Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.1.4.4 - phospholipase D and Organism(s) Homo sapiens

for references in articles please use BRENDA:EC3.1.4.4
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.1 Acting on ester bonds
             3.1.4 Phosphoric-diester hydrolases
                3.1.4.4 phospholipase D
IUBMB Comments
Also acts on other phosphatidyl esters.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Homo sapiens
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Homo sapiens
The enzyme appears in selected viruses and cellular organisms
Synonyms
pld, phospholipase d, nape-pld, phospholipase d1, dermonecrotic toxin, phospholipase d2, pc-pld, pldalpha, rpld1, spo14, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
AtPLDalpha1
-
-
-
-
AtPLDalpha2
-
-
-
-
AtPLDbeta1
-
-
-
-
AtPLDbeta2
-
-
-
-
AtPLDdelta
-
-
-
-
AtPLDepsilon
-
-
-
-
AtPLDgamma1
-
-
-
-
AtPLDgamma2
-
-
-
-
AtPLDgamma3
-
-
-
-
AtPLDp1
-
-
-
-
AtPLDp2
-
-
-
-
AtPLDzeta
-
-
-
-
choline phosphatase
-
-
-
-
hPLD1
-
-
-
-
hPLD2
-
-
-
-
lecithinase D
-
-
-
-
lipophosphodiesterase II
-
-
-
-
Meiosis-specific sporulation protein SPO14
-
-
-
-
mPLD1
-
-
-
-
mPLD2
-
-
-
-
Phosphatidylcholine-hydrolyzing phospholipase D1
-
-
-
-
Phosphatidylcholine-hydrolyzing phospholipase D2
-
-
-
-
phospholipase D
phospholipase D1
Phospholipase D1 PHOX and PX containing domain
-
-
-
-
phospholipase D1beta
-
phospholipase D2
Phospholipase D2 PHOX and PX containing domain
-
-
-
-
phospholipase D2alpha
-
phospholipid-specific phosphodiesterase
-
-
PLD delta
-
-
-
-
PLD epsilon
-
-
-
-
PLD type 2
-
-
PLD zeta
-
-
-
-
PLD1C
-
-
-
-
PLDalpha
-
-
-
-
PLDalpha3
-
-
-
-
PLDbeta
-
-
-
-
PLDdelta1
-
-
-
-
PLDzeta1
-
-
-
-
PLDzeta2
-
-
-
-
rPLD1
-
-
-
-
rPLD2
-
-
-
-
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
a phosphatidylcholine + H2O = choline + a phosphatidate
show the reaction diagram
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis of phosphoric ester
-
-
-
-
SYSTEMATIC NAME
IUBMB Comments
phosphatidylcholine phosphatidohydrolase
Also acts on other phosphatidyl esters.
CAS REGISTRY NUMBER
COMMENTARY hide
9001-87-0
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
1-O-alkyl-2-lyso-phosphatidylcholine + H2O
choline + 1-O-alkyl-2-lyso-phosphatidate
show the reaction diagram
-
-
-
-
?
dipalmitoylphosphatidylcholine + H2O
choline + dipalmitoylphosphatidate
show the reaction diagram
-
-
-
-
?
N-acyl-phosphatidylethanolamine + H2O
N-acylethanolamine + phosphatidate
show the reaction diagram
-
high specificity for N-acyl-phosphatidylethanolamines without selectivity for long chain or medium chain N-acyl species
-
-
?
N-lauroyl-phosphatidylethanolamine + H2O
phosphatidic acid + N-lauroylethanolamine
show the reaction diagram
-
-
-
-
?
