Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.4.24.7 - interstitial collagenase and Organism(s) Homo sapiens

for references in articles please use BRENDA:EC3.4.24.7
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.4 Acting on peptide bonds (peptidases)
             3.4.24 Metalloendopeptidases
                3.4.24.7 interstitial collagenase
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Homo sapiens
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Homo sapiens
The expected taxonomic range for this enzyme is: Eukaryota, Bacteria, Archaea
Reaction Schemes
Cleavage of the triple helix of collagen at about three-quarters of the length of the molecule from the N-terminus, at Gly775-/-Ile in the alpha1(I) chain. Cleaves synthetic substrates and alpha-macroglobulins at bonds where P1' is a hydrophobic residue
Synonyms
mt1-mmp, mmp-14, interstitial collagenase, matrix metalloproteinase 1, collagenase-1, fibroblast collagenase, collagenase 1, vertebrate collagenase, membrane-type 1-mmp, matrix-metalloproteinase-1, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
azocollase
-
-
-
-
collagen peptidase
-
-
-
-
collagen protease
collagenase
collagenase 1
-
-
collagenase A
-
-
-
-
collagenase MMP-1
-
-
-
-
collagenase-1
-
-
collagenolytic matrix metalloproteinase
-
ect-MMP-14
-
ectodomain
Fibroblast collagenase
-
-
-
-
HSFC
-
-
kollaza
-
-
-
-
macrophage matrix metalloproteinase
-
-
matrix metalloproteinase 1
matrix metalloproteinase-1
matrix metalloproteinase-18
-
-
-
-
matrix-metalloproteinase-1
-
-
membrane-type 1-MMP
-
-
metallocollagenase
-
-
-
-
metalloproteinase-1
-
-
-
-
MMP-1
MMP-12
-
-
MMP-14
-
-
MT1-MMP
-
-
Myocardial collagenase
-
-
-
-
nucleolysin
-
-
-
-
soycollagestin
-
-
-
-
TC1
-
-
-
-
tumor collagenase
-
-
vertebrate collagenase
-
-
-
-
CAS REGISTRY NUMBER
COMMENTARY hide
9001-12-1
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
(7-methoxycoumarin-4-yl)-acetyl-Arg-Pro-Lys-Pro-Val-Glu-Nva-Trp-Arg-Lys(dinitrophenyl)-NH2 + H2O
(7-methoxycoumarin-4-yl)-acetyl-Arg-Pro-Lys-Pro-Val-Glu + Nva-Trp-Arg-Lys(dinitrophenyl)-NH2
show the reaction diagram
-
-
-
-
?
(7-methoxycoumarin-4-yl)-acetyl-Pro-Leu-Gly-Leu-(3-(2,4-dinitrophenyl)-L-2,3-diaminopropionyl)-Ala-Arg-NH2 + H2O
(7-methoxycoumarin-4-yl)-acetyl-Pro-Leu-Gly + Leu-(3-(2,4-dinitrophenyl)-L-2,3-diaminopropionyl)-Ala-Arg-NH2
show the reaction diagram
-
-
-
-
?
(7-methoxycoumarin-4-yl)acetyl-Pro-cyclohexylalanine-Gly-Nve-His-Ala-(N-3-(2,4-dinitrophenyl)-L-2,3-diaminopropionyl)-NH2 + H2O
?
show the reaction diagram
-
degradation of synthetic substrate is pH-independent
-
-
?
(GP4Hyp)4-GPQGIAGQRGVVGL4Hyp(GP4Hyp)4-NH2 + H2O
(GP4Hyp)4-GPQG + IAGQRGVVGL4Hyp(GP4Hyp)4-NH2
show the reaction diagram
alpha1(I)772-786 THP
-
-
?
(GP4Hyp)4GPQ-Sar-IAGQRGVVG-Nle-GL4Hyp(GP4Hyp)4-NH2 + H2O
(GP4Hyp)4GPQ-Sar + IAGQRGVVG-Nle-GL4Hyp(GP4Hyp)4-NH2
show the reaction diagram
-
-
-
?
(GP4Hyp)4GPQ-Sar-IAGQRGVVGL4Hyp(GP4Hyp)4-NH2 + H2O
(GP4Hyp)4GPQ-Sar + IAGQRGVVGL4Hyp(GP4Hyp)4-NH2
show the reaction diagram
-
-
-
?
(GP4Hyp)4GPQGIAGQRGVVG-Nle-4Hyp(GP4Hyp)4-NH2 + H2O
(GP4Hyp)4GPQG + IAGQRGVVG-Nle-4Hyp(GP4Hyp)4-NH2
show the reaction diagram
the substrate is hydrolyzed at the Gly775-Ile776 bond by the enzyme
-
-
?
2,4-dinitrophenyl-Pro-beta-cyclohexyl-Ala-Gly-Cys(Me)-His-Ala-Lys(N-methyl-2-aminobenzoyl)-NH2 + H2O
?
show the reaction diagram
-
-
-
?
2,4-dinitrophenyl-Pro-Leu-Ala-Leu-Trp-Ala-Arg-OH + H2O
?
show the reaction diagram
-
-
-
?
Ac-Pro-Leu-Gly-SCH2(iBu)CO-Leu-Leu-GlyOEt + H2O
?
show the reaction diagram
-
-
-
-
?
acetyl-Pro-Leu-Gly-Ala-Leu-Gly-ethyl ester + H2O
acetyl-Pro-Leu-Gly-Ala + Leu-Gly-ethyl ester
show the reaction diagram
-
very low activity
-
?
acetyl-Pro-Leu-Gly-Ile-Leu-Gly-ethyl ester + H2O
acetyl-Pro-Leu-Gly-Ile + Leu-Gly-ethyl ester
show the reaction diagram
-
-
-
?
acetyl-Pro-Leu-Gly-Ile-Leu-Gly-OC2H5 + H2O
?
show the reaction diagram
-
-
-
-
?
acetyl-Pro-Leu-Gly-Leu-Ala-Gly-OC2H5 + H2O
?
show the reaction diagram
-
-
-
-
?
acetyl-Pro-Leu-Gly-Leu-Leu-Gly-ethyl ester + H2O
acetyl-Pro-Leu-Gly-Leu + Leu-Gly-ethyl ester
show the reaction diagram
-
-
-
?
acetyl-Pro-Leu-Gly-Leu-Leu-Gly-OC2H5 + H2O
?
show the reaction diagram
-
-
-
-
?
acetyl-Pro-Leu-Gly-Phe-Leu-Gly-ethyl ester + H2O
acetyl-Pro-Leu-Gly-Phe + Leu-Gly-ethyl ester
show the reaction diagram
-
very low activity
-
?
acetyl-Pro-Leu-Gly-S-Leu-Leu-Gly ethyl ester + H2O
?
show the reaction diagram
-
-
-
-
?
acetyl-Pro-Leu-Gly-SCH[CH2CH(CH3)2CO]-Leu-Leu-OC2H5 + H2O
?
show the reaction diagram
-
-
-
-
?
acetyl-Pro-Leu-Gly-SCH[CH2CH(CH3)2]CO-Leu-Leu-OC2H5 + H2O
acetyl-Pro-Leu-Gly + HSCH[CH2CH(CH3)2]CO-Leu-Leu-OC2H5
show the reaction diagram
-
-
-
-
?
acetyl-Pro-Leu-Gly-Val-Leu-Gly-ethyl ester + H2O
acetyl-Pro-Leu-Gly-Val + Leu-Gly-ethyl ester
show the reaction diagram
-
very low activity
-
?
alpha1(I)772-786 triple-helical peptide + H2O
?
show the reaction diagram
-
-
-
-
?
casein + H2O
?
show the reaction diagram
-
casein zymography assay method
-
-
?
Collagen + H2O
?
show the reaction diagram
collagen I + H2O
?
show the reaction diagram
collagen I alpha-1 chain + H2O
?
show the reaction diagram
collagen I alpha-2 chain + H2O
?
show the reaction diagram
Collagen type I + H2O
?
show the reaction diagram
-
-
-
?
Collagen type III + H2O
?
show the reaction diagram
collagen type IV alpha2 + H2O
?
show the reaction diagram
cleavage at sites L715 and T917
-
-
?
decorin + H2O
?
show the reaction diagram
cleavage at site T310
-
-
?
GAQGIAGQ + H2O
?
show the reaction diagram
-
-
-
-
?
Gelatin + H2O
?
show the reaction diagram
-
-
-
-
?
GLQGIAGQ + H2O
?
show the reaction diagram
-
-
-
-
?
Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln-Gln + H2O
Gly-Pro-Gln-Gly + Ile-Ala-Gly-Gln-Gln
show the reaction diagram
-
-
-
-
?
Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln-Gln-Arg-Gly-Val-Val-Gly-Leu-Hyp-NH2 + H2O
Gly-Pro-Gln-Gly + Ile-Ala-Gly-Gln-Gln-Arg-Gly-Val-Val-Gly-Leu-Hyp-NH2
show the reaction diagram
-
-
-
-
?
GNQGIAGQ + H2O
?
show the reaction diagram
-
-
-
-
?
GNVGLAGA + H2O
?
show the reaction diagram
-
-
-
-
?
GP-Hyp-GIAGA + H2O
?
show the reaction diagram
-
-
-
-
?
GP-Hyp-IAGQ + H2O
?
show the reaction diagram
-
-
-
-
?
GPDGIAGQ + H2O
?
show the reaction diagram
-
-
-
-
?
GPLGIAGP + H2O
?
show the reaction diagram
-
-
-
-
?
GPLGIAGQ + H2O
?
show the reaction diagram
-
-
-
-
?
GPQGIAGA + H2O
?
show the reaction diagram
-
-
-
-
?
GPQGIAGH + H2O
?
show the reaction diagram
-
-
-
-
?
GPQGIAGP + H2O
?
show the reaction diagram
-
-
-
-
?
GPQGIAGQ + H2O
?
show the reaction diagram
-
-
-
-
?
GPQGIAGT + H2O
?
show the reaction diagram
-
-
-
-
?
GPQGLAGQ + H2O
?
show the reaction diagram
-
-
-
-
?
GPRGIAGQ + H2O
?
show the reaction diagram
-
-
-
-
?
GPVGIAGQ + H2O
?
show the reaction diagram
-
-
-
-
?
Human alpha2-macroglobulin + H2O
?
show the reaction diagram
-
cleavage site: Gly679-Leu680
-
-
?
human pregnancy zone protein + H2O
?
show the reaction diagram
-
cleavage sites: Gly685-Leu686, Gly687-Val688, Gly757-Ile758, Ala684-Leu684, and Ala685-Met686
-
-
?
human type I collagen + H2O
?
show the reaction diagram
-
-
-
-
?
human type II collagen + H2O
?
show the reaction diagram
-
-
-
-
?
human type III collagen + H2O
?
show the reaction diagram
-
-
-
-
?
Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 + H2O
Mca-Pro-Leu-Gly + Leu-Dpa-Ala-Arg-NH2
show the reaction diagram
-
-
-
?
PSYFLNAG + H2O
?
show the reaction diagram
-
-
-
-
?
rat alpha1 macroglobulin + H2O
?
show the reaction diagram
-
cleavage site: His681-Leu682, Phe691-Leu692
-
-
?
rat alpha1-inhibitor 3 (27J) + H2O
?
show the reaction diagram
-
cleavage sites: Ala666-Val667
-
-
?
rat alpha1-inhibitor 3 (2J) + H2O
?
show the reaction diagram
-
cleavage sites: Pro683-Val684
-
-
?
rhodamine 6G-labeled KDP-6-aminohexanoic acid-GPLGIAGIG-6-aminohexanoic acid-PKGY + H2O
rhodamine 6G-labeled KDP-6-aminohexanoic acid-GPLG + IAGIG-6-aminohexanoic acid-PKGY
show the reaction diagram
-
fluorescent biosensor, substrate for matrix metalloproteinases MMP-2, MMP-9, MMP-14
-
-
?
Type I collagen + H2O
?
show the reaction diagram
type I procollagen + H2O
type I collagen + ?
show the reaction diagram
-
-
-
-
?
type II collagen + H2O
?
show the reaction diagram
-
interstitial collagen
-
-
?
type III collagen + H2O
?
show the reaction diagram
[alpha1(I)]2alpha2(I)772-784 triple-helical peptide + H2O
?
show the reaction diagram
-
-
-
-
?
[alpha1(II)769-783] fluorogenic triple-helical peptide-3 + H2O
?
show the reaction diagram
-
-
-
-
?
[alpha1(II)769-783] fluorogenic triple-helical peptide-4 + H2O
?
show the reaction diagram
-
-
-
-
?
