Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.4.21.75 - Furin and Organism(s) Mus musculus

for references in articles please use BRENDA:EC3.4.21.75
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.4 Acting on peptide bonds (peptidases)
             3.4.21 Serine endopeptidases
                3.4.21.75 Furin
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Mus musculus
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Mus musculus
The enzyme appears in selected viruses and cellular organisms
Synonyms
furin, sheddase, prohormone convertase, furin a, furin protease, proconvertase, subtilisin-like proprotein convertase, furin-like protease, furin convertase, kpc-1, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Dibasic processing enzyme
-
-
-
-
PACE
-
-
-
-
Paired basic amino acid cleaving enzyme
-
-
-
-
Paired basic amino acid converting enzyme
-
-
-
-
Paired basic amino acid residue cleaving enzyme
-
-
-
-
PC1
-
-
-
-
PCSK3
-
-
prohormone convertase
-
-
-
-
Proprotein convertase
proprotein convertase subtilisin/kexin type 3
-
-
Serine proteinase PACE
-
-
-
-
sheddase
-
-
SPC3
-
-
-
-
subtilisin-like protein convertase
-
-
Trans golgi network protease furin
-
-
-
-
additional information
-
furin belongs to the subtilisin/Kex2p-like proprotein convertases
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis of peptide bond
-
-
-
-
CAS REGISTRY NUMBER
COMMENTARY hide
141760-45-4
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
Acetyl-Arg-Ser-Lys-Arg-4-methylcoumarin 7-amide + H2O
?
show the reaction diagram
-
-
-
-
?
acetyl-RVRR-4-methylcoumarin 7-amide + H2O
acetyl-RVRR + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
acetyl-RVRR-aminoluciferin + H2O
acetyl-RVRR + D-aminoluciferin
show the reaction diagram
-
the substrate consists of D-aminoluciferin coupled to the C-terminus of furin recognition peptide sequence, furin cleaves at the C-terminal to the last arginine residue. In the presence of furin, the probes are hydrolyzed to remove the peptide caging group and generate free D-aminoluciferin which subsequently produces light emission in the presence of firefly luciferase
-
-
?
acetyl-RYKR-4-methylcoumarin 7-amide + H2O
acetyl-RYKR + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
acetyl-RYKR-aminoluciferin + H2O
acetyl-RYKR + D-aminoluciferin
show the reaction diagram
-
the substrate consists of D-aminoluciferin coupled to the C-terminus of furin recognition peptide sequence, furin cleaves at the C-terminal to the last arginine residue. In the presence of furin, the probes are hydrolyzed to remove the peptide caging group and generate free D-aminoluciferin which subsequently produces light emission in the presence of firefly luciferase
-
-
?
Boc-RVRR-7-amido-4-methylcoumarin + H2O
Boc-RVRR + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Carboxybenzyl-Arg-Ser-Lys-Arg-4-methylcoumarin 7-amide + H2O
?
show the reaction diagram
-
-
-
-
?
epithelial Na+ channel + H2O
?
show the reaction diagram
-
furin-dependent cleavage of the ectodomain at two sites in the alpha subunit and at a single site within the gamma subunit. Cleavage of the gamma subunit by furin and prostasin is required to release an inhibitory domain
-
-
?
full-length (pro)renin receptor + H2O
soluble (pro)renin receptor + 10 kDa fragment of (pro)renin receptor
show the reaction diagram
hemagglutinin high pathogenic avian influenza virus subtype H5 + H2O
?
show the reaction diagram
-
hemagglutinin loop of high pathogenic avian influenza virus subtype H5 binds much more tightly into the catalytic site of furin than the hemagglutinin low pathogenic avian influenza virus subtype H3 and hemagglutinin low pathogenic avian influenza virus subtype H5 systems. The -RRRKK- insertion in the hemagglutinin high pathogenic avian influenza virus subtype H5 in particular two arginines at S4 and S6 positions helps directly to hold the hemagglutinin’s cleavage loop in place by forming many strong hydrogen bonds between residues of hemagglutinin and furin
-
-
?
hemagglutinin low pathogenic avian influenza virus subtype H3 + H2O
?
show the reaction diagram
-
-
-
-
?
hemagglutinin low pathogenic avian influenza virus subtype H5 + H2O
?
show the reaction diagram
-
-
-
-
?
high pathogenic H5N1 hemagglutinin + H2O
?
show the reaction diagram
-
furin can only cleave the high pathogenic hemagglutinin. It generates most of its selectivity through interactions with subsites P1, P4, and P6, with interactions at P2 being less important and little preference at P3, P5, P7, and P8. The S1, S4, and S6 pockets are specifically designed to accommodate arginine, with lysine substitution fitting less well in different degrees
-
-
?