N-palmitoyl-phosphatidylethanolamine + H2O
phosphatidic acid + N-palmitoylethanolamine
show the reaction diagram
-
-
-
-
?
phosphatidyl-doxorubicin + H2O
doxorubicin + phosphatidate
show the reaction diagram
-
-
-
-
?
phosphatidylcholine + butanol
phosphatidylbutanol + choline
show the reaction diagram
-
-
-
-
?
phosphatidylcholine + ethanol
choline + phosphatidyl ethanol
show the reaction diagram
-
PLD also performs transphosphatidylation using ethanol as phosphatidyl acceptor
-
-
?
phosphatidylcholine + ethanol
choline + phosphatidylethanol
show the reaction diagram
phosphatidylcholine + ethanol
phosphatidylethanol + choline
show the reaction diagram
-
-
-
-
?
phosphatidylcholine + ethanolamine
phosphatidylethanolamine + choline
show the reaction diagram
-
-
-
-
?
phosphatidylcholine + H2O
1,2-diacylglycerophosphate + choline
show the reaction diagram
-
-
-
-
?
phosphatidylcholine + H2O
choline + phosphatidate
show the reaction diagram
phosphatidylcholine + H2O
choline + phosphatidic acid
show the reaction diagram
phospholipid + alcohol
phospholipid + alcohol
show the reaction diagram
-
transphosphaditylation
-
-
?
phospholipid + H2O
phosphatidic acid + alcohol
show the reaction diagram
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
phosphatidylcholine + H2O
choline + phosphatidate
show the reaction diagram
phosphatidylcholine + H2O
choline + phosphatidic acid
show the reaction diagram
phospholipid + alcohol
phospholipid + alcohol
show the reaction diagram
-
transphosphaditylation
-
-
?
phospholipid + H2O
phosphatidic acid + alcohol
show the reaction diagram
additional information
?
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Co2+
stimulation of enzyme activity and synthesis of COX-2 protein in time- and dose-dependent manner. Elevated expression of isoforms PLD1 and PLD2 increases hypoxia-induced COX-2 expression and prostaglandin E2 production. PLD1 enhances COX-2 expression by Co2+ via reactive oxygen species, p38 MAK kinase, PKC-delta, and PKA, but not ERK, whereas PLD2 enhances Co2+-induced COX-2 expression via reactive oxygen species and p38 MAP kinase, but not PKC-delta, PKA and ERK
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(1S,2S)-N-[(1S)-1-methyl-2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]-2-phenylcyclopropanecarboxamide
-
(1S,2S)-N-[(1S)-2-[4-(4-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-2-phenylcyclopropanecarboxamide
-
(1S,2S)-N-[(1S)-2-[4-(5-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-2-phenylcyclopropanecarboxamide
-
(1S,2S)-N-[(1S)-2-[4-(5-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-2-phenylcyclopropanecarboxamide
-
(1S,2S)-N-[(1S)-2-[4-(6-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-2-phenylcyclopropanecarboxamide
-
(1S,2S)-N-[(2S)-1-[4-(5-bromo-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]propan-2-yl]-2-phenylcyclopropanecarboxamide
-
-
(1S,2S)-N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]-2-phenylcyclopropanecarboxamide
-
(1S,2S)-N-[2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-2-phenylcyclopropanecarboxamide
-
(1S,2S)-N-[2-[4-(5-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-2-phenylcyclopropanecarboxamide
-
1-(3,4-difluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
1-(3-bromophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
1-(3-chlorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
1-(3-fluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
1-(4-chlorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
1-(4-fluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
1-benzyl-4-carbonoimidoyl-N-(3,4-difluorophenyl)piperidin-4-amine
-
-
1-benzyl-4-carbonoimidoyl-N-(3-chlorophenyl)piperidin-4-amine
-
-
1-benzyl-4-carbonoimidoyl-N-(3-fluorophenyl)piperidin-4-amine
-
-
1-benzyl-4-carbonoimidoyl-N-(4-chlorophenyl)piperidin-4-amine
-
-
1-benzyl-4-carbonoimidoyl-N-(4-fluorophenyl)piperidin-4-amine
-
-
1-benzyl-4-[(3,4-difluorophenyl)amino]piperidine-4-carboxamide
-
-
1-benzyl-4-[(3-bromophenyl)amino]piperidine-4-carboxamide
-
-
1-benzyl-4-[(3-chlorophenyl)amino]piperidine-4-carboxamide
-
-
1-benzyl-4-[(3-fluorophenyl)amino]piperidine-4-carboxamide
-
-
1-benzyl-4-[(4-chlorophenyl)amino]piperidine-4-carboxamide
-
-
1-benzyl-4-[(4-fluorophenyl)amino]piperidine-4-carboxamide
-
-