[alpha1(II)769-783] single-stranded peptide-3 + H2O
?
show the reaction diagram
-
-
-
-
?
fTHP-3 + H2O
additional information
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
Collagen + H2O
?
show the reaction diagram
-
-
-
?
collagen I + H2O
?
show the reaction diagram
-
degradation
-
-
?
Collagen type I + H2O
?
show the reaction diagram
-
-
-
?
Collagen type III + H2O
?
show the reaction diagram
Type I collagen + H2O
?
show the reaction diagram
type I procollagen + H2O
type I collagen + ?
show the reaction diagram
-
-
-
-
?
type II collagen + H2O
?
show the reaction diagram
-
interstitial collagen
-
-
?
type III collagen + H2O
?
show the reaction diagram
additional information
?
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(3-[(2-hydroxycarbamoyl-ethyl)-(4-nitro-benzyl)-sulfamoyl]-phenyl)-carbamic acid tert-butyl ester
-
-
1,10-phenanthroline
2-[benzyl([[(2-methylphenyl)sulfonyl]amino]carbonyl)amino]-N-hydroxyacetamide
-
-
2-[benzyl([[(4-chlorophenyl)sulfonyl]amino]carbonyl)amino]-N-hydroxyacetamide
-
-
2-[benzyl([[(4-fluorophenyl)sulfonyl]amino]carbonyl)amino]-N-hydroxyacetamide
-
-
2-[benzyl([[(4-methylphenyl)sulfonyl]amino]carbonyl)amino]-N-hydroxyacetamide
-
-
3-[((1R,4S)-7,7-Dimethyl-2-oxo-bicyclo[2.2.1]hept-1-ylmethanesulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
3-[(2,4-Dinitro-phenylsulfanyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
3-[(2,5-Dichloro-benzenesulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
3-[(2-Hydroxycarbamoyl-ethyl)-(4-nitro-benzyl)-sulfamoyl]-benzoic acid
-
-
3-[(3-Chloro-4-ethylamino-benzenesulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
3-[(3-Chloro-4-nitro-benzenesulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
3-[(4-Bromo-benzenesulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
3-[(4-Chloro-benzenesulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
3-[(4-Fluoro-benzenesulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
3-[(5-Dimethylamino-naphthalene-1-sulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
3-[(Heptadecachlorooctane-1-sulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
3-[3-(2,4-Dichloro-phenyl)-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
3-[3-(3,4-Dichloro-phenyl)-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
3-[3-(3-Chloro-phenyl)-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
3-[3-(4-Chloro-phenyl)-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
3-[3-(4-Chloro-phenylsulfonyl)-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
3-[3-(4-Fluoro-phenyl)-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
3-[3-(4-Fluoro-phenylsulfonyl)-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
3-[3-Benzoyl-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
3-[Benzenesulfonyl-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
3-[[3-[3-(4-chloro-phenylsulfonyl)-ureido]-benzenesulfonyl]-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
3-[[3-[3-(4-fluoro-phenylsulfonyl)-ureido]-benzenesulfonyl]-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
3-[[4-[3-(4-chloro-phenylsulfonyl)-ureido]-benzenesulfonyl]-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
3-[[4-[3-(4-fluoro-phenylsulfonyl)-ureido]-benzenesulfonyl]-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
4-[(2-Hydroxycarbamoyl-ethyl)-(4-nitro-benzyl)-sulfamoyl]-benzoic acid
-
-
Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt
-
pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine
alpha2-Macroglobulin
-
-
-
astragaloside IV
AST, inhibits matrix metalloproteinase-1 in photoaging skin. Astragaloside IV is one of the major active compoxadnents extracted from Astragalus membranaceus. Effects of AST against collagen reducxadtion in UV-induced skin aging in human skin fibroblasts, and mechanism of multiple anti-photoaging effects, overview
C3H7-POOH-Ile-Trp-NHMe
-
phosphonamidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine
ClCH2CO-(N-OH)Leu-Ala-Gly-NH2
-
2-5 mM, 25°C, pH 7.4, Tris buffer, strong irreversible inhibition, inhibition increases with higher temperatures and inhibitor concentration
ClCH2CO-(N-OH)Phe-Ala-Ala-NH2
-
-
CT 1746
-
-
dexamethasone
-
significantly decreases active MMP-1 level and inhibits active MMP-1
disodium isostearyl 2-O-L-ascorbyl phosphate
-
i.e. disodium 2-(1,3,3-trimethyl-n-butyl)-5,7,7-trimethyl-n-octyl-L-ascorbyl phosphate or VCP-IS-2Na, an amphiphilic vitamin C derivative, increases proliferation of normal human skin fibroblasts, NHDFs and NB1RGBs, by 123% and 135% and inhibits MMP-1 production by a maximum of 19% and 11% in NHDF and NB1RGB cells at 0.05 mM, respectively
dithiothreitol
-
-
epigallocatechin gallate
competitive. the galloyl group is important for inhibitory activity
epigallocatechin-3-gallate
-
-
EtO-POOH-CH2-Leu-Trp-NHMe
-
pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine
EtO-POOH-Ile-Ala-Gly
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt
EtO-POOH-Ile-Ala-Gly-Gln-Arg-Gly
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt, weak inhibition
EtO-POOH-Ile-Ala-Gly-Glu-Arg(NO2)-Gly
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt, weak inhibition
EtO-POOH-Ile-Ala-Gly-Glu-Arg-Gly
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt, weak inhibition
EtO-POOH-Ile-Leu-Gly
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt
EtO-POOH-Ile-Trp-NHMe
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt
EtO-POOH-Ile-Tyr(OBzl)-Gly
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt
EtO-POOH-Ile-Tyr-Gly
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt
exopolysaccharide
-
obtained from mycelial culture of Grifola frondosa HB0071 may contribute to inhibitory action in photoaging skin by reducing the MMP-1-related matrix degradation system
-
fisetin
mixed-type inhibition
GM6001
-
a broad-spectrum MMP inhibitor
hexyl-POOH-CH2-Leu-Trp-NHMe
-
pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine
hexyl-POOH-Leu-Trp-NHMe
-
pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine
hexyl-POOH-O-Leu-Trp-NHMe
-
pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine
N-2-methylphenylsulfonylureido-N-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)-glycine hydroxamate
-
-
N-2-methylphenylsulfonylureido-N-(5H-dibenzo[a,d]cyclohepten-5-yl)-glycine hydroxamate
-
-
N-2-methylphenylsulfonylureido-N-[(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
-
N-2-methylphenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
-
N-2-methylphenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
-
N-4-chlorophenylsulfonylureido-N-(5H-dibenzo[a,d]cyclohepten-5-yl)-glycine hydroxamate
-
-
N-4-chlorophenylsulfonylureido-N-[(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
-
N-4-chlorophenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine
-
-
N-4-chlorophenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
-
N-4-chlorophenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine
-
-
N-4-chlorophenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
-
N-4-fluorophenylsulfonylureido-N-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)-glycine hydroxamate
-
-
N-4-fluorophenylsulfonylureido-N-(5H-dibenzo[a,d]cyclohepten-5-yl)-glycine hydroxamate
-
-
N-4-fluorophenylsulfonylureido-N-[(10,11,dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine
-
-
N-4-fluorophenylsulfonylureido-N-[(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
-
N-4-fluorophenylsulfonylureido-N-[(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
-
N-4-fluorophenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
-
N-4-fluorophenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine
-
-
N-4-fluorophenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
-
N-4-methylphenylsulfonylureido-N-(5H-dibenzo[a,d]cyclohepten-5-yl)-glycine hydroxamate
-
-
N-4-methylphenylsulfonylureido-N-[(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
-
N-4-methylphenylsulfonylureido-N-[(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
-
N-4-methylphenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
-
N-4-methylphenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
-
N-Hydroxy-3-[(2-nitro-benzenesulfonyl)-(4-nitro-benzyl)-amino]-propionamide
-
-
N-Hydroxy-3-[(3-nitro-benzenesulfonyl)-(4-nitro-benzyl)-amino]-propionamide
-
-
N-Hydroxy-3-[(4-iodo-benzenesulfonyl)-(4-nitro-benzyl)-amino]-propionamide
-
-
N-Hydroxy-3-[(4-methoxy-benzenesulfonyl)-(4-nitro-benzyl)-amino]-propionamide
-
-
N-Hydroxy-3-[(4-nitro-benzenesulfonyl)-(4-nitro-benzyl)-amino]-propionamide
-
-
N-Hydroxy-3-[(4-nitro-benzyl)-(2,4,6-trimethyl-benzenesulfonyl)-amino]-propionamide
-
-
N-Hydroxy-3-[(4-nitro-benzyl)-(2-nitro-phenylsulfanyl)-amino]-propionamide
-
-
N-Hydroxy-3-[(4-nitro-benzyl)-(3-trifluoromethyl-benzenesulfonyl)-amino]-propionamide
-
-
N-Hydroxy-3-[(4-nitro-benzyl)-(4-nitro-phenylsulfanyl)-amino]-propionamide
-
-
N-Hydroxy-3-[(4-nitro-benzyl)-(nonachlorobutane-1-sulfonyl)-amino]-propionamide
-
-
N-Hydroxy-3-[(4-nitro-benzyl)-(quinoline-8-sulfonyl)-amino]-propionamide
-
-
N-Hydroxy-3-[(4-nitro-benzyl)-(toluene-4-sulfonyl)-amino]-propionamide
-
-
N-Hydroxy-3-[(4-nitro-benzyl)-pentafluorobenzenesulfonyl-amino]-propionamide
-
-
N-Hydroxy-3-[(4-nitro-benzyl)-phenylmethanesulfonyl-amino]-propionamide
-
-
N-Hydroxy-3-[(4-nitro-benzyl)-trichloromethanesulfonyl-amino]-propionamide
-
-
N-Hydroxy-3-[(4-nitro-benzyl)-trifluoromethanesulfonyl-amino]-propionamide
-
-
N-hydroxy-3-[(4-nitro-benzyl)-[3-(3-o-tolylsulfonyl-ureido)-benzenesulfonyl]-amino]-propionamide
-
-
N-hydroxy-3-[(4-nitro-benzyl)-[3-(3-p-tolylsulfonyl-ureido)-benzenesulfonyl]-amino]-propionamide
-
-
N-hydroxy-3-[(4-nitro-benzyl)-[3-(3-phenylsulfonyl-ureido)-benzenesulfonyl]-amino]-propionamide
-
-
N-hydroxy-3-[(4-nitro-benzyl)-[4-(3-o-tolylsulfonyl-ureido)-benzenesulfonyl]-amino]-propionamide
-
-
N-hydroxy-3-[(4-nitro-benzyl)-[4-(3-p-tolylsulfonyl-ureido)-benzenesulfonyl]-amino]-propionamide
-
-
N-hydroxy-3-[(4-nitro-benzyl)-[4-(3-phenylsulfonyl-ureido)-benzenesulfonyl]-amino]-propionamide
-
-
N-Hydroxy-3-[(naphthalene-1-sulfonyl)-(4-nitro-benzyl)-amino]-propionamide
-
-
N-Hydroxy-3-[(naphthalene-2-sulfonyl)-(4-nitro-benzyl)-amino]-propionamide
-
-
N-Hydroxy-3-[1-(4-nitro-benzyl)-3-o-tolylsulfonyl-ureido]-propionamide
-
-
N-Hydroxy-3-[1-(4-nitro-benzyl)-3-p-tolylsulfonyl-ureido]-propionamide
-
-
N-Hydroxy-3-[1-(4-nitro-benzyl)-3-phenylsulfonyl-ureido]-propionamide
-
-
N-Hydroxy-3-[dimethylsulfamoyl-(4-nitro-benzyl)-amino]-propionamide
-
-
N-Hydroxy-3-[methanesulfonyl-(4-nitro-benzyl)-amino]-propionamide
-
-
N-phenylsulfonylureido-N-(5H-dibenzo[a,d]cyclohepten-5-yl)-glycine hydroxamate
-
-
N-phenylsulfonylureido-N-[(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
-
N-phenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
-
naphthoyl-Gly-PSI[POOHCH2]-Leu-Trp-NHBzl
-
pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine
PAI-1
-
functions as an upstream regulator of a MMP-1-initiated collagenolytic phenotype, it blocks conversion of MMP-1 to its active form. Neutralization of endogenous PAI-1 with function blocking antibodies accelerates both collagenolysis and activation of MMP-1
-
pedunculagin
potent inhibitory effect on MMP-1 and the increased type-I procollagen synthesis in ultraviolet B-induced human fibroblast
phthaloyl-Gly(P)-Ile-Trp-(R)NHCH-(Me)Ph
-
phosphonamidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine
phthaloyl-Gly(P)-Ile-Trp-NHBzl
-
50 µM, 25°C, pH 7.4, Tris buffer, reversible inhibition, protects the enzyme partially from inactivation by ClCH2CO-(N-OH)Leu-Ala-Gly-NH2