HIV-1 Tat protein + H2O
?
show the reaction diagram
lethal factor inhibitor 2 + H2O
?
show the reaction diagram
-
-
-
-
?
membrane-bound collagen XXIII + H2O
shed collagen XXIII
show the reaction diagram
-
furin is the major protease to process collagen XXIII. Processing occurs after the downstream recognition motif 94KIRTVR99, releasing the ectodomain
-
-
?
mouse pro-growth hormone-releasing hormone + H2O
?
show the reaction diagram
nodal + H2O
?
show the reaction diagram
-
cripto interacts with the nodal pro segment and mature domain and presents uncleaved precursor to extracellular furin that is recruited through its P-domain
-
-
?
parathyroid hormone-related peptide + H2O
?
show the reaction diagram
-
-
-
-
?
pGlu-Arg-Thr-Lys-Arg-4-methylcoumarin 7-amide + H2O
pGlu-Arg-Thr-Lys-Arg + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
pGlu-Arg-Thr-Lys-Arg-4-methylcoumaryl-7-amide + H2O
?
show the reaction diagram
-
-
-
-
?
pro-hepcidin + H2O
active mature hepcidin
show the reaction diagram
-
furin processes the iron-regulatory peptide hepcidin to the bioactive mature hepcidin-25 form
-
-
?
pro-Notch1 + H2O
Notch1 + propeptide
show the reaction diagram
-
-
-
?
proform tissue growth factor 1beta + H2O
tissue growth factor beta1 + propeptide
show the reaction diagram
-
-
-
?
proprotein convertase PCSK9 + H2O
?
show the reaction diagram
-
-
PCSK9 is inactivated by furin by cleavage at residue R218. PCSK9 mutants R218S and F216L show a 50% reduction in the levels of the inactivated form, PCSK9 is inactivated by furin by cleavage at residue R218
-
?
Prorenin + H2O
?
show the reaction diagram
-
-
-
-
?
Protein precursor + H2O
?
show the reaction diagram
Pseudomonas aeruginosa exotoxin A + H2O
?
show the reaction diagram
-
-
-
?
Pseudomonas exotoxin A + H2O
?
show the reaction diagram
-
-
-
-
?
Pyr-Arg-Thr-Lys-Arg-4-methylcoumarin 7-amide + H2O
?
show the reaction diagram
-
-
-
-
?
Pyr-Arg-Thr-Lys-Arg-4-methylcoumarin 7-amide + H2O
Pyr-Arg-Thr-Lys-Arg + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
RPTPkappa + H2O
?
show the reaction diagram
-
-
-
-
?
Shiga toxin + H2O
?
show the reaction diagram
-
not only the sequence known to be a minimal furin-recognition site, but also the structure around this site are important for furin processing of Shiga toxin and for rapid intoxication
-
-
?
Synthetic peptides + H2O
?
show the reaction diagram
-
based on the N-terminal sequence of human proalbumin
-
-
?
TACE/ADAM17 + H2O
?
show the reaction diagram
-
-
-
-
?
tert-butoxycarbonyl-Arg-Val-Arg-Arg-4-methylcoumarin 7-amide + H2O
tert-butoxycarbonyl-Arg-Val-Arg-Arg + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
TGFbeta1 + H2O
?
show the reaction diagram
-
-
-
-
?
type 1 IGF receptor pro-form + H2O
mature type I IDF receptor + ?
show the reaction diagram
-
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
full-length (pro)renin receptor + H2O
soluble (pro)renin receptor + 10 kDa fragment of (pro)renin receptor
show the reaction diagram
-
i.e. (P)RR, cleavage site at Arg275-X-X-Arg278-/-, no activity with (P)RR mutant R275A/KT/R278A. The soluble form of the (pro)renin receptor generated through intracellular cleavage by furin is secreted in plasma
i.e. s(P)RR, a 28 kDa protein
-
?