1-benzyl-N-(4-bromophenyl)-4-carbonoimidoylpiperidin-4-amine
-
-
1-benzylpiperidin-4-one
-
-
1-butanol
3,4-difluoro-N-[(1S)-1-methyl-2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]benzamide
-
3,4-difluoro-N-[(1S)-2-[4-(4-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]benzamide
-
3,4-difluoro-N-[2-[4-(6-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]benzamide
-
3-methyl-N-[(1S)-1-methyl-2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]benzamide
-
4-(4-(2-(3-methoxyphenyl)benzo[b]thiophen-3-yl)phenoxy)-N,N-dimethylethan-1-amine
-
-
4-amino-3-methoxy-N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]benzamide
-
4-chloro-N-[(1S)-2-[4-(4-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]benzamide
-
4-chloro-N-[(1S)-2-[4-(5-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]benzamide
-
4-chloro-N-[(1S)-2-[4-(5-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]benzamide
-
4-chloro-N-[2-[4-(5-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]benzamide
-
4-chloro-N-[2-[4-(6-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]benzamide
-
4-fluoro-N-[(1S)-2-[4-(4-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]benzamide
-
4-fluoro-N-[(1S)-2-[4-(5-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]benzamide
-
4-fluoro-N-[2-[1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]benzamide
-
-
4-fluoro-N-[2-[1-(4-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]benzamide
-
-
4-fluoro-N-[2-[4-(5-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]benzamide
-
5-fluoro-N-[2-[1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-1H-indole-2-carboxamide
-
-
5-fluoro-N-[2-[1-(4-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-1H-indole-2-carboxamide
-
-
6-fluoro-N-[2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]naphthalene-2-carboxamide
-
8-(2-aminoethyl)-1-(3,4-difluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
8-(2-aminoethyl)-1-(3-chlorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
8-(2-aminoethyl)-1-(3-fluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
8-(2-aminoethyl)-1-(4-bromophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
8-(2-aminoethyl)-1-(4-chlorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
8-(2-aminoethyl)-1-(4-fluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
8-benzyl-1-(3,4-difluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
8-benzyl-1-(3-bromophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
8-benzyl-1-(3-chlorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
8-benzyl-1-(3-fluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
8-benzyl-1-(4-chlorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
8-benzyl-1-(4-fluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one
-
-
calphostin C
-
the lower affinity first generation inhibitor does not distinguish between isozymes PLD1 and 2
ceramide
-
inhibits PLD at the catalytic subunit by competing with phosphatidylinositol-4,5-bisphosphate. Ceramide levels are increased coincidentally with reduced PLD activity in senescent cells. Treatment of cells with ceramide results in a dose-dependent decrease in PLD activity and diacylglycerol accumulation
curcumin
-
the lower affinity first generation inhibitor does not distinguish between isozymes PLD1 and 2
desketoraloxifene
-
-
ethanol
forskolin
inhibits the activating effect of thrombin. Translocation to the plasma membrane of PLD1, but not PLD2, is inhibited
halopemide
Munc-18-1
-
2 nM is required for 50% inhibition, inhibits phospholipase D activity by direct interaction in an epidermal growth factor-reversible manner
-
N-(2-(1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)-2-naphthamide
-
an isoform-selective small molecule phospholipase D2 inhibitor
n-butanol
-
-
N-ethylmaleimide
-
-
N-[(1S)-1-methyl-2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]naphthalene-2-carboxamide
-
N-[(1S)-2-[4-(4-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]naphthalene-2-carboxamide
-
N-[(1S)-2-[4-(5-bromo-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-3,4-difluorobenzamide
-
N-[(1S)-2-[4-(5-bromo-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-4-chlorobenzamide
-
N-[(1S)-2-[4-(5-bromo-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]naphthalene-2-carboxamide
-