phthaloyl-Gly-PSI[POOHNH]-Ile-Trp-(S)NHCH-(Me)Ph
-
phosphonamidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine
quercetin
-
Ro-31-9790
-
-
TIMP-1
-
TIMP-2
-
TIMP-3
-
is induced by enamel matrix derivative
-
tissue inhibitor of matrix metalloproteinase-1
-
is not influenced by substance P
-
tissue inhibitor of matrix metalloproteinase-2
-
0.1 microM, inhibits both protease activity and migration in a 3-dimensional cross-linked collagen matrix
-
Tissue inhibitor of metalloproteinase-1
-
TIMP-1
-
tissue inhibitors of metalloproteinase-1
-
i.e. TIMP-1
-
TVGCEECTV
-
-
[3-[(2-hydroxycarbamoyl-ethyl)-(4-nitro-benzyl)-sulfamoyl]-phenyl]-carbamic acid tert-butyl ester
-
-
[4-[(2-hydroxycarbamoyl-ethyl)-(4-nitro-benzyl)-sulfamoyl]-phenyl]-carbamic acid tert-butyl ester
-
-
[5-[(2-hydroxycarbamoyl-ethyl)-(4-nitro-benzyl)-sulfamoyl]-2-methoxy-phenyl]-carbamic acid tert-butyl ester
-
-
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
15-deoxy-DELTA12,14-prostaglandin J2
-
treatment of with 30 mM of 15-deoxy-DELTA12,14-prostaglandin J2 increases the expression of heme oxygenase-1, which precedes the induction of matrix metalloproteinases. The 15-deoxy-DELTA12,14-prostaglandin J2-induced upregulation of MMP-1 is abrogated by the heme oxygenase-1 inhibitor zinc protoporphyrin IX as well as introduction of heme oxygenase-1 short interfering RNA
4-aminophenylmercuric acetate
-
MMP-1 from synovial fibroblasts is activated with 10 mM 4-aminophenylmercuric acetate in 0.1 N NaOH at 37 °C for 3 h
glucose
-
presence of high glucose levels and interferon gamma in culture medium have a synergistic effect on the expression of matrix metalloproteinases MMP-1, MMP-9 and interleukin-1beta. High glucose also enhances interferon gamma-induced priming effect on lipopolysaccharide-stimulated MMP-1 secretion. High glucose and interferon gamma exert the synergistic effect on MMP-1 expression by enhancing STAT1 phosphorylation and STAT1 transcriptional activity
interferon gamma
-
presence of high glucose levels and interferon gamma in culture medium have a synergistic effect on the expression of matrix metalloproteinases MMP-1, MMP-9 and interleukin-1beta. High glucose also enhances interferon gamma-induced priming effect on lipopolysaccharide-stimulated MMP-1 secretion. High glucose and interferon gamma exert the synergistic effect on MMP-1 expression by enhancing STAT1 phosphorylation and STAT1 transcriptional activity
-
interleukin-1 receptor antagonist
-
increases active MMP-1 level
-
TNF
-
increases active MMP-1 level
-
Trypsin
-
procollagenase activated to collagenase
-
additional information
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.013
2,4-dinitrophenyl-Pro-beta-cyclohexyl-Ala-Gly-Cys(Me)-His-Ala-Lys(N-methyl-2-aminobenzoyl)-NH2
pH 7.5, 40°C
0.026
2,4-dinitrophenyl-Pro-Leu-Ala-Leu-Trp-Ala-Arg-OH
pH 7.5, 25°C
0.0013
acetyl-Pro-Leu-Gly-Ile-Leu-Gly-OC2H5
-
-
0.0012
acetyl-Pro-Leu-Gly-Leu-Leu-Gly-OC2H5
-
-
0.0039
acetyl-Pro-Leu-Gly-SCH[CH2CH(CH3)2CO]-Leu-Leu-OC2H5
-
-
0.063 - 0.2076
alpha1(I)772-786 triple-helical peptide
-
0.00086 - 0.74
collagen I alpha-1 chain
-
0.00025 - 0.53
collagen I alpha-2 chain
-
0.0612 - 0.0666
fTHP-3
-
3.3
Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln-Gln
-
wild-type enzyme
0.63
Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln-Gln-Arg-Gly-Val-Val-Gly-Leu-Hyp-NH2
-
wild-type enzyme
3.6
GPLGIAGQ
-
-
3.6
GPQGIAGA
-
-
3.3
GPQGIAGQ
-
-
2.4
GPQGIAGT
-
-
2.8
GPQGLAGQ
-
-
5.6
GPRGIAGQ
-
-
4.9
GPVGIAGQ
-
-
0.0008
human type I collagen
-
-
-
0.0021
human type II collagen
-
-
-
0.0013
human type III collagen
-
-
-
0.8
type I collagen
-
-
-
0.0013
type III collagen
-
pH 7.5, 25°C, wild-type substrate
-
0.0037
[alpha1(I)]2alpha2(I)772-784 triple-helical peptide
-
mutant enzyme E200A
-
0.0612
[alpha1(II)769-783] fluorogenic triple-helical peptide-3
-
wild-type enzyme
-
0.0208
[alpha1(II)769-783] fluorogenic triple-helical peptide-4
-
wild-type enzyme
-
0.171
[alpha1(II)769-783] single-stranded peptide-3
-
wild-type enzyme
-
additional information
additional information
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
4.3
acetyl-Pro-Leu-Gly-Ile-Leu-Gly-OC2H5
-
-
5.83
acetyl-Pro-Leu-Gly-Leu-Leu-Gly-OC2H5
-
-
103
acetyl-Pro-Leu-Gly-SCH[CH2CH(CH3)2CO]-Leu-Leu-OC2H5
-
-
0.11 - 0.28
alpha1(I)772-786 triple-helical peptide
-
0.21 - 10.41
collagen I alpha-1 chain
-
0.014 - 58.61
collagen I alpha-2 chain
-
0.08 - 0.087
fTHP-3
-
0.2
Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln-Gln
-
wild-type enzyme
0.51
Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln-Gln-Arg-Gly-Val-Val-Gly-Leu-Hyp-NH2
-
wild-type enzyme
0.333
GPLGIAGQ
-
-
0.217
GPQGIAGA
-
-
0.203
GPQGIAGQ
-
-
0.263
GPQGIAGT
-
-
0.27
GPQGLAGQ
-
-
0.0717
GPRGIAGQ
-
-
0.15
GPVGIAGQ
-
-
0.0148
human type I collagen
-
-
-
0.000267
human type II collagen
-
-
-
0.0056 - 0.153
human type III collagen
-
0.00278
type I collagen
-
-
-
0.077
type III collagen
-
pH 7.5, 25°C, wild-type substrate
-
0.08
[alpha1(II)769-783] fluorogenic triple-helical peptide-3
-
wild-type enzyme
-
0.04
[alpha1(II)769-783] fluorogenic triple-helical peptide-4
-
wild-type enzyme
-
0.25
[alpha1(II)769-783] single-stranded peptide-3
-
wild-type enzyme
-
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.88 - 630
collagen I alpha-1 chain
-
1.2 - 1900
collagen I alpha-2 chain
-
58
type III collagen
-
pH 7.5, 25°C, wild-type substrate
-
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.00002
(3-[(2-hydroxycarbamoyl-ethyl)-(4-nitro-benzyl)-sulfamoyl]-phenyl)-carbamic acid tert-butyl ester
-
-
0.000162
2-[benzyl([[(2-methylphenyl)sulfonyl]amino]carbonyl)amino]-N-hydroxyacetamide
-
pH 6.0, 37°C
0.000143
2-[benzyl([[(4-chlorophenyl)sulfonyl]amino]carbonyl)amino]-N-hydroxyacetamide
-
pH 6.0, 37°C
0.000135
2-[benzyl([[(4-fluorophenyl)sulfonyl]amino]carbonyl)amino]-N-hydroxyacetamide
-
pH 6.0, 37°C
0.00017
2-[benzyl([[(4-methylphenyl)sulfonyl]amino]carbonyl)amino]-N-hydroxyacetamide
-
pH 6.0, 37°C
0.000057
3-[((1R,4S)-7,7-Dimethyl-2-oxo-bicyclo[2.2.1]hept-1-ylmethanesulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
0.000027
3-[(2,4-Dinitro-phenylsulfanyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
0.00005
3-[(2,5-Dichloro-benzenesulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
0.000031
3-[(2-Hydroxycarbamoyl-ethyl)-(4-nitro-benzyl)-sulfamoyl]-benzoic acid
-
-
0.00005
3-[(3-Chloro-4-ethylamino-benzenesulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
0.00003
3-[(3-Chloro-4-nitro-benzenesulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
0.000024
3-[(4-Bromo-benzenesulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
0.000023
3-[(4-Chloro-benzenesulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
0.000021
3-[(4-Fluoro-benzenesulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
0.000089
3-[(5-Dimethylamino-naphthalene-1-sulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
0.000077
3-[(Heptadecachlorooctane-1-sulfonyl)-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
0.000018
3-[3-(2,4-Dichloro-phenyl)-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
0.000036
3-[3-(3,4-Dichloro-phenyl)-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
0.000026
3-[3-(3-Chloro-phenyl)-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
0.000024
3-[3-(4-Chloro-phenyl)-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
0.00004
3-[3-(4-Chloro-phenylsulfonyl)-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
0.000021
3-[3-(4-Fluoro-phenyl)-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
0.000047
3-[3-(4-Fluoro-phenylsulfonyl)-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
0.000032
3-[3-Benzoyl-1-(4-nitro-benzyl)-ureido]-N-hydroxy-propionamide
-
-
0.000025
3-[Benzenesulfonyl-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
0.000057
3-[[3-[3-(4-chloro-phenylsulfonyl)-ureido]-benzenesulfonyl]-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
0.000055
3-[[3-[3-(4-fluoro-phenylsulfonyl)-ureido]-benzenesulfonyl]-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
0.000056
3-[[4-[3-(4-chloro-phenylsulfonyl)-ureido]-benzenesulfonyl]-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
0.000055
3-[[4-[3-(4-fluoro-phenylsulfonyl)-ureido]-benzenesulfonyl]-(4-nitro-benzyl)-amino]-N-hydroxy-propionamide
-
-
0.00003
4-[(2-Hydroxycarbamoyl-ethyl)-(4-nitro-benzyl)-sulfamoyl]-benzoic acid
-
-
0.002
C3H7-POOH-Ile-Trp-NHMe
-
phosphonamidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine
0.5
ClCH2CO-(N-OH)Leu-Ala-Gly-NH2
-
25°C, pH 7.4, Tris buffer
2.5
ClCH2CO-(N-OH)Phe-Ala-Ala-NH2
-
25°C, pH 7.4, Tris buffer
0.0000128 - 0.0000603
CT 1746
0.0105
epigallocatechin gallate
pH 7.5, 25°C
0.004
EtO-POOH-CH2-Leu-Trp-NHMe
-
pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine
0.12
EtO-POOH-Ile-Ala-Gly
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt
0.5
EtO-POOH-Ile-Ala-Gly-Gln-Arg-Gly
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt, weak inhibition
0.27
EtO-POOH-Ile-Ala-Gly-Glu-Arg(NO2)-Gly
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt, weak inhibition
0.4
EtO-POOH-Ile-Ala-Gly-Glu-Arg-Gly
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt, weak inhibition
0.045
EtO-POOH-Ile-Leu-Gly
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt
0.012
EtO-POOH-Ile-Trp-NHMe
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt
0.002
EtO-POOH-Ile-Tyr(OBzl)-Gly
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt
0.02
EtO-POOH-Ile-Tyr-Gly
-
phosphoramidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine, substrate Ac-Pro-Leu-Gly-SCH(iBu)CO-Leu-Leu-GlyOEt
0.00135
fisetin
pH 7.5, 40°C
0.3
hexyl-POOH-O-Leu-Trp-NHMe
-
pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine
0.000039
N-2-methylphenylsulfonylureido-N-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)-glycine hydroxamate
-
pH 6.0, 37°C
0.000036
N-2-methylphenylsulfonylureido-N-(5H-dibenzo[a,d]cyclohepten-5-yl)-glycine hydroxamate
-
pH 6.0, 37°C
0.000038
N-2-methylphenylsulfonylureido-N-[(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
pH 6.0, 37°C
0.000029
N-2-methylphenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
pH 6.0, 37°C
0.000015
N-2-methylphenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
pH 6.0, 37°C
0.000024
N-4-chlorophenylsulfonylureido-N-(5H-dibenzo[a,d]cyclohepten-5-yl)-glycine hydroxamate
-
pH 6.0, 37°C
0.000024
N-4-chlorophenylsulfonylureido-N-[(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
pH 6.0, 37°C
0.00019
N-4-chlorophenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine
-
pH 6.0, 37°C
0.00002
N-4-chlorophenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
pH 6.0, 37°C
0.00023
N-4-chlorophenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine
-
pH 6.0, 37°C
0.000014
N-4-chlorophenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
pH 6.0, 37°C
0.000025
N-4-fluorophenylsulfonylureido-N-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)-glycine hydroxamate
-
pH 6.0, 37°C
0.000021
N-4-fluorophenylsulfonylureido-N-(5H-dibenzo[a,d]cyclohepten-5-yl)-glycine hydroxamate
-
pH 6.0, 37°C
0.0002
N-4-fluorophenylsulfonylureido-N-[(10,11,dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine
-
pH 6.0, 37°C
0.000021
N-4-fluorophenylsulfonylureido-N-[(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
pH 6.0, 37°C
0.000013
N-4-fluorophenylsulfonylureido-N-[(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
pH 6.0, 37°C
0.000017
N-4-fluorophenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
pH 6.0, 37°C
0.00018
N-4-fluorophenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine
-
pH 6.0, 37°C
0.000011
N-4-fluorophenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
pH 6.0, 37°C
0.000032
N-4-methylphenylsulfonylureido-N-(5H-dibenzo[a,d]cyclohepten-5-yl)-glycine hydroxamate
-
pH 6.0, 37°C
0.00003
N-4-methylphenylsulfonylureido-N-[(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
pH 6.0, 37°C
0.000018
N-4-methylphenylsulfonylureido-N-[(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
pH 6.0, 37°C
0.000024
N-4-methylphenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine hydroxamate
-
pH 6.0, 37°C
0.000015
N-4-methylphenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
pH 6.0, 37°C
0.000043
N-Hydroxy-3-[(2-nitro-benzenesulfonyl)-(4-nitro-benzyl)-amino]-propionamide
-
-
0.00005
N-Hydroxy-3-[(3-nitro-benzenesulfonyl)-(4-nitro-benzyl)-amino]-propionamide
-
-
0.000032
N-Hydroxy-3-[(4-iodo-benzenesulfonyl)-(4-nitro-benzyl)-amino]-propionamide
-
-
0.000023
N-Hydroxy-3-[(4-methoxy-benzenesulfonyl)-(4-nitro-benzyl)-amino]-propionamide
-
-
0.00005
N-Hydroxy-3-[(4-nitro-benzenesulfonyl)-(4-nitro-benzyl)-amino]-propionamide
-
-
0.000035
N-Hydroxy-3-[(4-nitro-benzyl)-(2,4,6-trimethyl-benzenesulfonyl)-amino]-propionamide
-
-
0.000028
N-Hydroxy-3-[(4-nitro-benzyl)-(2-nitro-phenylsulfanyl)-amino]-propionamide
-
-
0.000006
N-Hydroxy-3-[(4-nitro-benzyl)-(3-trifluoromethyl-benzenesulfonyl)-amino]-propionamide
-
-
0.000024
N-Hydroxy-3-[(4-nitro-benzyl)-(4-nitro-phenylsulfanyl)-amino]-propionamide
-
-
0.000069
N-Hydroxy-3-[(4-nitro-benzyl)-(nonachlorobutane-1-sulfonyl)-amino]-propionamide
-
-
0.000055
N-Hydroxy-3-[(4-nitro-benzyl)-(quinoline-8-sulfonyl)-amino]-propionamide
-
-
0.00003
N-Hydroxy-3-[(4-nitro-benzyl)-(toluene-4-sulfonyl)-amino]-propionamide
-
-
0.000002
N-Hydroxy-3-[(4-nitro-benzyl)-pentafluorobenzenesulfonyl-amino]-propionamide
-
-
0.000027
N-Hydroxy-3-[(4-nitro-benzyl)-phenylmethanesulfonyl-amino]-propionamide
-
-
0.000023
N-Hydroxy-3-[(4-nitro-benzyl)-trichloromethanesulfonyl-amino]-propionamide
-
-
0.000022
N-Hydroxy-3-[(4-nitro-benzyl)-trifluoromethanesulfonyl-amino]-propionamide
-
-
0.000055
N-hydroxy-3-[(4-nitro-benzyl)-[3-(3-o-tolylsulfonyl-ureido)-benzenesulfonyl]-amino]-propionamide
-
-
0.00005
N-hydroxy-3-[(4-nitro-benzyl)-[3-(3-p-tolylsulfonyl-ureido)-benzenesulfonyl]-amino]-propionamide
-
-
0.000062
N-hydroxy-3-[(4-nitro-benzyl)-[3-(3-phenylsulfonyl-ureido)-benzenesulfonyl]-amino]-propionamide
-
-
0.00007
N-hydroxy-3-[(4-nitro-benzyl)-[4-(3-o-tolylsulfonyl-ureido)-benzenesulfonyl]-amino]-propionamide
-
-
0.000057
N-hydroxy-3-[(4-nitro-benzyl)-[4-(3-p-tolylsulfonyl-ureido)-benzenesulfonyl]-amino]-propionamide
-
-
0.000069
N-hydroxy-3-[(4-nitro-benzyl)-[4-(3-phenylsulfonyl-ureido)-benzenesulfonyl]-amino]-propionamide
-
-
0.000082
N-Hydroxy-3-[(naphthalene-1-sulfonyl)-(4-nitro-benzyl)-amino]-propionamide
-
-
0.000065
N-Hydroxy-3-[(naphthalene-2-sulfonyl)-(4-nitro-benzyl)-amino]-propionamide
-
-
0.000069
N-Hydroxy-3-[1-(4-nitro-benzyl)-3-o-tolylsulfonyl-ureido]-propionamide
-
-
0.000042
N-Hydroxy-3-[1-(4-nitro-benzyl)-3-p-tolylsulfonyl-ureido]-propionamide
-
-
0.000052
N-Hydroxy-3-[1-(4-nitro-benzyl)-3-phenylsulfonyl-ureido]-propionamide
-
-
0.000038
N-Hydroxy-3-[dimethylsulfamoyl-(4-nitro-benzyl)-amino]-propionamide
-
-
0.000087
N-Hydroxy-3-[methanesulfonyl-(4-nitro-benzyl)-amino]-propionamide
-
-
0.000025
N-phenylsulfonylureido-N-(5H-dibenzo[a,d]cyclohepten-5-yl)-glycine hydroxamate
-
pH 6.0, 37°C
0.000015
N-phenylsulfonylureido-N-[(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
pH 6.0, 37°C
0.000013
N-phenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine hydroxamate
-
pH 6.0, 37°C
0.002
phthaloyl-Gly-PSI[POOHNH]-Ile-Trp-(S)NHCH-(Me)Ph
-
phosphonamidate inhibitor, pH 6.5, 25 °C, 50 mM HEPES buffer, 10 mM CaCl2, 1 mM 4,4'-dithiodipyridine
0.00149
quercetin
pH 7.5, 40°C
0.0000108 - 0.0001893
Ro31-9790
0.00005
[4-[(2-hydroxycarbamoyl-ethyl)-(4-nitro-benzyl)-sulfamoyl]-phenyl]-carbamic acid tert-butyl ester
-
-
0.000024
[5-[(2-hydroxycarbamoyl-ethyl)-(4-nitro-benzyl)-sulfamoyl]-2-methoxy-phenyl]-carbamic acid tert-butyl ester
-
-
additional information
additional information
-
Ki-values above 250 nM are determined for N-4-fluorophenylsulfonylureido-N-(5H-dibenzo[a,d]cyclohepten-5-yl)-glycine, N-4-chlorophenylsulfonylureido-N-(5H-dibenzo[a,d]cyclohepten-5-yl)-glycine, N-phenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine, N-4-methylphenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine, N-4-fluorophenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine, N-4-methylphenylsulfonylureido-N-[(5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine, N-4-fluorophenylsulfonylureido-N-(10,11,dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)-glycine, N-4-chlorophenylsulfonylureido-N-(10,11,dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)-glycine, N-4-methylphenylsulfonylureido-N-[(10,11,dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)methylen]-glycine, N-4-fluorophenylsulfonylureido-N-[(10,11,dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)ethylene]-glycine
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.014
epigallocatechin gallate
Homo sapiens
pH 7.5, 25°C
0.00975
pedunculagin
Homo sapiens
pH 7.5, 20°C
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
6.5 - 7
-
-
6.5 - 7.5
-
-
7 - 8
-
skin
7 - 9
-
bone
7.5 - 8.5
-
-
7.6
-
assay at
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
6 - 9.2
6.5 - 9.5
-
pH 6.5: about 65% of maximal activity, pH 9.5: about 60% of maximal activity
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
25
-
assay at
30
assay at
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
-
Manually annotated by BRENDA team
-
MMP-1 is upregulated by TGF-beta, EGF and IL-1beta
Manually annotated by BRENDA team
-
cell line JJ, increased MMP1 expression in chondrosarcoma, mechanism, overview
Manually annotated by BRENDA team
-
mucosa, immunohistochemic analysis of MMP-1 and TIMP-1 levels, overview. Overall plasma levels of MMP-1 and TIMP-1 in ulcerative colitis patients are significantly higher than those of the control group
Manually annotated by BRENDA team
-
acceleration of matrix metalloproteinase-1 production by oxidized low-sensity lipoprotein and 4-hydroxynonenal
Manually annotated by BRENDA team
-
MMP-1 is expressed by migrating enterocytes bordering intestinal ulcers. In the fetal gut model, MMP-1 expression by migrating enterocytes is detected
Manually annotated by BRENDA team
-
primary epithelial ovarian tumor cell
Manually annotated by BRENDA team
-
MMP-14 is expressed and active in cultured ES2 cells. ES2 cells also exhibit MMP-dependent invasion of and proliferation within three-dimensional collagen gels
Manually annotated by BRENDA team
-
immortalized human keratinocyte cells
Manually annotated by BRENDA team
-
MMP-10 and MMP-1 are up-regulated in HaCaT II-4 cells
Manually annotated by BRENDA team
-
glycine-extended gastrin renders colon cancer cells more invasive by increasing MMP-I expression via the putative glycine-extended gastrin receptor
Manually annotated by BRENDA team
-
primary, monocyte-derived
Manually annotated by BRENDA team
-
high MMP-1 level
Manually annotated by BRENDA team
-
Muller glia cell line
Manually annotated by BRENDA team
-
saphenous vein smooth muscle
Manually annotated by BRENDA team
-
UM1 and UM2 are oral tongue squamous cell carcinoma cell lines
Manually annotated by BRENDA team
-
ovarian clear cell carcinoma cell
Manually annotated by BRENDA team
-
enzyme expression is significantly stronger in the epithelium than in the stroma
Manually annotated by BRENDA team
-
the mean salivary MMP-1 concentration in patients with chronic periodontitis is significantly higher before and after treatment with aprotinin, as compared to healthy subjects
Manually annotated by BRENDA team
-
disruption of caveolae by addition of methyl-beta-cyclodextrin results in a dramatic decline in both motility and invasion abilities of cells with concomitant increase in secreted MMP-2 expression and expression levels of MMP-1 and MMP-9
Manually annotated by BRENDA team
-
disruption of caveolae by addition of methyl-beta-cyclodextrin results in a dramatic decline in both motility and invasion abilities of cells with concomitant increase in secreted MMP-2 expression and expression levels of MMP-1 and MMP-9
Manually annotated by BRENDA team
-
SCL-1 cell. MMP-1 is upregulated 4 h after UVA and 16 h after UVB irradiation of tumor cells. Incubation of cells with the MEK1/2 inhibitor U0126 or the p38 inhibitor SB202190 abolishes the UVA and UVB mediated induction of MMP-1
Manually annotated by BRENDA team
-
a human chondrosarcoma cell line
Manually annotated by BRENDA team
-
rheumatoid
Manually annotated by BRENDA team
-
fibroblast-like, from rheumatoid arthritis patients
Manually annotated by BRENDA team
-
-
Manually annotated by BRENDA team
-
leg ulcer tissue from patients with chronic venous insufficiency
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
intracellular association of MMP-1 to mitochondria and nuclei confers resistance to apoptosis and may explain the association of this enzyme with tumor cell survival and spreading
Manually annotated by BRENDA team
-
intracellular association of MMP-1 to mitochondria and nuclei confers resistance to apoptosis and may explain the association of this enzyme with tumor cell survival and spreading
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
malfunction
metabolism
physiological function
additional information
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
MMP1_HUMAN
469
0
54007
Swiss-Prot
Secretory Pathway (Reliability: 1)
MMP8_HUMAN
467
0
53412
Swiss-Prot
-
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
21000
x * 21000, SDS-PAGE
38000
-
gel filtration
50000
-
x * 50000, exon 5 mutant species, SDS-PAGE
51929
-
x * 51929, the minor glycosylated enzyme form has a MW of 57000 Da, calculation from nucleotide sequence
53000
-
calculated
58000
-
x * 58000, N-glycosylated exon 5 mutant species, SDS-PAGE
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
tryptic peptide mapping in solution
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
proteolytic modification
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
hanging drop vapour-diffusion method. Crystal structure of the active form of human MMP-1 at 2.67 A resolution. This is a MMP-1 structure that is free of inhibitor and a water molecule essential for peptide hydrolysis is observed coordinated with the active site zinc
-
small angle X-ray scattering
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
DELTA243-340
-
about 10% increase in turnover number and 9% increase in Km-value compared to wild-type enzyme with fTHP-3 as substrate
DELTA243-450
-
the KM-value for the alpa1(I)772-786 triple-helical peptide is 3.3fold higher than that of the wild-type enzyme, the turnover number for this substrate is 2.5fold higher
E200A
catalytically inactive, but correctly folded mutant enzyme. MMP-1(Glu200Ala) has an intact HPX domain. The mutant can orient and help unwind the collagen triple helix, while the catalytic MMP-1 domain (MMP-1 CAT) cleaves the triple helix
E219A
inactive mutant
L338A/H339A
site-directed mutagenesis, the mutant shows an increased collagenase activity, the MMP-1 L338A/H339A mutant corresponds to the appearance of a unique anticorrelated motion and decreased correlated motions
R183Q/W184W/T185T/N186K/N187D/F188T/R189T/E190G/Y191T
-
mutation reduces collagenolytic activity about 10fold
V94G
