smith, A.R.; Hall, M.A.Chlorophyllase activity and chlorophyll content in wild type and eti5 mutant of Arabidopsis thaliana subjected to low and high temperaturesBiol. Plant.46633-6362003Arabidopsis thaliana-
652956Yi, Y.; Kermasha, S.; L'Hocine, L.; Neufeld, R.Encapsulation of chlorophyllase in hydrophobically modified hydrogelJ. Mol. Catal. B19-20319-3252002Phaeodactylum tricornutum-
653048Hornero-Mendez, D.; Minguez-Mosquera, M.I.Chlorophyll disappearance and chlorophyllase activity during ripening of Capsicum annuum L. fruitsJ. Sci. Food Agric.821564-15702002Capsicum annuum-
653440Roca, M.; Minguez-Mosquera, M.I.Involvement of chlorophyllase in chlorophyll metabolism in olive varieties with high and low chlorophyll contentPhysiol. Plant.117459-4662003Olea europaea PubMed
653472Tsuchiya, T.; Suzuki, T.; Yamada, T.; Shimada, H.; Masuda, T.; Ohta, H.; Takamiya, K.Chlorophyllase as a serine hydrolase: identification of a putative catalytic triadPlant Cell Physiol.4496-1012003Chenopodium album PubMed
653524Benedetti, C.E.; Arruda, P.Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratioPlant Physiol.1281255-12632002Arabidopsis thaliana PubMed
663769Arkus, K.A.; Cahoon, E.B.; Jez, J.M.Mechanistic analysis of wheat chlorophyllaseArch. Biochem. Biophys.438146-1552005Triticum aestivum PubMed
665148Janave, M.T.; Sharma, A.Partial purification of chlorophyll degrading enzymes from cavendish banana (Musa Cavendishi).Indian J. Biochem. Biophys.41154-1612004Musa cavendishii PubMed
665784Karboune, S.; Neufeld, R.; Kermasha, S.Immobilization and biocatalysis of chlorophyllase in selected organic solvent systemsJ. Biotechnol.120273-2832005Phaeodactylum tricornutum PubMed
665817Yang, C.M.; Wang, M.C.; Lu, Y.F.; Chang, I.F.; Chou, C.H.Humic substances affect the activity of chlorophyllaseJ. Chem. Ecol.301057-10652004Pachira macrocarpa PubMed
666579Kariola, T.; Brader, G.; Li, J.; Palva, E.T.Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plantsPlant Cell17282-2942005Arabidopsis thaliana, Arabidopsis thaliana (O22527) PubMed
667020Tang, L.; Okazawa, A.; Itoh, Y.; Fukusaki, E.i.; Kobayashi, A.Expression of chlorophyllase is not induced during autumnal yellowing in Ginkgo bilobaZ. Naturforsch. C59415-4202004Ginkgo biloba (Q7Y0K5)-
667021Okazawa, A.; Tango, L.; Itoh, Y.; Fukusaki, E.; Kobayashi, A.Characterization and subcellular localization of chlorophyllase from Ginkgo bilobaZ. Naturforsch. C61111-1172006Ginkgo biloba (Q7Y0K5)-
677518Arkus, K.A.; Jez, J.M.Development of a high-throughput purification method and a continuous assay system for chlorophyllaseAnal. Biochem.35393-982006Triticum aestivum PubMed
677636Arriagada-Strodthoff, P.; Karboune, S.; Neufeld, R.J.; Kermasha, S.Optimization of chlorophyllase-catalyzed hydrolysis of chlorophyll in monophasic organic solvent mediaAppl. Biochem. Biotechnol.142263-2752007Phaeodactylum tricornutum PubMed
678555Kumar, N.; Gupta, S.; Tripathi, A.N.Gender-specific responses of Piper betle L. to low temperature stress: changes in chlorophyllase activityBiol. Plant.50705-7082006Piper betle-
678847Yi, Y.; Kermasha, S.; Neufeld, R.Characterization of sol-gel entrapped chlorophyllaseBiotechnol. Bioeng.95840-8492006Phaeodactylum tricornutum PubMed