N-[(1S)-2-[4-(5-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-3,4-difluorobenzamide
-
N-[(1S)-2-[4-(5-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-4-fluorobenzamide
-
N-[(1S)-2-[4-(5-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]naphthalene-2-carboxamide
-
N-[(1S)-2-[4-(6-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]naphthalene-2-carboxamide
-
N-[(2S)-1-[4-(5-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]propan-2-yl]naphthalene-2-carboxamide
-
-
N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]-1,2,3,4-tetrahydronaphthalene-2-carboxamide
-
N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]-1-benzothiophene-2-carboxamide
-
N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]-3-phenylprop-2-ynamide
-
N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]naphthalene-2-carboxamide
N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]quinoline-3-carboxamide
N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]quinoxaline-2-carboxamide
-
N-[2-[1-(3,4-difluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-4-fluorobenzamide
-
-
N-[2-[1-(3,4-difluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-5-fluoro-1H-indole-2-carboxamide
-
-
N-[2-[1-(3,4-difluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]naphthalene-2-carboxamide
-
-
N-[2-[1-(3,4-difluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]quinoline-3-carboxamide
-
-
N-[2-[1-(3-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-4-fluorobenzamide
-
-
N-[2-[1-(3-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-5-fluoro-1H-indole-2-carboxamide
-
-
N-[2-[1-(3-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]naphthalene-2-carboxamide
-
-
N-[2-[1-(3-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]quinoline-3-carboxamide
-
-
N-[2-[1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]naphthalene-2-carboxamide
-
-
N-[2-[1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]quinoline-2-carboxamide
-
-
N-[2-[1-(4-bromophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-4-fluorobenzamide
-
-
N-[2-[1-(4-bromophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-5-fluoro-1H-indole-2-carboxamide
-
-
N-[2-[1-(4-bromophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]naphthalene-2-carboxamide
-
-
N-[2-[1-(4-bromophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]quinoline-3-carboxamide
-
-
N-[2-[1-(4-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-4-fluorobenzamide
-
-
N-[2-[1-(4-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-5-fluoro-1H-indole-2-carboxamide
-
-
N-[2-[1-(4-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]naphthalene-2-carboxamide
-
-
N-[2-[1-(4-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]quinoline-3-carboxamide
-
-
N-[2-[1-(4-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]naphthalene-2-carboxamide
-
-
N-[2-[1-(4-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]quinoline-3-carboxamide
-
-
N-[2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-3,4-dihydronaphthalene-2-carboxamide
-
N-[2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-3-phenylprop-2-ynamide
-
N-[2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]naphthalene-2-carboxamide
-
N-[2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]quinoline-3-carboxamide
-
N-[2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]quinoline-6-carboxamide
-
N-[2-[4-(4-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-4-fluorobenzamide
-
N-[2-[4-(5-bromo-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-4-chlorobenzamide
-
N-[2-[4-(5-bromo-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-4-fluorobenzamide
-
N-[2-[4-(5-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-4-methylbenzamide
-
N-[2-[4-(5-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]naphthalene-2-carboxamide
-
neomycin
oleic acid
-
-
propranolol
-
-
prostaglandin E1
inhibits the activating effect of thrombin; inhibits the activating effect of thrombin. Translocation to the plasma membrane of PLD1 is inhibited but only at high concentration
protein kinase A
inhibits the activating effect of thrombin. Translocation to the plasma membrane of PLD1, but not PLD2, is inhibited
-
resveratrol
-
a phytoalexin with antiinflammatory activity in C5 anaphylatoxin-stimulated primary neutrophils, blocks PLD activity and membrane recruitment