constitutively active MMP-1 mutant. Expression of MMP-1 V94G in young skin in organ culture causes fragmentation and ultrastructural alterations of collagen fibrils similar to those observed in aged human skin in vivo. Expression of MMP-1 V94G in dermal fibroblasts cultured in three-dimensional collagen lattices causes substantial collagen fragmentation, which is markedly reduced by MMP-1 siRNA-mediated knockdown or MMP inhibitor MMI270. Fibroblasts cultured in MMP-1 V94G-fragmented collagen lattices display many alterations observed in fibroblasts in aged human skin, including reduced cytoplasmic area, disassembled actin cytoskeleton, impaired TGF-beta pathway, and reduced collagen production
Y191T
-
mutation reduces collagenolytic and gelatinolytic activity about 5fold
additional information
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
solubilized and refolded recombinant enzyme by gel filtration and ultrafiltration
wild-type and exon 5 mutant enzyme
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expressed in Escherichia coli strain BL21(DE3)
expression analysis
-
expression analysis of MMP1 in cancerous and healthy oral tissues, overview
-
expression in Escherichia coli
gene MMP-1, quantitative RT-PCR expression analysis
integrity of MMP-1 promoter AP-1 binding site is necessary for transactivation by rapamycin, regulation, overview
-
MMP-3/MMP-1 chimeras and variants are overexpressed in Escherichia coli, folded from inclusion bodies and isolated as zymogens
-
quantitative MMP-1 expression analysis
-
quantitative MMP-1 expression analysis in primary dermal fibroblasts
-
quantitative MMP-1 expression analysis in skin fibroblasts
-
quantitative MMP-1 expression analysis, overview
-
quantitiative real-time PCR expression analysis of MMP-1 in brain regions in response to infection with Mycobacterium tuberculosis
-
recombinant expression in bacterial cells
sitting drop vapor diffusion technique. Crystallization of recombinant human proMMP-1 and determination of its structure to 2.2 A resolution
-
the enzyme forms insoluble inclusion bodies when over-expressed in Escherichia coli
-
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
activation of toll-like receptors TLR2, TLR3 or TLR5 increased the expression of MMP-1. MMP-1 and MMP-9 in human epidermal keratinocytes are induced by Pam3CSK4, Poly(I:C) and flagellin, which are ligands for TLR2, TLR3 and TLR5, respectively, overview. The induction of MMP-1 by the receptor ligands is inhibited by pretreatment with BAY11-7082, a NF-kappaB inhibitor, or SP600125, a JNK inhibitor. p38 MAPK activation negatively regulates MMP-1 induction by TLR2 or TLR5 activation, but not by TLR3 activation
-
bortezomib specifically increases the steady-state mRNA levels of MMP-1 and enhances the binding of c-Jun to the promoter of MMP-1. Disruption of the proximal AP-1-binding site in the promoter of MMP-1 severely impairs MMP-1 transcription in response to bortezomib. By altering the binding of at least two transcription factors, c-Jun and SP1, proteasome inhibition results in increased production of MMP-1 and decreases synthesis of type I collagen in human dermal fibroblasts
-
both the MMP-1 and TIMP-1 mRNA expression level are dramatically downregulated by baicalin
-
curcumin at the concentration of 2.5-5 mg/ml specifically downregulates MMP-1 mRNA in BT-483 and MDA-MB-231 breast cancer cell lines. Cell growth and proliferation is inhibited in presence of curcumin, overview
-
curcumin, a potent inhibitor for AP-1, or simvastatin inhibit the expression of MMP-1. Suppression of c-Jun expression by RNA interference significantly inhibits MMP-1 expression
-
dexamethasone suppression of MMP-1 gene expression
-
dexamethasone, and less potent also interleukin-1Ra and TNF, decrease levels of pro-MMP-1
-
enhanced collagen degradation, in case of epithelial-to-mesenchymal transition stimulated by transforming growth factor-beta as well as epidermal growth factor receptor, is coupled to a significant increase in matrix metalloproteinase MMP-1 expression and is involved a proteolytic axis composed of plasmin, MMP-10, ec 3.4.24.22, and MMP-1
-
expression of MMP-1 in cartilages and synovial tissues is suppressed by the treatment of curcumin and indomethacin. Production of MMP-1 is inhibited by curcumin in tumor necrosis factor-alpha-stimulated rheumatoid arthritis fibroblast-like synoviocytes and chondrocytes in a dose-dependent manner putatively through the inhibition of PKCdelta and the JNK/c-Jun signaling pathway, overview
-
expression of MMP-1 is markedly increased by both onion extract and quercetin in vitro in human skin fibroblasts
-
fucoidan treatment significantly inhibits the expression of MMP-1
-
hypoxia and specifically HIF-1a increase CXCR4, its ligand SDF1, and MMP1 expressions in JJ cell line and chondrosarcoma invasion in vitro, which can be inhibited by siRNA directed at HIF-1a or CXCR4, the CXCR4 inhibitor AMD3100, as well as with ERK inhibitor U0126 and ERK siRNA. Hypoxia increases MMP1 mRNA expression 9fold which is further increased to 23fold by SDF1 stimulation
-
increased MMP1 expression in JJ cell line can be inhibited by siRNA directed at HIF-1a or CXCR4, the CXCR4 inhibitor AMD3100, as well as with ERK inhibitor U0126 and ERK siRNA
-
induction of MMP-1 by UV-A irradiation treatment of cultured human dermal fibroblasts
-
inhibition of MMP-1 expression by extracts of Kaempferia pandurata, overview
-
inhibititory effects of potent antioxidant astaxanthin on the MMP-1 induction by UV-A irradiation, overview
-
interleukin-6, high glucose, and lipopolysaccharide act in concert and synergistically upregulate MMP-1 expression by U-937 mononuclear phagocytes via ERK1/2 and JNK pathways and c-Jun, mechanism, overview. c-Jun is a key subunit of AP-1 known to be essential for MMP-1 transcription
-
lithium specifically induces a rapid and pronounced up-regulation of MMP-1 at the mRNA and protein levels, whereas the induction of two the other senescent cell markers plasminogen activator inhibitor-1 and interleukin-8 is either delayed or weak, respectively. Lithium affects MMP-1 expression mainly at the transcriptional level but neither the AP1/Ets regulatory sites nor the redox sensitive -1607/2G site in MMP-1 promoter are involved in lithium-dependent MMP-1 regulation
-
matrix metalloproteinase-1 expression is induced by interleukin-1beta requiring acid sphingomyelinase, overview
-
methotrexate (MTX) increases the expression of MMP-1 in primary human neonatal, adult, and hypertrophic scar fibroblasts by 1.5fold 72 h after treatment with 50-500 ng/ml MTX
MMP-1 expression and secretion is induced by infection with Mycobacterium tuberculosis by 57.8%, the specific inhibitor TIMP-1 expression is also induced by 243.7%. The MMP-1 induction is specifically inhibited by 4-aminosalicyclic acid via inhibiting a p38 MAPK-prostaglandin signaling cascade, overview
-
MMP-1 expression is induced by UV-B irradiation, the induction is inhibited by extracts of Kaempferia pandurata, as are phosphorylation of MAP kinases ERK, JNK, and p38, overview
-
MMP-1 is 4.1fold induced by infection with Mycobacterium tuberculosis. Conditioned medium from Mycobacterium tuberculosis-infected human monocytes stimulates greater MMP-1 gene expression in human microglial cells than direct infection, overview. The induction is suppressed by dexamethasone. TNF-alpha and interleukin-1beta are necessary but not sufficient for upregulating MMP-1 secretion. NF-kappaB and AP-1 c-Jun/FosB heterodimers regulate induction of MMP-1 secretion by conditioned medium from Mycobacterium tuberculosis and are upregulated in granulomas from patients with cerebral tuberculosis. CoMTb upregulates MMP-1 gene expression and secretion in microglia
-
MMP-1 is downregulated 4fold during trophoblast differentiation, reduced MMP-1 expression in pre-eclampsia and fetal growth restriction
-
MMP-1 is induced in gingival fibroblasts in response to inflammatory cytokines, such as TNF and interleukin-1. TNF treatment of human gingival fibroblasts significantly induces the expression of MMP-1 severalfold, while enamel matrix derivative alone has no effect
-
MMP-1 is upregulated after stroke in brain in the infarcted tissue compared to healthy control areas, overview
-
phorbol 12-myristate 13-acetate and interleukin-1beta significantly stimulate the production of MMP-1 by periodontal ligament cells at both the transcriptional and the translational level
-
Rac1 inhibitor NSC23766 suppresses MMP1 in dermal fibroblasts, and half-lives of type I collagen protein are increased
-
recombinantly overexpressed RhoB enhances migration and MMP1 expression of prostate cancer DU145 cells, overview
-
SB203580 and PD98059 suppress MMP-1 secretion
-
TNF-alpha and IL-1beta stimulate production of MMPs through the activation of mitogen-activated protein kinases, NF-kappaB and AP-1
-
UV-B irradiation induces MMP-1 expression and secretion. Inhibitory effects of Costaria costata fucoidan on UVB-induced MMP-1 promoter, mRNA, and protein expression in vitro by 41.8% at 10 ng/ml, 57.7% at 100 ng/ml, and 70% at 0.001 mg/ml compared to UV-B irradiation alone, overview
-
UVA and UVB irradiation of dermal fibroblasts in vitro or human skin in vivo induces MMP-1 expression. MMP-1 expression and secretion induced by UV-B irradiation is inhibited by trans-zeatin, a cytokinin from Zea mays, and by PD98059, an ERK inhibitor, by SP600125, a JNK inhibitor and by SB203580, a p38 MAPK inhibitor. trans-Zeatin also inhibits UVB-induced ERK, JNK, p38 MAPK and c-Jun phosphorylation
-
RENATURED/Commentary
ORGANISM
UNIPROT
LITERATURE
optimal folding occurs when the denatured protein is diluted at 4°C in 2 M guanidine HCl, 20% glycerol, 2.5 mM reduced and oxidized glutathione, 5 mM CaCl2, followed by buffer exchange to remove denaturant and thiols
-
recombinant enzyme from inclusion bodies is solubilized in denaturation buffer containing 50 mM Tris, pH 8.0, 20 mM DTT, 50 mM ZnCl2, 1 mM acetohydroxamic acid (AHA), and 8 M urea, stirred overnight at room temperature, followed by ultrafiltration and anion exchange chromatography. The enzyme is diluted in 20 mM Tris, pH 8.0, 20 mM cystamine, 6 M urea, and dialyzed against 5-8 l of 50 mM Tris, pH 8.0, 2 mM AHA, 1 mM hydroxyethyl sulfate, 4 M urea, 5 mM CaCl2 , 0.1 mM ZnCl2, 300 mM NaCl, 5 mM 2-mercaptoethanol, and 4 M urea at 4°C overnight with stirring. The last step of refolding is done twice, against 2 M urea, 50 mM Tris, pH 8.0, 10 mM CaCl2, 0.1 mM ZnCl2, 300 mM NaCl, and 2 mM AHA overnight, with stirring, at 4°C
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
analysis
-
detection of localized extracellular sites of protease activity by use of fluorescent biosensor rhodamine 6G-labeled KDP-6-aminohexanoic acid-GPLGIAGIG-6-aminohexanoic acid-PKGY. Protease activity is localized at the polarized leading edge of migrating tumor cells rather than further back on the cell body. The path of proteolytic cleavage by a migrating cell can be visualized in 2- and 3-dimensional matrices. Probe can be used to determine inhibitor concentrations needed to suppress cell-surface protease activity
diagnostics
drug development
MMP-1 enzyme inhibitor astragaloside IV is a potential agent against skin photoaging
medicine
pharmacology
-
MMP-1 is a potential target in therapy of melanoma
synthesis
improved method for high-level expression of soluble human MMP-1 catalytic domain in Escherichia coli
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Seifter, S.; Harper, E.