HIV-1 Tat protein + H2O
?
show the reaction diagram
-
furin processing is a likely mechanism for inactivating extracellular HIV-1 Tat protein. Furin cleavage reduces the transactivation activity of tat without preventing Tat uptake and entry into the nucleus
-
-
?
mouse pro-growth hormone-releasing hormone + H2O
?
show the reaction diagram
-
production of mature growth hormone-releasing hormone from pro-growth hormone-releasing hormone is a stepwise process mediated predomionantly by furin at the N-terminal cleavage site followed by PC1/3 at the C terminus
-
-
?
pro-Notch1 + H2O
Notch1 + propeptide
show the reaction diagram
-
-
-
?
proform tissue growth factor 1beta + H2O
tissue growth factor beta1 + propeptide
show the reaction diagram
-
-
-
?
proprotein convertase PCSK9 + H2O
?
show the reaction diagram
-
-
PCSK9 is inactivated by furin by cleavage at residue R218. PCSK9 mutants R218S and F216L show a 50% reduction in the levels of the inactivated form
-
?
type 1 IGF receptor pro-form + H2O
mature type I IDF receptor + ?
show the reaction diagram
-
-
-
-
?
additional information
?
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
CoCl2
-
partially restores activity after EDTA treatment
MnCl2
-
partially restores activity after EDTA treatment
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(D-Arg)6 amide
-
IC50: 0.3 mM
(D-Arg)9 amide
-
IC50: 0.01 mM
2-Bromopalmitate
-
inhibits nodal processing by Flag-tagged furin
Ac-D-Trp-D-Arg-D-Arg-D-Arg-D-Arg-D-Arg-NH2
-
-
Ac-D-Trp-D-Arg-D-Arg-D-Arg-D-Arg-D-Leu-NH2
-
-
Ac-D-Trp-D-Arg-D-Arg-D-Arg-D-Ile-D-Arg-NH2
-
-
Ac-D-Trp-D-Arg-D-Arg-D-Arg-D-Ile-D-Leu-NH2
-
-
Ac-HHKRRR-NH2
-
-
Ac-HRKRRR-NH2
-
-
Ac-KHKRRR-NH2
-
-
Ac-KRKRRR-NH2
-
-
Ac-LLRVKR
-
-
Ac-LLRVKR-NH2
-
-
Ac-MHKRRR-NH2
-
-
Ac-MRKRRR-NH2
-
-
Ac-RHKRRR-NH2
-
-
Ac-RRKRRR-NH2
-
-
acetyl-Val-Arg-4-amidinobenzylamide
-
-
AEBSF
-
partially inhibits ectodomain shedding by 45%
alpha1-antitrypsin
-
alpha1-antitrypsin Portland variant
-
i.e. alpha1-PDX, inhibits furin and the generation of soluble (pro)renin receptor
-
antipain
antithrombin
-
not
-
antithrombin/heparin
-
not: antithrombin alone
-
Arg-oxime
-
-
biotin-(8-(amino)-3,6-dioxa-octanoyl)2-Arg-Pro-Arg-4-amidinobenzylamide
-
-
biotin-(8-(amino)-3,6-dioxa-octanoyl)2-Arg-Thr-Arg-4-amidinobenzylamide
-
-
biotin-(8-(amino)-3,6-dioxa-octanoyl)3-Arg-Pro-Arg-4-amidinobenzylamide
-
-
biotin-8-(amino)-3,6-dioxa-octanoyl-Arg-Pro-Arg-4-amidinobenzylamide
-
-
biotin-8-(amino)-3,6-dioxa-octanoyl-Val-Arg-4-amidinobenzylamide
-
-
brefeldin A
-
inhibits the secretion of furin
Ca2+
-
100 mM; activation below
CDTA
-
-
chymostatin
-
minimal inhibition of ectodomain shedding
D-Tyr-Ala-Lys-Arg-CH2Cl
-
-
decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone
-
efficiently inhibits ectodomain shedding by 95%
decanoyl-Arg-Val-Lys-Arg-chloromethylketone
decanoyl-RVKR-chloromethyl ketone
-
-
diisopropyl fluorophosphate
DYYHFWHRGVKRSLSPHRPRHSR
-
i.e. profurin 39-62
E-64
-
minimal inhibition of ectodomain shedding
EGTA
-
-
hepta-L-arginine
-
-
hexa-D-arginine
hexa-L-arginine
-
-
lethal factor inhibitor 2
-
IC50: 0.002 mM
-
leupeptin
LLRVKR
-
-
LLRVKR-NH2
-
-
Lys-Arg chloromethyl ketone
-
-
NaCl
-
600 mM
NEM
-
moderately
nona-L-arginine
-
most potent inhibitor
octa-L-arginine
-
-
p-chloromercuribenzenesulfonic acid
-
-
p-hydroxymercuribenzoate
-
-
penta-L-arginine
-
-
phenylacetyl-Arg-Pro-Arg-4-amidinobenzylamide
-
-
phenylacetyl-Arg-Thr-Arg-4-amidinobenzylamide
-
-
phenylmethanesulfonyl fluoride
Pro-Gly-Lys-Arg-CH2Cl
-
-
pro-hepcidin
-
