Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 4.2.1.24 - porphobilinogen synthase and Organism(s) Xenopus tropicalis

for references in articles please use BRENDA:EC4.2.1.24
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     4 Lyases
         4.2 Carbon-oxygen lyases
             4.2.1 Hydro-lyases
                4.2.1.24 porphobilinogen synthase
IUBMB Comments
The enzyme catalyses the asymmetric condensation and cyclization of two 5-aminolevulinate molecules, which is the first common step in the biosynthesis of tetrapyrrole pigments such as porphyrin, chlorophyll, vitamin B12, siroheme, phycobilin, and cofactor F430. The enzyme is widespread, being essential in organisms that carry out respiration, photosynthesis, or methanogenesis. The enzymes from most organisms utilize metal ions (Zn2+, Mg2+, K+, and Na+) as cofactors that reside at multiple sites, including the active site and allosteric sites. Enzymes from archaea, yeast, and metazoa (including human) contain Zn2+ at the active site. In humans, the enzyme is a primary target for the environmental toxin Pb. The enzymes from some organisms utilize a dynamic equilibrium between architecturally distinct multimeric assemblies as a means for allosteric regulation.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Xenopus tropicalis
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Xenopus tropicalis
The expected taxonomic range for this enzyme is: Bacteria, Eukaryota, Archaea
Reaction Schemes
Synonyms
delta-aminolevulinic acid dehydratase, ala-d, pbgs, delta-ala-d, delta-aminolevulinate dehydratase, ala dehydratase, porphobilinogen synthase, ala synthetase, 5-aminolevulinic acid dehydratase, delta-alad, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5-aminolevulinate dehydrase
-
-
-
-
5-aminolevulinate dehydratase
-
-
-
-
5-aminolevulinate hydro-lyase (adding 5-aminolevulinate and cyclizing)
-
-
-
-
5-aminolevulinic acid dehydrase
-
-
-
-
5-aminolevulinic acid dehydratase
-
-
-
-
5-levulinic acid dehydratase
-
-
-
-
ALAD
-
-
-
-
ALADH
-
-
-
-
aminolevulinate dehydrase
-
-
-
-
aminolevulinate dehydratase
-
-
-
-
aminolevulinic dehydratase
-
-
-
-
delta-ALAD
-
-
-
-
delta-aminolevulinate dehydrase
-
-
-
-
delta-aminolevulinate dehydratase
-
-
-
-
delta-aminolevulinic acid dehydrase
-
-
-
-
delta-aminolevulinic acid dehydratase
-
-
-
-
delta-aminolevulinic dehydratase
-
-
-
-
gamma-aminolevulinic acid dehydratase
-
-
-
-
Porphobilinogen synthase
-
-
-
-
porphobilinogen synthetase
-
-
-
-
synthase, porphobilinogen
-
-
-
-
SYSTEMATIC NAME
IUBMB Comments
5-aminolevulinate hydro-lyase (adding 5-aminolevulinate and cyclizing; porphobilinogen-forming)
The enzyme catalyses the asymmetric condensation and cyclization of two 5-aminolevulinate molecules, which is the first common step in the biosynthesis of tetrapyrrole pigments such as porphyrin, chlorophyll, vitamin B12, siroheme, phycobilin, and cofactor F430. The enzyme is widespread, being essential in organisms that carry out respiration, photosynthesis, or methanogenesis. The enzymes from most organisms utilize metal ions (Zn2+, Mg2+, K+, and Na+) as cofactors that reside at multiple sites, including the active site and allosteric sites. Enzymes from archaea, yeast, and metazoa (including human) contain Zn2+ at the active site. In humans, the enzyme is a primary target for the environmental toxin Pb. The enzymes from some organisms utilize a dynamic equilibrium between architecturally distinct multimeric assemblies as a means for allosteric regulation.
CAS REGISTRY NUMBER
COMMENTARY hide
9036-37-7
-
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
Q0VGV4_XENTR
330
0
36180
TrEMBL
other Location (Reliability: 5)
A0A1B8Y090_XENTR
345
0
37800
TrEMBL
other Location (Reliability: 5)
A0A6I8QPW8_XENTR
330
0
36198
TrEMBL
other Location (Reliability: 5)