The collagenases
The Enzymes, 3rd Ed. (Boyer, P. D. , ed. )
3
649-697
1971
Capra hircus, Cavia porcellus, Oryctolagus cuniculus, Homo sapiens, Lithobates catesbeianus, Rattus norvegicus
-
Manually annotated by BRENDA team
Weingarten, H.; Feder, J.
Cleavage site specificity of vertebrate collagenases
Biochem. Biophys. Res. Commun.
139
1184-1187
1986
Oryctolagus cuniculus, Frog, Homo sapiens, Rattus norvegicus, Sus scrofa
Manually annotated by BRENDA team
Welgus, H.G.; Stricklin, G.P.; Eisen, A.Z.; Bauer, E.A.; Cooney, R.V.; Jeffrey, J.J.
A specific inhibitor of vertebrate collagenases produced by human skin fibroblasts
J. Biol. Chem.
254
1938-1943
1979
Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Schmidt, T.M.; Mayne, R.; Jeffrey, J.J.; Linsenmayer, T.F.
Type X collagen contains two cleavage sites for a vertebrate collagenase
J. Biol. Chem.
261
4184-4189
1986
Homo sapiens
Manually annotated by BRENDA team
Weingarten, H.; Martin, R.; Feder, J.
Synthetic substrates of vertebrate collagenase
Biochemistry
24
6730-6734
1985
Homo sapiens
Manually annotated by BRENDA team
Wooley, D.E.; Tucker, J.S.; Green, G.; Evanson, J.M.
A neutral collagenase from human gastric mucosa
Biochem. J.
153
119-126
1976
Homo sapiens
Manually annotated by BRENDA team
Bauer, E.A.; Jeffrey, J.J.; Eisen, A.Z.
Preparation of three vertebrate collagenases in pure form
Biochem. Biophys. Res. Commun.
44
813-818
1971
Frog, Homo sapiens
Manually annotated by BRENDA team
Vettakkorumakankav, N.N.; Ananthanarayanan, V.S.
Ca2+ and Zn2+ binding properties of peptide substrates of vertebrate collagenase, MMP-1
Biochim. Biophys. Acta
1432
356-370
1999
Homo sapiens
Manually annotated by BRENDA team
Fields, G.B.; van Wart, H.E.; Birkedal-Hansen, H.
Sequence specificity of human skin fibroblast collagenase. Evidence for the role of collagen structure in determining the collagenase
J. Biol. Chem.
262
6221-6226
1987
Homo sapiens
Manually annotated by BRENDA team
Goldberg, G.I.; Wilhelm, S.M.; Kronberger, A.; Bauer, E.A.; Grant, G.A.; Eisen, A.Z.
Human fibroblast collagenase. Complete primary structure and homology to an ancogene transformation-induced rat protein
J. Biol. Chem.
261
6600-6605
1986
Homo sapiens
Manually annotated by BRENDA team
Sottrup-Jensen, L.; Birkedal-Hansen, H.
Human fibroblast collagenase-alpha-macroglobulin interactions. Localization of cleavage sites in the bait regions of five mammalian alpha-macroglobulins
J. Biol. Chem.
264
393-401
1989
Homo sapiens
Manually annotated by BRENDA team
Sudbeck, H.D.; Jeffrey, J.J.; Welgus, H.G.; Mecham, R.P.; McCourt, D.; Parks, W.C.
Purification and characterization of bovine interstitial collagenase and tissue inhibitor metalloproteinases
Arch. Biochem. Biophys.
293
370-376
1992
Bos taurus, Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Zhang, Y.; Gray, R.D.
Characterization of folded, intermediate, and unfolded states of recombinant human interstitial collagenase
J. Biol. Chem.
271
8015-8021
1996
Homo sapiens
Manually annotated by BRENDA team
Lauer-Fields, J.L.; Broder, T.; Sritharan, T.; Chung, L.; Nagase, H.; Fields, G.B.
Kinetic analysis of matrix metalloproteinase activity using fluorogenic triple-helical substrates
Biochemistry
40
5795-5803
2001
Homo sapiens
Manually annotated by BRENDA team
Du, X.; Chand, H.S.; Kisiel, W.
Human tissue factor pathway inhibitor-2 does not bind or inhibit activated matrix metalloproteinase-1
Biochim. Biophys. Acta
1621
242-245
2003
Homo sapiens
Manually annotated by BRENDA team
Lauer-Fields, J.L.; Fields, G.B.
Triple-helical peptide analysis of collagenolytic protease activity
Biol. Chem.
383
1095-1105
2002
Homo sapiens
Manually annotated by BRENDA team
Ilies, M.; Banciu, M.D.; Scozzafava, A.; Ilies, M.A.; Caproiu, M.T.; Supuran, C.T.
Protease inhibitors: synthesis of bacterial collagenase and matrix metalloproteinase inhibitors incorporating arylsulfonylureido and 5-dibenzo-suberenyl/suberyl moieties
Bioorg. Med. Chem.
11
2227-2239
2003
Homo sapiens
Manually annotated by BRENDA team
Knauper, V.; Patterson, M.L.; Gomis-Ruth, F.X.; Smith, B.; Lyons, A.; Docherty, A.J.; Murphy, G.
The role of exon 5 in fibroblast collagenase (MMP-1) substrate specificity and inhibitor selectivity
Eur. J. Biochem.
268
1888-1896
2001
Homo sapiens
Manually annotated by BRENDA team
Scozzafava, A.; Ilies, M.A.; Manole, G.; Supuran, C.T.
Protease inhibitors. Part 12. Synthesis of potent matrix metalloproteinase and bacterial collagenase inhibitors incorporating sulfonylated N-4-nitrobenzyl-beta-alanine hydroxamate moieties
Eur. J. Pharm. Sci.
11
69-79
2000
Homo sapiens
Manually annotated by BRENDA team
Chung, L.; Shimokawa, K.I.; Dinakarpandian, D.; Grams, F.; Fields, G.B.; Nagase, H.
Identification of the 183RWTNNFREY191 region as a critical segment of matrix metalloproteinase 1 for the expression of collagenolytic activity
J. Biol. Chem.
275
29610-29617
2000
Homo sapiens
Manually annotated by BRENDA team
Stricker, T.P.; Dumin, J.A.; Dickeson, S.K.; Chung, L.; Nagase, H.; Parks, W.C.; Santoro, S.A.
Structural analysis of the alpha(2) integrin I domain/procollagenase-1 (matrix metalloproteinase-1) interaction
J. Biol. Chem.
276
29375-29381
2001
Homo sapiens
Manually annotated by BRENDA team
Conant, K.; St.Hillaire, C.; Nagase, H.; Visse, R.; Gary, D.; Haughey, N.; Anderson, C.; Turchan, J.; Nath, A.
Matrix Metalloproteinase 1 Interacts with neuronal integrins and stimulates dephosphorylation of Akt
J. Biol. Chem.
279
8056-8062
2004
Homo sapiens
Manually annotated by BRENDA team
Fujisawa, T.; Odake, S.; Ogawa, Y.; Yasuda, J.; Morikawa, T.
Sulfur based inhibitors of matrix metalloproteinase-1
Pept. Sci.
38
171-174
2002
Homo sapiens
-
Manually annotated by BRENDA team
Lin, T.Y.; Kuo, D.W.
Inactivation of human fibroblast collagenase by chloroacetyl N-hydroxypeptide derivatives
J. Enzyme Inhib.
5
33-40
1991
Homo sapiens
Manually annotated by BRENDA team
Galardy, R.E.; Grobelny, D.; Kortylewicz, Z.P.; Poncz, L.
Inhibition of human skin fibroblast collagenase by phosphorus-containing peptides
Matrix Suppl.
1
259-262
1992
Homo sapiens
Manually annotated by BRENDA team
Lateef, H.; Stevens, M.J.; Varani, J.
All-trans-retinoic acid suppresses matrix metalloproteinase activity and increases collagen synthesis in diabetic human skin in organ culture
Am. J. Pathol.
165
167-174
2004
Homo sapiens
Manually annotated by BRENDA team
Limb, G.A.; Matter, K.; Murphy, G.; Cambrey, A.D.; Bishop, P.N.; Morris, G.E.; Khaw, P.T.
Matrix metalloproteinase-1 associates with intracellular organelles and confers resistance to lamin A/C degradation during apoptosis
Am. J. Pathol.
166
1555-1563
2005
Homo sapiens
Manually annotated by BRENDA team
Cardillo, M.R.; Di Silverio, F.; Gentile, V.
Quantitative immunohistochemical and in situ hybridization analysis of metalloproteinases in prostate cancer
Anticancer Res.
26
973-982
2006
Homo sapiens
Manually annotated by BRENDA team
Akiba, S.; Kumazawa, S.; Yamaguchi, H.; Hontani, N.; Matsumoto, T.; Ikeda, T.; Oka, M.; Sato, T.
Acceleration of matrix metalloproteinase-1 production and activation of platelet-derived growth factor receptor beta in human coronary smooth muscle cells by oxidized LDL and 4-hydroxynonenal
Biochim. Biophys. Acta
1763
797-804
2006
Homo sapiens
Manually annotated by BRENDA team
Ramos, M.C.; Steinbrenner, H.; Stuhlmann, D.; Sies, H.; Brenneisen, P.
Induction of MMP-10 and MMP-1 in a squamous cell carcinoma cell line by ultraviolet radiation
Biol. Chem.
385
75-86
2004
Homo sapiens
Manually annotated by BRENDA team
Fujiwara, M.; Muragaki, Y.; Ooshima, A.
Keloid-derived fibroblasts show increased secretion of factors involved in collagen turnover and depend on matrix metalloproteinase for migration
Br. J. Dermatol.
153
295-300
2005
Homo sapiens
Manually annotated by BRENDA team
Bae, J.T.; Sim, G.S.; Lee, D.H.; Lee, B.C.; Pyo, H.B.; Choe, T.B.; Yun, J.W.
Production of exopolysaccharide from mycelial culture of Grifola frondosa and its inhibitory effect on matrix metalloproteinase-1 expression in UV-irradiated human dermal fibroblasts
FEMS Microbiol. Lett.
251
347-354
2005
Homo sapiens
Manually annotated by BRENDA team
Baba, M.; Itoh, K.; Tatsuta, M.
Glycine-extended gastrin induces matrix metalloproteinase-1- and -3-mediated invasion of human colon cancer cells through type I collagen gel and Matrigel
Int. J. Cancer
111
23-31
2004
Homo sapiens
Manually annotated by BRENDA team
Huntington, J.T.; Shields, J.M.; Der, C.J.; Wyatt, C.A.; Benbow, U.; Slingluff, C.L.; Brinckerhoff, C.E.
Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling
J. Biol. Chem.
279
33168-33176
2004
Homo sapiens
Manually annotated by BRENDA team
Wenk, J.; Schueller, J.; Hinrichs, C.; Syrovets, T.; Azoitei, N.; Podda, M.; Wlaschek, M.; Brenneisen, P.; Schneider, L.A.; Sabiwalsky, A.; Peters, T.; Sulyok, S.; Dissemond, J.; Schauen, M.; Krieg, T.; Wirth, T.; Simmet, T.; Scharffetter-Kochanek, K.
Overexpression of phospholipid-hydroperoxide glutathione peroxidase in human dermal fibroblasts abrogates UVA irradiation-induced expression of interstitial collagenase/matrix metalloproteinase-1 by suppression of phosphatidylcholine hydroperoxide-mediated NFkappaB activation and interleukin-6 release
J. Biol. Chem.
279
45634-45642
2004
Homo sapiens
Manually annotated by BRENDA team
Jozic, D.; Bourenkov, G.; Lim, N.H.; Visse, R.; Nagase, H.; Bode, W.; Maskos, K.
X-ray structure of human proMMP-1: new insights into procollagenase activation and collagen binding
J. Biol. Chem.
280
9578-9585
2005
Homo sapiens
Manually annotated by BRENDA team
Iyer, S.; Visse, R.; Nagase, H.; Acharya, K.R.
Crystal structure of an active form of human MMP-1
J. Mol. Biol.
362
78-88
2006
Homo sapiens
Manually annotated by BRENDA team
Salmela, M.T.; Pender, S.L.; Karjalainen-Lindsberg, M.L.; Puolakkainen, P.; Macdonald, T.T.; Saarialho-Kere, U.
Collagenase-1 (MMP-1), matrilysin-1 (MMP-7), and stromelysin-2 (MMP-10) are expressed by migrating enterocytes during intestinal wound healing
Scand. J. Gastroenterol.
39
1095-1104
2004
Homo sapiens
Manually annotated by BRENDA team
Tucker, L.A.; Zhang, Q.; Sheppard, G.S.; Lou, P.; Jiang, F.; McKeegan, E.; Lesniewski, R.; Davidsen, S.K.; Bell, R.L.; Wang, J.
Ectopic expression of methionine aminopeptidase-2 causes cell transformation and stimulates proliferation
Oncogene
2008
1-10
2008
Homo sapiens
Manually annotated by BRENDA team
Shibayama, H.; Hisama, M.; Matsuda, S.; Ohtsuki, M.; Iwaki, M.
Effect of a novel ascorbic derivative, disodium isostearyl 2-O-L-ascorbyl phosphate on human dermal fibroblasts: increased collagen synthesis and inhibition of MMP-1
Biol. Pharm. Bull.
31
563-568
2008
Homo sapiens
Manually annotated by BRENDA team
Blackburn, J.S.; Rhodes, C.H.; Coon, C.I.; Brinckerhoff, C.E.
RNA interference inhibition of matrix metalloproteinase-1 prevents melanoma metastasis by reducing tumor collagenase activity and angiogenesis
Cancer Res.
67
10849-10858
2007
Homo sapiens
Manually annotated by BRENDA team
Ramos, C.; Montano, M.; Cisneros, J.; Sommer, B.; Delgado, J.; Gonzalez-Avila, G.
Substance P up-regulates matrix metalloproteinase-1 and down-regulates collagen in human lung fibroblast
Exp. Lung Res.
33
151-167
2007
Homo sapiens
Manually annotated by BRENDA team
Fineschi, S.; Reith, W.; Guerne, P.A.; Dayer, J.; Chizzolini, C.
Proteasome blockade exerts an antifibrotic activity by coordinately down-regulating type I collagen and tissue inhibitor of metalloproteinase-1 and up-regulating metalloproteinase-1 production in human dermal fibroblasts
FASEB J.
20
562-564
2006
Homo sapiens
Manually annotated by BRENDA team
Poulalhon, N.; Farge, D.; Roos, N.; Tacheau, C.; Neuzillet, C.; Michel, L.; Mauviel, A.; Verrecchia, F.
Modulation of collagen and MMP-1 gene expression in fibroblasts by the immunosuppressive drug rapamycin. A direct role as an antifibrotic agent?
J. Biol. Chem.
281
33045-33052
2006
Homo sapiens
Manually annotated by BRENDA team
Shim, J.S.; Kwon, Y.Y.; Hwang, J.K.
The effects of panduratin A isolated from Kaempferia pandurata on the expression of matrix metalloproteinase-1 and type-1 procollagen in human skin fibroblasts
Planta Med.
74
239-244
2008
Homo sapiens
Manually annotated by BRENDA team
Leonardi, A.; Sathe, S.; Bortolotti, M.; Beaton, A.; Sack, R.
Cytokines, matrix metalloproteases, angiogenic and growth factors in tears of normal subjects and vernal keratoconjunctivitis patients
Allergy
64
710-717
2009
Homo sapiens
Manually annotated by BRENDA team
Aharinejad, S.; Krenn, K.; Zuckermann, A.; Schaefer, R.; Gmeiner, M.; Thomas, A.; Aliabadi, A.; Schneider, B.; Grimm, M.
Serum matrix metalloprotease-1 and vascular endothelial growth factor - a predict cardiac allograft rejection
Am. J. Transplant.
9
149-159
2009
Homo sapiens
Manually annotated by BRENDA team
Nareika, A.; Sundararaj, K.P.; Im, Y.B.; Game, B.A.; Lopes-Virella, M.F.; Huang, Y.
High glucose and interferon gamma synergistically stimulate MMP-1 expression in U937 macrophages by increasing transcription factor STAT1 activity
Atherosclerosis
202
363-371
2009
Homo sapiens
Manually annotated by BRENDA team
Cokakli, M.; Erdal, E.; Nart, D.; Yilmaz, F.; Sagol, O.; Kilic, M.; Karademir, S.; Atabey, N.
Differential expression of Caveolin-1 in hepatocellular carcinoma: correlation with differentiation state, motility and invasion
BMC Cancer
9
65
2009
Homo sapiens
Manually annotated by BRENDA team
Lan, C.C.; Wu, C.S.; Kuo, H.Y.; Huang, S.M.; Chen, G.S.
Hyperglycaemic conditions hamper keratinocyte locomotion via sequential inhibition of distinct pathways: new insights on poor wound closure in patients with diabetes
Br. J. Dermatol.
160
1206-1214
2009
Homo sapiens
Manually annotated by BRENDA team
Kim, D.H.; Kim, J.H.; Kim, E.H.; Na, H.K.; Cha, Y.N.; Chung, J.H.; Surh, Y.J.
15-Deoxy-DELTA12,14-prostaglandin J2 upregulates the expression of heme oxygenase-1 and subsequently matrix metalloproteinase-1 in human breast cancer cells: possible roles of iron and ROS
Carcinogenesis
30
645-654
2009
Homo sapiens
Manually annotated by BRENDA team
Adley, B.P.; Gleason, K.J.; Yang, X.J.; Stack, M.S.
Expression of membrane type 1 matrix metalloproteinase (MMP-14) in epithelial ovarian cancer: high level expression in clear cell carcinoma
Gynecol. Oncol.
112
319-324
2009
Homo sapiens
Manually annotated by BRENDA team
Climent, V.; Marin, F.; Mainar, L.; Roldan, V.; Garcia, A.; Martinez, J.G.; Lip, G.Y.
Influence of electrical cardioversion on inflammation and indexes of structural remodeling, in persistent atrial fibrillation
Int. J. Cardiol.
132
227-232
2009
Homo sapiens
Manually annotated by BRENDA team
Kong, M.Y.; Gaggar, A.; Li, Y.; Winkler, M.; Blalock, J.E.; Clancy, J.P.
Matrix metalloproteinase activity in pediatric acute lung injury
Int. J. Med. Sci.
6
9-17
2009
Homo sapiens (P03956)
Manually annotated by BRENDA team
Bertini, I.; Fragai, M.; Luchinat, C.; Melikian, M.; Mylonas, E.; Sarti, N.; Svergun, D.I.
Interdomain flexibility in full-length matrix metalloproteinase-1 (MMP-1)
J. Biol. Chem.
284
12821-12828
2009
Homo sapiens (P03956)
Manually annotated by BRENDA team
Berry, C.C.; Shelton, J.C.; Lee, D.A.
Cell-generated forces influence the viability, metabolism and mechanical properties of fibroblast-seeded collagen gel constructs
J. Tissue Eng. Regen. Med.
3
43-53
2009
Homo sapiens
Manually annotated by BRENDA team
Packard, B.Z.; Artym, V.V.; Komoriya, A.; Yamada, K.M.
Direct visualization of protease activity on cells migrating in three-dimensions
Matrix Biol.
28
3-10
2009
Homo sapiens
Manually annotated by BRENDA team
Beidler, S.K.; Douillet, C.D.; Berndt, D.F.; Keagy, B.A.; Rich, P.B.; Marston, W.A.
Multiplexed analysis of matrix metalloproteinases in leg ulcer tissue of patients with chronic venous insufficiency before and after compression therapy
Wound Repair Regen.
16
642-648
2009
Homo sapiens
Manually annotated by BRENDA team
Almaani, N.; Liu, L.; Harrison, N.; Tanaka, A.; Lai-Cheong, J.; Mellerio, J.E.; McGrath, J.A.
New glycine substitution mutations in type VII collagen underlying epidermolysis bullosa pruriginosa but the phenotype is not explained by a common polymorphism in the matrix metalloproteinase-1 gene promoter
Acta Derm. Venereol.
89
6-11
2009
Homo sapiens (P03956)
Manually annotated by BRENDA team
Pietruska, M.; Pietruski, J.; Skurska, A.; Bernaczyk, A.; Zak, J.; Zelazowska, B.; Dolinska, E.; Paniczko-Drezek, A.; Wysocka, J.
Assessment of aprotinin influence on periodontal clinical status and matrix metalloproteinases 1, 2 and their tissue inhibitors saliva concentrations in patients with chronic periodontitis
Adv. Med. Sci.
54
239-246
2009
Homo sapiens
Manually annotated by BRENDA team
Genevay, S.; Finckh, A.; Mezin, F.; Tessitore, E.; Guerne, P.A.
Influence of cytokine inhibitors on concentration and activity of MMP-1 and MMP-3 in disc herniation
Arthritis Res. Ther.
11
R169
2009
Homo sapiens
Manually annotated by BRENDA team
Goffin, L.; Seguin-Estevez, Q.; Alvarez, M.; Reith, W.; Chizzolini, C.
Transcriptional regulation of matrix metalloproteinase-1 and collagen 1A2 explains the anti-fibrotic effect exerted by proteasome inhibition in human dermal fibroblasts
Arthritis Res. Ther.
12
R73
2010
Homo sapiens
Manually annotated by BRENDA team
Igata, T.; Jinnin, M.; Makino, T.; Moriya, C.; Muchemwa, F.C.; Ishihara, T.; Ihn, H.
Up-regulated type I collagen expression by the inhibition of Rac1 signaling pathway in human dermal fibroblasts
Biochem. Biophys. Res. Commun.
393
101-105
2010
Homo sapiens
Manually annotated by BRENDA team
Yen, C.Y.; Chen, C.H.; Chang, C.H.; Tseng, H.F.; Liu, S.Y.; Chuang, L.Y.; Wen, C.H.; Chang, H.W.
Matrix metalloproteinases (MMP) 1 and MMP10 but not MMP12 are potential oral cancer markers
Biomarkers
14
244-249
2009
Homo sapiens
Manually annotated by BRENDA team
Liu, X.; Yu, J.; Jiang, L.; Wang, A.; Shi, F.; Ye, H.; Zhou, X.
MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines
Cancer Genomics Proteomics
6
131-139
2009
Homo sapiens
Manually annotated by BRENDA team
Wilkins-Port, C.E.; Ye, Q.; Mazurkiewicz, J.E.; Higgins, P.J.
TGF-beta1 + EGF-initiated invasive potential in transformed human keratinocytes is coupled to a plasmin/MMP-10/MMP-1-dependent collagen remodeling axis: role for PAI-1
Cancer Res.
69
4081-4091
2009
Homo sapiens
Manually annotated by BRENDA team
Friese, R.S.; Rao, F.; Khandrika, S.; Thomas, B.; Ziegler, M.G.; Schmid-Schoenbein, G.W.; OConnor, D.T.
Matrix metalloproteinases: discrete elevations in essential hypertension and hypertensive end-stage renal disease
Clin. Exp. Hypertens.
31
521-533
2009
Homo sapiens
Manually annotated by BRENDA team
Soumetz, F.C.; Pastorino, L.; Ruggiero, C.
Development of a piezoelectric immunosensor for matrix metalloproteinase-1 detection
Conf. Proc. IEEE Eng. Med. Biol. Soc.