hydrolytic activity of membrane furin against the fluorescent substrate Boc-RVRR-7-amino-4-methyl-coumarin is reduced by approximately 50% in presence of 2 micromol pro-hepcidin and completely abolished in presence of 5 micromol pro-hepcidin
-
siRNA
-
furin mRNA knockdown, pro-hepcidin activity is diminished
-
tetra-L-arginine
-
-
tosyl-Lys chloromethyl ketone
-
-
TPRARRRKKRT
-
-
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
additional information
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.01
Boc-RVRR-7-amido-4-methyl-coumarin
-
-
additional information
additional information
-
-
-
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0024
Ac-D-Trp-D-Arg-D-Arg-D-Arg-D-Arg-D-Arg-NH2
-
pH 7.0, 37°C
0.0053
Ac-D-Trp-D-Arg-D-Arg-D-Arg-D-Arg-D-Leu-NH2
-
pH 7.0, 37°C
0.007
Ac-D-Trp-D-Arg-D-Arg-D-Arg-D-Ile-D-Arg-NH2
-
pH 7.0, 37°C
0.0227
Ac-D-Trp-D-Arg-D-Arg-D-Arg-D-Ile-D-Leu-NH2
-
pH 7.0, 37°C
0.0103
Ac-HHKRRR-NH2
-
pH 7.0, 37°C
0.0021
Ac-HRKRRR-NH2
-
pH 7.0, 37°C
0.0052
Ac-KHKRRR-NH2
-
pH 7.0, 37°C
0.0016
Ac-KRKRRR-NH2
-
pH 7.0, 37°C
0.0132
Ac-MHKRRR-NH2
-
pH 7.0, 37°C
0.0023
Ac-MRKRRR-NH2
-
pH 7.0, 37°C
0.0034
Ac-RHKRRR-NH2
-
pH 7.0, 37°C
0.0013
Ac-RRKRRR-NH2
-
pH 7.0, 37°C
0.00239
acetyl-Val-Arg-4-amidinobenzylamide
-
pH 7.0, 37°C
0.0035
AcLLRVKR
-
pH 7.0, 37°C
0.0000574
biotin-(8-(amino)-3,6-dioxa-octanoyl)2-Arg-Pro-Arg-4-amidinobenzylamide
-
pH 7.0, 37°C
0.000009
biotin-(8-(amino)-3,6-dioxa-octanoyl)2-Arg-Thr-Arg-4-amidinobenzylamide
-
pH 7.0, 37°C
0.0000151
biotin-(8-(amino)-3,6-dioxa-octanoyl)3-Arg-Pro-Arg-4-amidinobenzylamide
-
pH 7.0, 37°C
0.0000383
biotin-8-(amino)-3,6-dioxa-octanoyl-Arg-Pro-Arg-4-amidinobenzylamide
-
pH 7.0, 37°C
0.0042
biotin-8-(amino)-3,6-dioxa-octanoyl-Val-Arg-4-amidinobenzylamide
-
pH 7.0, 37°C
0.000068
hepta-L-arginine
-
pH 7.0, 37°C
0.000106
hexa-D-arginine
-
pH 7.0, 37°C
0.00042
LLRVKR
-
pH 7.0, 37°C
0.0008 - 0.0034
LLRVKR-NH2
0.00004 - 0.000042
nona-L-arginine
0.000061
octa-L-arginine
-
pH 7.0, 37°C
0.00099
penta-L-arginine
-
pH 7.0, 37°C
0.0000367
phenylacetyl-Arg-Pro-Arg-4-amidinobenzylamide
-
pH 7.0, 37°C
0.000006
phenylacetyl-Arg-Thr-Arg-4-amidinobenzylamide
-
pH 7.0, 37°C
0.000114 - 0.0064
tetra-L-arginine
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.3
(D-Arg)6 amide
Mus musculus
-
IC50: 0.3 mM
0.01
(D-Arg)9 amide
Mus musculus
-
IC50: 0.01 mM
0.002
lethal factor inhibitor 2
Mus musculus
-
IC50: 0.002 mM
-
0.002
pro-hepcidin
Mus musculus
-
-
-
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
0.000025
-
with Boc-RVRR-7-amido-4-methyl-coumarin as substrate
0.35
-
recombinant furin
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5.5 - 6
-
proalbumin
5.5 - 6.5
-
-
6
-
acetyl-Arg-Ser-Lys-Arg-4-methylcoumaryl 7-amide
6.5 - 7.5
-
tert-butoxycarbonyl-Arg-Val-Arg-Arg-4-methylcoumarin 7-amide
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5 - 6.5
-
5: about 35% of activity maximum, 6.5: about 15% of activity maximum, mouse, acetyl-Arg-Ser-Lys-Arg-4-methylcoumarin 7-amide
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
37
-
assay at
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
PCSK3 is primarily expressed in the duodenum and the jejunum. PCSK3 is detectable in 75% of glucose-dependent insulinotropic polypeptide positive cells and 60% of substance P positive cells
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
human, mainly, the enzyme can translocate between the cell surface and the trans-Golgi network
-
Manually annotated by BRENDA team
additional information
-
localization of furin predominantly outside lipid rafts
-
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
evolution
-
molecular evolution of enzyme function in the proprotein convertase family, overview