sphinganine
-
does not alter basal PLD2 activity, but inhibits PLD2 activation induced by [D-Ala2,Me Phe4,Glyol5]enkephalin and beta-endorphin, overview
Triton X-100
-
-
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(D-Ala2, methyl-Phe4, Glyol5)enkephalin
-
treatment of cells co-expressing isoform PLD2 and my-opioid receptor MOR1 leads to increase in PLD2 activity and an induction of receptor endocytosis
24R,25(OH)2D3
PLD is activated by 24R,25(OH)2D3 in a surface-dependent manner
4beta-phorbol-12,13-didecanoate
-
i.e. 4betaPDD, a phorbol ester
ADP
-
at 1 mM, 200% of control activity
ADP-ribosylation factor
-
ADP-ribosylation factor 1
-
i.e. Arf1, a small G protein, stimulates PLD hydrolytic activity
-
ADP-ribosylation factor 6
-
i.e. Arf6, a small G protein, stimulates PLD hydrolytic activity
-
ARF GTPases
-
all ARF proteins 1-6 stimulate PLD1 and PLD2 to a similar extent
-
ARF protein
-
ARF family small GTPases, which are composed of six isoforms, ARF1-6 act as PLD activators, they activates PLD1 and PLD2. ARFs are myristoylated at their N-terminal glycine residue and this lipid modification is required to fully activate PLD1 [11,12]. In the ARF-dependent activation of PLD1, phosphatidylinositol 4,5-disphosphate is an essential cofactor. Phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 4,5-disphosphate act as cofactors and bind to the PX domain, which is also responsible for protein-protein interactions. PLD2 directly interacts with the phosphatidylinositol 4-phosphate 5-kinase
-
Arf proteins
-
activate isozyme PLD1 and a truncated form of PLD2
-
Arf1 protein
-
activates PLD2 and PLD1 in vitro
-
Arf4 protein
-
in 293T cells overexpressing EGFR, Arf4 associates with the cytoplasmic region of EGFR and directly regulates PLD2 activation, but not PLD1 activation
-
ATP
-
at 1 mM, 320% of control activity, 1 mM ATP + 0.1 mM GTP, 720% of control activity, effect is abolished by neomycin
beta-endorphin
-
opioid receptor-mediated activation
cAMP
-
at 1 mM, 273% of control activity
Cdc42
-
in addition to interactions with Rac and Rho, PLD1 is regulated by Cdc42
-
Collagen
-
adhesion of myeloid-macrophage cell lines to fibronectin is accompanied by marked stimulation of enzyme activity
CpG oligodeoxynucleotides
-
induce PLD activation, increase PLD activity, PLD-dependent reactive oxygen intermediate production, PLD-dependent phagolysosome maturation, and PLD-dependent intracellular mycobacterial killing in type II alveolar epithelial cells
-
dynamin
-
a large GTPase, can interact with PLD in a GTP dependent manner in vitro
-
EDTA
-
-
fibronectin
-
Fusobacterium nucleatum cell wall extract
-
stimulation
-
GDP
-
at 1 mM, 312% of control activity
Grb2 protein
-
directly interacts with and activates PLD2 through its SH2 domain, which in turn activates ERK1/2, upon EGF stimulation
-
GTP-binding proteins
-
the PLD1 isoform can be activated by GTP-binding proteins, PKC, and tyrosine kinases. Synergistic activation of PLD1 with combinations of ARF and Rho, Rho and PKC, and ARF and PKC. Isozyme PLD2 remains unaffected by these activators
-
GTPases
PLD1 is activated by PKCalpha and GTPases such as RhoA, RacI, Cdc42, and ADP-ribosylation factor, ARF, whereas PLD2 is not
-
GTPgammaS
-
at 0.005 mM, 446% of control activity
guanosine 5'-3-O-(thio)triphosphate
-
GTP analog
histamine
-
evokes a transient increase in intraendothelial Ca2+-concentration and enhancey PLD activity significantly. A significant fraction of PLD1 translocates to the plasma membrane after 5 min of histamine stimulation of HUVECs
ionomycin
linoleic acid
-
linolenic acid
-
lysophosphatidylserine
-
stimulates PLD activity in a concentration-dependent manner and approximately 5fold and 8fold increases in CYP1A2 and CYP2E1 activities, respectively, are shown in the presence of 2 mol% of the lysophosphatidylserine when compared to a 100% phosphatidylcholine matrix. LysoPS also accompanies conformational changes in both CYP1A2 and CYP2E1 when assayed by circular dichroism
my-opioid receptor variant MOR1D
-
activation of isoform PLD2
-
okadaic acid
-
-
phorbol 12-myristate 13-acetate
phorbol ester
-
-
Phorbol esters
activate isozyme PLD1beta
phorbol-12-myristate-13-acetate
-
induces PLD2 activation
phosphatidylinositol
-
-