679870Schenk, N.; Schelbert, S.; Kanwischer, M.; Goldschmidt, E.E.; Doermann, P.; Hoertensteiner, S.The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thalianaFEBS Lett.5815517-55252007Arabidopsis thaliana, Arabidopsis thaliana (O22527), Arabidopsis thaliana (Q9M7I7) PubMed
681243Liao, Y.; An, K.; Zhou, X.; Chen, W.; Kuai, B.AtCLH2, a typical but possibly distinctive chlorophyllase gene in ArabidopsisJ. Integr. Plant Biol.49531-5392007Arabidopsis thaliana (Q9M7I7)-
682323Harpaz-Saad, S.; Azoulay, T.; Arazi, T.; Ben-Yaakov, E.; Mett, A.; Shiboleth, Y.M.; Hoertensteiner, S.; Gidoni, D.; Gal-On, A.; Goldschmidt, E.E.; Eyal, Y.Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulatedPlant Cell191007-10222007Citrus sinensis (Q9MV14) PubMed
682459Chen, L.O.; Lin, C.; Kelkar, S.M.; Chang, Y.; Shaw, J.Transgenic broccoli (Brassica oleracea var. italica) with antisense chlorophyllase (BoCLH1) delays postharvest yellowingPlant Sci.17425-312008Brassica oleracea (Q8GTM2), Brassica oleracea (Q8GTM3), Brassica oleracea (Q8GTM4)-
690299Chen, R.; Liu, H.; Huang, Q.; Sun, G.; Huang, D.Changes of chlorophyll and anthocyanin content and related enzyme activities of flower stalk in Chinese kale under different light intensitiesActa Hort.769103-1112008Brassica oleracea-
690844Arkus, K.A.; Jez, J.M.An integrated protein chemistry laboratory. Chlorophyll and chlorophyllaseBiochem. Mol. Biol. Educ.36125-1282008Triticum aestivum PubMed
694726Azoulay Shemer, T.; Harpaz-Saad, S.; Belausov, E.; Lovat, N.; Krokhin, O.; Spicer, V.; Standing, K.G.; Goldschmidt, E.E.; Eyal, Y.Citrus chlorophyllase dynamics at ethylene-induced fruit color-break: a study of chlorophyllase expression, posttranslational processing kinetics, and in situ intracellular localizationPlant Physiol.148108-1182008Citrus limon PubMed
705875Gupta, S.; Kumar, N.; Gupta, S.Utility of chlorophyllase activity in mango (Mangifera indica L. Var. Dasheheri) peel for assessing state of ripeningNational Academy Science Letters3215-172009Mangifera indica-
713678Kaosamphan, A.; Yamauchi, N.; Srilaong, V.; Aiamla-Or, S.; Wongs-Aree, C.; Uthairatanakij, A.Involvement of chlorophyllase on chlorophyll degradation in stored broccoli florets and its control by UV treatmentActa Hort.875111-1182010Brassica oleracea-
715221Lee, G.C.; Chepyshko, H.; Chen, H.H.; Chu, C.C.; Chou, Y.F.; Akoh, C.C.; Shaw, J.F.Genes and biochemical characterization of three novel chlorophyllase isozymes from Brassica oleraceaJ. Agric. Food Chem.588651-86572010Brassica oleracea, Brassica oleracea (Q8GTM2), Brassica oleracea (Q8GTM3), Brassica oleracea (Q8GTM4) PubMed
716037Buechert, A.M.; Civello, P.M.; Martinez, G.A.Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoliJ. Plant Physiol.168337-3432011Brassica oleracea (Q8GTM3), Brassica oleracea (Q8GTM4) PubMed
716496Azoulay-Shemer, T.; Harpaz-Saad, S.; Cohen-Peer, R.; Mett, A.; Spicer, V.; Lovat, N.; Krokhin, O.; Brand, A.; Gidoni, D.; Standing, K.G.; Goldschmidt, E.E.; Eyal, Y.Dual N- and C-terminal processing of citrus chlorophyllase precursor within the plastid membranes leads to the mature enzymePlant Cell Physiol.5270-832011Citrus limon (B6DX58) PubMed

LINKS TO OTHER DATABASES (specific for EC-Number 3.1.1.14)
ExplorEnz
ExPASy
KEGG
MetaCyc
NCBI: PubMed, Protein, Nucleotide, Structure, Genome, OMIM
IUBMB Enzyme Nomenclature
PROSITE Database of protein families and domains
SYSTERS
Protein Mutant Database
InterPro (database of protein families, domains and functional sites)