malfunction
metabolism
furin-dependent transactivators in different mouse CD4+ T-cell subsets, overview
physiological function
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
FURIN_MOUSE
793
2
86772
Swiss-Prot
Secretory Pathway (Reliability: 1)
PDB
SCOP
CATH
UNIPROT
ORGANISM
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
59000
-
gel filtration
61000
-
Western blotting with anti-furin antiserum MON148
96000
-
mouse, gel filtration
additional information
-
3 different forms, MW 81000, 83000 and 96000, may be produced by differential processing of a furin molecule and mature furin may be autocatalytically produced
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
?
-
x * 80000-85000, mouse, SDS-PAGE
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
crystal structure of furin with bound decanoyl-Arg-Val-Lys-Arg-chloromethylketone inhibitor
-
triclinic crystals, space group P1, unit cell dimensions a = 93.3 A, b = 135.4 A, c = 137.8 A
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
R335Q
-
cleavage mutant, soluble hemojuvelin is reduced
additional information
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5
-
30°C, 2 h, 50 mM MES buffer, 10% loss of activity
29700
7
-
30°C, 2 h, 50 mM MES buffer, about 90% loss of activity
29700
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
Unstable at low protein concentration
-
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
-10°C, 10% glycerol, 90% loss of activity after 1 week
-
-20°C, 5 mg/ml bovine serum albumin, less than 5% loss of activity after 2 months
-
-80°C, 10% glycerol, no detectable loss of activity over 6 months
-
-80°C, 5-20% loss of activity after 2 weeks
-
4°C, 5 mg/ml bovine serum albumin, 0.02% NaN3, less than 5% loss of activity after 2 months
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
partial
-
purification protocol combining the heterologous expression of furin from CHO cells with an affinity step that efficiently extracts only active furin from the conditioned medium by using furin-specific inhibitor moieties as bait. The best affinity tag used, biotin-(8-(amino)-3,6-dioxa-octanoyl)2-Arg-Pro-Arg-4-4-amidinobenzylamide coupled to streptavidin-Sepharose beads, is used in a three-step chromatographic protocol and routinely results in a high yield of a homogeneous furin preparation with a specific activity of about 60 units/mg protein
-
recombinant furin
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
293T cells transfected with furin
-
cDNA cloning
-
expression in COS-1 cell
-
furin cDNA ligated into a modified pCEP-Pu vector carrying a 5'-SPARC/BM40 signal peptide and a 3'-FLAG tag. HEK 293-EBNA cells cotransfected with full-length alpha1(XXIII) or furin cDNA and phosphatidylinositol-linked placental alkaline phosphatase or human transferrin receptor cDNA, respectively
-
gene FURIN, quantitative RT-PCR expression analysis
soluble ectodomain of furin is expressed in dihydrofolate reductase-amplified CHO cells
-
stably transfected LoVo cells expressing either furin (LoVo/fur) or the vector alone (LoVo/neo)
-
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
furin expression is upregulated by the Th1 hallmark cytokine interleukin-12. T-cell activation via T-cell receptor induces FURIN expression
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
analysis
-
bioluminogenic probes can specifically image furin activity in xenografted breast cancer tumors in mice
medicine
additional information
-
Sox-9 regulates furin during chondrogenesis
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Hatsuzawa, K.; Murakami, K.; Nakayama, K.