phosphatidylinositol 3,4,5-trisphosphate
phosphatidylinositol 4,5-bisphosphate
phosphatidylinositol phosphate
-
only in vitro
phosphatidylinositol-3,4,5-trisphosphate
phosphatidylinositol-3,4-diphosphate
-
very effective activator
phosphatidylinositol-3,5-diphosphate
-
effective activator
phosphatidylinositol-3-phosphate
-
effective activator
phosphatidylinositol-4,5-bisphosphate
phosphatidylinositol-4,5-diphosphate
-
very effective activator
phosphatidylserine
-
-
propanolol
-
only hydrolase activity
prostaglandin E1
causes a modest elevation of PLD activity in resting platelets. prostaglandin E1-induced PLD activity is increased by 25% in the presence of Ca2+. Maximal activity at 5 micromol prostaglandin E1
Protein kinase C
-
R(+)-hydroxy(dipropylamino)tetralin hydrobromide
-
i.e. (+)7-OH DPAT, stimulates D3 receptor-mediated PLD activity
Rheb
-
Rheb binds and activates PLD1 in vitro in a GTP-dependent manner. Overexpression of the small GTPase Rheb activates PLD1 in cells by about 2.5fold in the absence of mitogenic stimulation, and the knockdown of Rheb impairs serum stimulation of PLD activation, overview
-
Rho GTPases
-
RhoA protein
-
recombinant D3 dopamine receptor, D2S receptor, signals to activation of phospholipase D through a complex with RhoA in HEK-293 cells
-
serotonin
-
i.e. 5-hydroxytryptamine, 5-HT, activates PLD via the 5-HT 2A receptor, leading to the generation of phosphatidic acid that promotes smooth muscle cell proliferation through activations of mammalian target of rapamycin, mTOR, S6K1 and MAPK but not the Rho or PI3-kinase/Akt signaling pathways, overview. Activation is completely blocked by ketanserin
sphingosine
-
only hydrolase activity
taxotere
-
increase in enzyme activity. Overexpression of enzyme isozymes results in inhibition of taxotere-induced apoptotic cell death, accompanied by up-regulated expression of Bcl-2 and inhibited taxotere-induced activation of procaspase 3
thrombin
-
TNF-alpha
stimulation in a dose-dependent manner
-
[D-Ala2,Me Phe4,Glyol5]enkephalin
-
opioid receptor-mediated activation
additional information
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0029 - 0.0046
N-palmitoyl-phosphatidylethanolamine
0.4
phosphatidylcholine
-
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0026 - 0.03
(1S,2S)-N-[(1S)-1-methyl-2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]-2-phenylcyclopropanecarboxamide
0.0001 - 0.02
(1S,2S)-N-[(1S)-2-[4-(4-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-2-phenylcyclopropanecarboxamide
0.000008 - 0.00115
(1S,2S)-N-[(1S)-2-[4-(5-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-2-phenylcyclopropanecarboxamide
0.0000037 - 0.0064
(1S,2S)-N-[(1S)-2-[4-(5-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-2-phenylcyclopropanecarboxamide
0.000012 - 0.0038
(1S,2S)-N-[(1S)-2-[4-(6-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-2-phenylcyclopropanecarboxamide
0.02
(1S,2S)-N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]-2-phenylcyclopropanecarboxamide
0.000035 - 0.0039
(1S,2S)-N-[2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-2-phenylcyclopropanecarboxamide
0.000002 - 0.00052
(1S,2S)-N-[2-[4-(5-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-2-phenylcyclopropanecarboxamide
0.00015 - 0.0002
3,4-difluoro-N-[(1S)-1-methyl-2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]benzamide
0.000038 - 0.014
3,4-difluoro-N-[(1S)-2-[4-(4-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]benzamide
0.000004 - 0.000014
3,4-difluoro-N-[2-[4-(6-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]benzamide
0.0034 - 0.027
3-methyl-N-[(1S)-1-methyl-2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]benzamide
0.0026 - 0.02
4-(4-(2-(3-methoxyphenyl)benzo[b]thiophen-3-yl)phenoxy)-N,N-dimethylethan-1-amine
0.00055 - 0.0059
4-amino-3-methoxy-N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]benzamide
0.000043 - 0.012
4-chloro-N-[(1S)-2-[4-(4-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]benzamide
0.0000064 - 0.0012
4-chloro-N-[(1S)-2-[4-(5-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]benzamide
0.0000074 - 0.00104
4-chloro-N-[(1S)-2-[4-(5-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]benzamide
0.000018 - 0.000061
4-chloro-N-[2-[4-(5-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]benzamide