2009
2775-2778
2009
Homo sapiens
Manually annotated by BRENDA team
Cao, Z.; Li, C.; Zhu, G.
Inhibitory effects of baicalin on IL-1beta-induced MMP-1/TIMP-1 and its stimulated effect on collagen-I production in human periodontal ligament cells
Eur. J. Pharmacol.
641
1-6
2010
Homo sapiens
Manually annotated by BRENDA team
Lee, Y.; Kim, H.; Kim, S.; Kim, K.H.; Chung, J.H.
Activation of toll-like receptors 2, 3 or 5 induces matrix metalloproteinase-1 and -9 expression with the involvement of MAPKs and NF-kappaB in human epidermal keratinocytes
Exp. Dermatol.
19
e44-e49
2009
Homo sapiens
Manually annotated by BRENDA team
Yoneda, M.; Hirokawa, Y.; Ohashi, A.; Uchida, K.; Kami, D.; Watanabe, M.; Yokoi, T.; Shiraishi, T.; Wakusawa, S.
RhoB enhances migration and MMP1 expression of prostate cancer DU145
Exp. Mol. Pathol.
88
90-95
2010
Homo sapiens
Manually annotated by BRENDA team
Bauer, J.; Huy, C.; Brenmoehl, J.; Obermeier, F.; Bock, J.
Matrix metalloproteinase-1 expression induced by IL-1beta requires acid sphingomyelinase
FEBS Lett.
583
915-920
2009
Homo sapiens
Manually annotated by BRENDA team
Guise, T.A.
Breaking down bone: new insight into site-specific mechanisms of breast cancer osteolysis mediated by metalloproteinases
GENES DEV.
23
2117-2123
2009
Homo sapiens
Manually annotated by BRENDA team
Yang, B.; Ji, C.; Kang, J.; Chen, W.; Bi, Z.; Wan, Y.
Trans-Zeatin inhibits UVB-induced matrix metalloproteinase-1 expression via MAP kinase signaling in human skin fibroblasts
Int. J. Mol. Med.
23
555-560
2009
Homo sapiens
Manually annotated by BRENDA team
Struewing, I.T.; Durham, S.N.; Barnett, C.D.; Mao, C.D.
Enhanced endothelial cell senescence by lithium-induced matrix metalloproteinase-1 expression
J. Biol. Chem.
284
17595-17606
2009
Bos taurus, Homo sapiens
Manually annotated by BRENDA team
Li, Y.; Samuvel, D.; Sundararaj, K.; Lopes-Virella, M.; Huang, Y.
IL-6 and high glucose synergistically upregulate MMP-1 expression by U937 mononuclear phagocytes via ERK1/2 and JNK pathways and c-Jun
J. Cell. Biochem.
110
248-259
2010
Homo sapiens
Manually annotated by BRENDA team
Suganuma, K.; Nakajima, H.; Ohtsuki, M.; Imokawa, G.
Astaxanthin attenuates the UVA-induced up-regulation of matrix-metalloproteinase-1 and skin fibroblast elastase in human dermal fibroblasts
J. Dermatol. Sci.
58
136-142
2010
Homo sapiens
Manually annotated by BRENDA team
Rand, L.; Green, J.A.; Saraiva, L.; Friedland, J.S.; Elkington, P.T.
Matrix metalloproteinase-1 is regulated in tuberculosis by a p38 MAPK-dependent, p-aminosalicylic acid-sensitive signaling cascade
J. Immunol.
182
5865-5872
2009
Homo sapiens
Manually annotated by BRENDA team
Green, J.A.; Elkington, P.T.; Pennington, C.J.; Roncaroli, F.; Dholakia, S.; Moores, R.C.; Bullen, A.; Porter, J.C.; Agranoff, D.; Edwards, D.R.; Friedland, J.S.
Mycobacterium tuberculosis upregulates microglial matrix metalloproteinase-1 and -3 expression and secretion via NF-kappaB- and activator protein-1-dependent monocyte networks
J. Immunol.
184
6492-6503
2010
Homo sapiens
Manually annotated by BRENDA team
Kaner, R.J.; Santiago, F.; Crystal, R.G.
Up-regulation of alveolar macrophage matrix metalloproteinases in HIV1(+) smokers with early emphysema
J. Leukoc. Biol.
86
913-922
2009
Homo sapiens
Manually annotated by BRENDA team
Shim, J.S.; Choi, E.J.; Lee, C.W.; Kim, H.S.; Hwang, J.K.
Matrix metalloproteinase-1 inhibitory activity of Kaempferia pandurata Roxb
J. Med. Food
12
601-607
2009
Homo sapiens
Manually annotated by BRENDA team
Moon, H.J.; Park, K.S.; Ku, M.J.; Lee, M.S.; Jeong, S.H.; Imbs, T.I.; Zvyagintseva, T.N.; Ermakova, S.P.; Lee, Y.H.
Effect of Costaria costata fucoidan on expression of matrix metalloproteinase-1 promoter, mRNA, and protein
J. Nat. Prod.
72
1731-1734
2009
Homo sapiens
Manually annotated by BRENDA team
Zeldich, E.; Koren, R.; Dard, M.; Weinberg, E.; Weinreb, M.; Nemcovsky, C.E.
Enamel matrix derivative induces the expression of tissue inhibitor of matrix metalloproteinase-3 in human gingival fibroblasts via extracellular signal-regulated kinase
J. Periodontal Res.
45
200-206
2010
Homo sapiens
Manually annotated by BRENDA team
Mun, S.H.; Kim, H.S.; Kim, J.W.; Ko, N.Y.; Kim, D.K.; Lee, B.Y.; Kim, B.; Won, H.S.; Shin, H.S.; Han, J.W.; Lee, H.Y.; Kim, Y.M.; Choi, W.S.
Oral administration of curcumin suppresses production of matrix metalloproteinase (MMP)-1 and MMP-3 to ameliorate collagen-induced arthritis: inhibition of the PKCdelta/JNK/c-Jun pathway
J. Pharmacol. Sci.
111
13-21
2009
Homo sapiens, Mus musculus, Mus musculus DBA/1J
Manually annotated by BRENDA team
Cuadrado, E.; Rosell, A.; Penalba, A.; Slevin, M.; Alvarez-Sabin, J.; Ortega-Aznar, A.; Montaner, J.
Vascular MMP-9/TIMP-2 and neuronal MMP-10 up-regulation in human brain after stroke: a combined laser microdissection and protein array study
J. Proteome Res.
8
3191-3197
2009
Homo sapiens
Manually annotated by BRENDA team
Williams, K.E.; Olsen, D.R.
Matrix metalloproteinase-1 cleavage site recognition and binding in full-length human type III collagen
Matrix Biol.
28
373-379
2009
Homo sapiens
Manually annotated by BRENDA team
Wang, Y.D.; Tan, X.Y.; Zhang, K.
Correlation of plasma MMP-1 and TIMP-1 levels and the colonic mucosa expressions in patients with ulcerative colitis
Mediators Inflamm.
2009
275072
2009
Homo sapiens
Manually annotated by BRENDA team
Sun, X.; Wei, L.; Chen, Q.; Terek, R.
CXCR4/SDF1 mediate hypoxia induced chondrosarcoma cell invasion through ERK signaling and increased MMP1 expression
Mol. Cancer
9
17
2010
Homo sapiens
Manually annotated by BRENDA team
Liu, Q.; Loo, W.T.; Sze, S.C.; Tong, Y.
Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFkappaB, cyclinD and MMP-1 transcription
Phytomedicine
16
916-922
2009
Homo sapiens
Manually annotated by BRENDA team
Lian, I.A.; Toft, J.H.; Olsen, G.D.; Langaas, M.; Bjorge, L.; Eide, I.P.; Bordahl, P.E.; Austgulen, R.
Matrix metalloproteinase 1 in pre-eclampsia and fetal growth restriction: reduced gene expression in decidual tissue and protein expression in extravillous trophoblasts
Placenta
31
516-520
2010
Homo sapiens
Manually annotated by BRENDA team
Rowe, R.G.; Keena, D.; Sabeh, F.; Willis, A.L.; Weiss, S.J.
Pulmonary fibroblasts mobilize the membrane-tethered matrix metalloprotease, MT1-MMP, to destructively remodel and invade interstitial type I collagen barriers
Am. J. Physiol. Lung Cell Mol. Physiol.
301
L683-L692
2011
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Cho, J.W.; Cho, S.Y.; Lee, S.R.; Lee, K.S.
Onion extract and quercetin induce matrix metalloproteinase-1 in vitro and in vivo
Int. J. Mol. Med.
25
347-352
2010
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Gioia, M.; Fasciglione, G.F.; Monaco, S.; Iundusi, R.; Sbardella, D.; Marini, S.; Tarantino, U.; Coletta, M.
pH dependence of the enzymatic processing of collagen I by MMP-1 (fibroblast collagenase), MMP-2 (gelatinase A), and MMP-14 ectodomain
J. Biol. Inorg. Chem.
15
1219-1232
2010
Homo sapiens
Manually annotated by BRENDA team
Xia, W.; Hammerberg, C.; Li, Y.; He, T.; Quan, T.; Voorhees, J.J.; Fisher, G.J.
Expression of catalytically active matrix metalloproteinase-1 in dermal fibroblasts induces collagen fragmentation and functional alterations that resemble aged human skin
Aging Cell
12
661-671
2013
Homo sapiens (P03956)
Manually annotated by BRENDA team
Kim, H.H.; Kim, D.H.; Oh, M.H.; Park, K.J.; Heo, J.H.; Lee, M.W.
Inhibition of matrix metalloproteinase-1 and type-I procollagen expression by phenolic compounds isolated from the leaves of Quercus mongolica in ultraviolet-irradiated human fibroblast cells
Arch. Pharm. Res.
38
11-17
2015
Homo sapiens (P03956)
Manually annotated by BRENDA team
Nguyen, T.T.; Moon, Y.H.; Ryu, Y.B.; Kim, Y.M.; Nam, S.H.; Kim, M.S.; Kimura, A.; Kim, D.
The influence of flavonoid compounds on the in vitro inhibition study of a human fibroblast collagenase catalytic domain expressed in E. coli
Enzyme Microb. Technol.
52
26-31
2013
Homo sapiens (P03956), Homo sapiens
Manually annotated by BRENDA team
Lu, W.; Zhu, J.; Zou, S.; Li, X.; Huang, J.
The efficient expression of human fibroblast collagenase in Escherichia coli and the discovery of flavonoid inhibitors
J. Enzyme Inhib. Med. Chem.
28
741-746
2013
Homo sapiens (P03956), Homo sapiens
Manually annotated by BRENDA team
Karabencheva-Christova, T.G.; Christov, C.Z.; Fields, G.B.
Collagenolytic matrix metalloproteinase structure-function relationships insights from molecular dynamics studies
Adv. Protein Chem. Struct. Biol.
109
1-24
2017
Homo sapiens (P03956)
Manually annotated by BRENDA team
Stawikowski, M.J.; Stawikowska, R.; Fields, G.B.
Collagenolytic matrix metalloproteinase activities toward peptomeric triple-helical substrates
Biochemistry
54
3110-3121
2015
Homo sapiens (P03956)
Manually annotated by BRENDA team
Nabai, L.; Kilani, R.T.; Aminuddin, F.; Li, Y.; Ghahary, A.
Methotrexate modulates the expression of MMP-1 and type 1 collagen in dermal fibroblast
Mol. Cell. Biochem.
409
213-224
2015
Homo sapiens (P03956)
Manually annotated by BRENDA team
Chen, B.; Li, R.; Yan, N.; Chen, G.; Qian, W.; Jiang, H.L.; Ji, C.; Bi, Z.G.
Astragaloside IV controls collagen reduction in photoaging skin by improving transforming growth factor-beta/Smad signaling suppression and inhibiting matrix metalloproteinase-1
Mol. Med. Rep.
11
3344-3348
2015
Homo sapiens (P03956)
Manually annotated by BRENDA team
Solomonov, I.; Zehorai, E.; Talmi-Frank, D.; Wolf, S.G.; Shainskaya, A.; Zhuravlev, A.; Kartvelishvily, E.; Visse, R.; Levin, Y.; Kampf, N.; Jaitin, D.A.; David, E.; Amit, I.; Nagase, H.; Sagi, I.
Distinct biological events generated by ECM proteolysis by two homologous collagenases
Proc. Natl. Acad. Sci. USA
113
10884-10889
2016
Rattus norvegicus (B5DFD5), Homo sapiens (P03956)
Manually annotated by BRENDA team