Molecular and enzymatic properties of furin, a Kex2-like endoprotease involved in precursor cleavage at Arg-X-Lys/Arg-Arg sites
J. Biochem.
111
296-301
1992
Mus musculus
Manually annotated by BRENDA team
Nakayama, K.
Purification of recombinant soluble forms of furin produced in Chinese hamster ovary cells
Methods Enzymol.
244
167-175
1994
Mus musculus
Manually annotated by BRENDA team
Brennan, S.O.; Nakayama, K.
Cleavage of proalbumin peptides by furin reveals unexpected restrictions at the P2 and P1 sites
FEBS Lett.
347
80-84
1994
Mus musculus
Manually annotated by BRENDA team
Hatsuzawa, K.; Nagahama, M.; Takahashi, S.; Takada, K.; Murakami, K.; Nakayama, K.
Purification and characterization of furin, a Kex2-like processing endoprotease, produced in Chinese hamster ovary cells
J. Biol. Chem.
267
16094-16099
1992
Mus musculus
Manually annotated by BRENDA team
Oda, K.; Misumi, Y.; Ikehara, Y.; Brennan, S.O.; Hatsuzawa, K.; Nakayama, K.
Proteolytic cleavages of proalbumin and complement Pro-C3 in vitro by a truncated soluble form of furin, a mammalian homologue of the yeast Kex2 protease
Biochem. Biophys. Res. Commun.
189
1353-1361
1992
Mus musculus
Manually annotated by BRENDA team
Rehemtulla, A.; Kaufman, R.J.
Preferred sequence requirements for cleavage of pro-von Willebrand factor by propeptide-processing enzymes
Blood
79
2349-2355
1992
Homo sapiens, Mammalia, Mus musculus
Manually annotated by BRENDA team
Brennan, S.O.; Nakayama, K.
Furin has the proalbumin substrate specificity and serpin inhibitory properties of an in situ hepatic convertase
FEBS Lett.
338
147-151
1994
Mus musculus
Manually annotated by BRENDA team
Jean, F.; Basak, A.; Rondeau, N.; Benjannet, S.; Hendy, G.N.; Seidah, N.G.
Enzymic characterization of murine and human prohormone convertase-1 (mPC1 and hPC1) expressed in mammalian GH4C1 cells
Biochem. J.
292
891-900
1993
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Zhou, Y.; Lindberg, I.
Purification and characterization of the prohormone convertase PC1(PC3)
J. Biol. Chem.
268
5615-5623
1993
Mus musculus
Manually annotated by BRENDA team
Sarac, M.S.; Cameron, A.; Lindberg, I.
The furin inhibitor hexa-D-arginine blocks the activation of Pseudomonas aeruginosa exotoxin A in vivo
Infect. Immun.
70
7136-7139
2002
Mus musculus
Manually annotated by BRENDA team
Cameron, A.; Appel, J.; Houghten, R.A.; Lindberg, I.
Polyarginines are potent furin inhibitors
J. Biol. Chem.
275
36741-36749
2000
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Bowler, R.P.; Nicks, M.; Olsen, D.A.; Thogersen, I.B.; Valnickova, Z.; Hojrup, P.; Franzusoff, A.; Enghild, J.J.; Crapo, J.D.
Furin proteolytically processes the heparin-binding region of extracellular superoxide dismutase
J. Biol. Chem.
277
16505-16511
2002
Homo sapiens, Mus musculus, Rattus norvegicus
Manually annotated by BRENDA team
Henrich, S.; Cameron, A.; Bourenkov, G.P.; Kiefersauer, R.; Huber, R.; Lindberg, I.; Bode, W.; Than, M.E.