0.000007 - 0.000042
4-chloro-N-[2-[4-(6-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]benzamide
0.00013 - 0.01
4-fluoro-N-[(1S)-2-[4-(4-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]benzamide
0.000011 - 0.0031
4-fluoro-N-[(1S)-2-[4-(5-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]benzamide
0.0067 - 0.012
4-fluoro-N-[2-[1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]benzamide
0.00061 - 0.014
4-fluoro-N-[2-[1-(4-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]benzamide
0.000012 - 0.000375
4-fluoro-N-[2-[4-(5-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]benzamide
0.000025 - 0.00021
5-fluoro-N-[2-[1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-1H-indole-2-carboxamide
0.00003 - 0.00029
5-fluoro-N-[2-[1-(4-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-1H-indole-2-carboxamide
0.00012 - 0.00085
6-fluoro-N-[2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]naphthalene-2-carboxamide
0.0026 - 0.0061
desketoraloxifene
0.000025 - 0.00014
N-[(1S)-1-methyl-2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]naphthalene-2-carboxamide
0.000066 - 0.013
N-[(1S)-2-[4-(4-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]naphthalene-2-carboxamide
0.0000035 - 0.000187
N-[(1S)-2-[4-(5-bromo-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-3,4-difluorobenzamide
0.000004 - 0.00089
N-[(1S)-2-[4-(5-bromo-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-4-chlorobenzamide
0.0000055 - 0.0039
N-[(1S)-2-[4-(5-bromo-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]naphthalene-2-carboxamide
0.000003 - 0.00073
N-[(1S)-2-[4-(5-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-3,4-difluorobenzamide
0.00001 - 0.0014
N-[(1S)-2-[4-(5-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]-4-fluorobenzamide
0.000046 - 0.000933
N-[(1S)-2-[4-(5-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]naphthalene-2-carboxamide
0.000002 - 0.00036
N-[(1S)-2-[4-(6-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]-1-methylethyl]naphthalene-2-carboxamide
0.00099 - 0.00425
N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]-1,2,3,4-tetrahydronaphthalene-2-carboxamide
0.00003 - 0.00015
N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]-1-benzothiophene-2-carboxamide
0.0016 - 0.0021
N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]-3-phenylprop-2-ynamide
0.00011 - 0.001
N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]naphthalene-2-carboxamide
0.00009 - 0.0019
N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]quinoline-3-carboxamide
0.02
N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)ethyl]quinoxaline-2-carboxamide
0.000009 - 0.00578
N-[2-[1-(3,4-difluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-4-fluorobenzamide
0.000004 - 0.00039
N-[2-[1-(3,4-difluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-5-fluoro-1H-indole-2-carboxamide
0.000023 - 0.0028
N-[2-[1-(3,4-difluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]naphthalene-2-carboxamide
0.00003 - 0.00206
N-[2-[1-(3,4-difluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]quinoline-3-carboxamide
0.00005 - 0.00347
N-[2-[1-(3-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-4-fluorobenzamide
0.0000034 - 0.00025
N-[2-[1-(3-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-5-fluoro-1H-indole-2-carboxamide
0.000004 - 0.0012
N-[2-[1-(3-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]naphthalene-2-carboxamide
0.000005 - 0.00087
N-[2-[1-(3-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]quinoline-3-carboxamide
0.00002 - 0.0015
N-[2-[1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]naphthalene-2-carboxamide
0.000063 - 0.0025
N-[2-[1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]quinoline-2-carboxamide
0.008 - 0.01
N-[2-[1-(4-bromophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-4-fluorobenzamide
0.0001 - 0.00266
N-[2-[1-(4-bromophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-5-fluoro-1H-indole-2-carboxamide
0.00035 - 0.0059
N-[2-[1-(4-bromophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]naphthalene-2-carboxamide
0.00036 - 0.0027
N-[2-[1-(4-bromophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]quinoline-3-carboxamide
0.00559 - 0.00567
N-[2-[1-(4-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-4-fluorobenzamide