The crystal structure of the proprotein processing proteinase furin explains its stringent specificity
Nat. Struct. Biol.
10
520-526
2003
Mus musculus
Manually annotated by BRENDA team
Peinado, J.R.; Kacprzak, M.M.; Leppla, S.H.; Lindberg, I.
Cross-inhibition between furin and lethal factor inhibitors
Biochem. Biophys. Res. Commun.
321
601-605
2004
Mus musculus
Manually annotated by BRENDA team
Dey, A.; Norrbom, C.; Zhu, X.; Stein, J.; Zhang, C.; Ueda, K.; Steiner, D.F.
Furin and prohormone convertase 1/3 are major convertases in the processing of mouse pro-growth hormone-releasing hormone
Endocrinology
145
1961-1971
2004
Mus musculus
Manually annotated by BRENDA team
Rozan, L.; Krysan, D.J.; Rockwell, N.C.; Fuller, R.S.
Plasticity of extended subsites facilitates divergent substrate recognition by Kex2 and furin
J. Biol. Chem.
279
35656-35663
2004
Mus musculus
Manually annotated by BRENDA team
Anders, L.; Mertins, P.; Lammich, S.; Murgia, M.; Hartmann, D.; Saftig, P.; Haass, C.; Ullrich, A.
Furin-, ADAM 10-, and gamma-secretase-mediated cleavage of a receptor tyrosine phosphatase and regulation of beta-catenins transcriptional activity
Mol. Cell. Biol.
26
3917-3934
2006
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Guimont, P.; Grondin, F.; Dubois, C.M.
Sox9-dependent transcriptional regulation of the proprotein convertase furin
Am. J. Physiol. Cell Physiol.
293
C172-C183
2007
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Guo, X.L.; Li, L.; Wei, D.Q.; Zhu, Y.S.; Chou, K.C.
Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin
Amino Acids
35
375-382
2008
Mus musculus
Manually annotated by BRENDA team
Kurmanova, A.; Llorente, A.; Polesskaya, A.; Garred, O.; Olsnes, S.; Kozlov, J.; Sandvig, K.
Structural requirements for furin-induced cleavage and activation of Shiga toxin
Biochem. Biophys. Res. Commun.
357
144-149
2007
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Decha, P.; Rungrotmongkol, T.; Intharathep, P.; Malaisree, M.; Aruksakunwong, O.; Laohpongspaisan, C.; Parasuk, V.; Sompornpisut, P.; Pianwanit, S.; Kokpol, S.; Hannongbua, S.
Source of high pathogenicity of an Avian influenza virus H5N1: Why H5 is better cleaved by furin
Biophys. J.
95
128-134
2008
Mus musculus
Manually annotated by BRENDA team
Pesu, M.; Muul, L.; Kanno, Y.; OShea, J.J.
Proprotein convertase furin is preferentially expressed in T helper 1 cells and regulates interferon gamma
Blood
108
983-985
2006
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Silvestri, L.; Pagani, A.; Camaschella, C.
Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis
Blood
111
924-931
2008
Mus musculus
Manually annotated by BRENDA team
Shiryaev, S.A.; Remacle, A.G.; Ratnikov, B.I.; Nelson, N.A.; Savinov, A.Y.; Wei, G.; Bottini, M.; Rega, M.F.; Parent, A.; Desjardins, R.; Fugere, M.; Day, R.; Sabet, M.; Pellecchia, M.; Liddington, R.C.; Smith, J.W.; Mustelin, T.; Guiney, D.G.; Lebl, M.; Strongin, A.Y.
Targeting host cell furin proprotein convertases as a therapeutic strategy against bacterial toxins and viral pathogens
J. Biol. Chem.
282
20847-20853
2007
Homo sapiens, Mus musculus, Mus musculus C57BL/6
Manually annotated by BRENDA team
Veit, G.; Zimina, E.P.; Franzke, C.W.; Kutsch, S.; Siebolds, U.; Gordon, M.K.; Bruckner-Tuderman, L.; Koch, M.
Shedding of collagen XXIII is mediated by furin and depends on the plasma membrane microenvironment
J. Biol. Chem.
282
27424-27435
2007
Mus musculus
Manually annotated by BRENDA team
Bruns, J.B.; Carattino, M.D.; Sheng, S.; Maarouf, A.B.; Weisz, O.A.; Pilewski, J.M.; Hughey, R.P.; Kleyman, T.R.
Epithelial Na+ channels are fully activated by furin- and prostasin-dependent release of an inhibitory peptide from the gamma-subunit
J. Biol. Chem.
282
6153-6160
2007
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Blanchet, M.H.; Le Good, J.A.; Mesnard, D.; Oorschot, V.; Baflast, S.; Minchiotti, G.; Klumperman, J.; Constam, D.B.
Cripto recruits Furin and PACE4 and controls Nodal trafficking during proteolytic maturation
EMBO J.
27
2580-2591
2008
Mus musculus
Manually annotated by BRENDA team
Gagliardo, B.; Kubat, N.; Faye, A.; Jaouen, M.; Durel, B.; Deschemin, J.C.; Canonne-Hergaux, F.; Sari, M.A.; Vaulont, S.
Pro-hepcidin is unable to degrade the iron exporter ferroportin unless maturated by a furin-dependent process
J. Hepatol.
50
394-401
2009
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Gagnon, J.; Mayne, J.; Mbikay, M.; Woulfe, J.; Chretien, M.
Expression of PCSK1 (PC1/3), PCSK2 (PC2) and PCSK3 (furin) in mouse small intestine
Regul. Pept.
152
54-60
2009
Mus musculus
Manually annotated by BRENDA team
Dragulescu-Andrasi, A.; Liang, G.; Rao, J.
In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates
Bioconjug. Chem.
20
1660-1666
2009
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Cousin, C.; Bracquart, D.; Contrepas, A.; Corvol, P.; Muller, L.; Nguyen, G.
Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma
Hypertension
53
1077-1082
2009
Homo sapiens, Mus musculus, Rattus norvegicus
Manually annotated by BRENDA team
Tian, S.; Jianhua, W.
Comparative study of the binding pockets of mammalian proprotein convertases and its implications for the design of specific small molecule inhibitors
Int. J. Biol. Sci.
6
89-95
2010
Mus musculus
Manually annotated by BRENDA team
Pavlaki, M.; Zucker, S.; Dufour, A.; Calabrese, N.; Bahou, W.; Cao, J.
Furin functions as a nonproteolytic chaperone for matrix metalloproteinase-28: MMP-28 propeptide sequence requirement
Biochem. Res. Int.
2011
630319
2011
Mus musculus
Manually annotated by BRENDA team
Kuester, M.; Becker, G.L.; Hardes, K.; Lindberg, I.; Steinmetzer, T.; Than, M.E.
Purification of the proprotein convertase furin by affinity chromatography based on PC-specific inhibitors
Biol. Chem.
392
973-981
2011
Mus musculus
Manually annotated by BRENDA team
Essalmani, R.; Susan-Resiga, D.; Chamberland, A.; Abifadel, M.; Creemers, J.W.; Boileau, C.; Seidah, N.G.; Prat, A.
In vivo evidence that furin from hepatocytes inactivates PCSK9
J. Biol. Chem.
286
4257-4263
2011
Mus musculus
Manually annotated by BRENDA team
Hajdin, K.; DAlessandro, V.; Niggli, F.K.; Schaefer, B.W.; Bernasconi, M.
Furin targeted drug delivery for treatment of rhabdomyosarcoma in a mouse model
PLoS ONE
5
e10445
2010
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Zhou, Z.; Zhang, Q.; Lu, X.; Wang, R.; Wang, H.; Wang, Y.L.; Zhu, C.; Lin, H.Y.; Wang, H.
The proprotein convertase furin is required for trophoblast syncytialization
Cell Death Dis.
4
e593-e602
2013
Mus musculus, Homo sapiens (P09958), Homo sapiens
Manually annotated by BRENDA team
Bessonnard, S.; Mesnard, D.; Constam, D.
PC7 and the related proteases Furin and Pace4 regulate E-cadherin function during blastocyst formation
J. Cell Biol.
210
1185-1197
2015
Mus musculus (P23188)
Manually annotated by BRENDA team
Ortutay, Z.; Oksanen, A.; Aittomaeki, S.; Ortutay, C.; Pesu, M.
Proprotein convertase furin regulates T cell receptor-induced transactivation
J. Leukoc. Biol.
98
73-83
2015
Homo sapiens (P09958), Homo sapiens, Mus musculus (P23188), Mus musculus
Manually annotated by BRENDA team