0.00005 - 0.000335
N-[2-[1-(4-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]-5-fluoro-1H-indole-2-carboxamide
0.000655 - 0.00227
N-[2-[1-(4-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]naphthalene-2-carboxamide
0.0002 - 0.0035
N-[2-[1-(4-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]quinoline-3-carboxamide
0.00008 - 0.0017
N-[2-[1-(4-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]naphthalene-2-carboxamide
0.00004 - 0.002
N-[2-[1-(4-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]dec-8-yl]ethyl]quinoline-3-carboxamide
0.00011 - 0.00086
N-[2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-3,4-dihydronaphthalene-2-carboxamide
0.00004 - 0.00073
N-[2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-3-phenylprop-2-ynamide
0.000021 - 0.00038
N-[2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]naphthalene-2-carboxamide
0.000008 - 0.000042
N-[2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]quinoline-3-carboxamide
0.00007 - 0.00074
N-[2-[4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]quinoline-6-carboxamide
0.000021 - 0.0003
N-[2-[4-(4-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-4-fluorobenzamide
0.000003 - 0.000097
N-[2-[4-(5-bromo-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-4-chlorobenzamide
0.000004 - 0.000076
N-[2-[4-(5-bromo-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-4-fluorobenzamide
0.00001 - 0.00024
N-[2-[4-(5-chloro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]-4-methylbenzamide
0.000004 - 0.00014
N-[2-[4-(5-fluoro-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)piperidin-1-yl]ethyl]naphthalene-2-carboxamide
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
7 - 7.5
-
-
7.5
-
assay at
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5.5 - 8
-
Hepes buffer stimulates
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
a glioma cell line
Manually annotated by BRENDA team
-
native or infected with Mycobacterium tuberculosis strain H73Rv, that is localized in endosomes at immature stage, CpG oligodeoxynucleotides treatment promotes maturation to mature phagolysosomes
Manually annotated by BRENDA team
-
cells in suspension exhibit elevated levels of PLD activity compared to adherent cells, and as cells adhere to the substratum, PLD activity is downregulated
Manually annotated by BRENDA team
-
articular
Manually annotated by BRENDA team
-
induction of apoptosis by co-treatment using tumor necrosis factor alpha and cycloheximide induces a robust increase in ceramide levels after 16 h. Enzyme activity is increased after 1 h whereas both enzyme activity and isoform PLD1 protein are strongly decreased after 24 h. Tumor necrosis factor alpha/cycloheximide-induced cell death is significantly lowered in cells overexpressing isoform PLD1 or by exogenous bacterial enzyme
Manually annotated by BRENDA team
-
stromal cell
Manually annotated by BRENDA team
-
dermal
Manually annotated by BRENDA team
-
activation of chemokine receptor CCR5 by MIP-1beta triggers a rapid and substantial enzyme activity. Triggering requires activity of ERK1/2-MAP-kinases and involves both isoforms PLD1 and PLD2
Manually annotated by BRENDA team
-
human gingival epithelial cell. Constitutive expression of PLD1alpha and PLD1beta splice variants and PLD1 protein, whereas PLD2 is expressed at much lower levels than PLD1
Manually annotated by BRENDA team
a colonic cell line, expression of isozymes PLD1 and PLD2, overview
Manually annotated by BRENDA team
-
a myeloid cell line
Manually annotated by BRENDA team
-
a B lymphoid cell line
Manually annotated by BRENDA team
-
a myeloid cell line
Manually annotated by BRENDA team
-
embryonic cell
Manually annotated by BRENDA team
-
adhesion of primary neutrophils and monocyte-derived macrohages to fibronectin is accompanied by marked stimulation of enzyme activity. Similarly, adhesion of myeloid-macrophage cell lines to fibronectin, collagen, or plastic results in significant activation. Stimulation of enzyme is rapid and persists for at least 90 min
Manually annotated by BRENDA team
osteoblast-like cells
Manually annotated by BRENDA team
-
-
Manually annotated by BRENDA team
-
stomach cancer cell
Manually annotated by BRENDA team
-
a glioma cell line
Manually annotated by BRENDA team
-
a glioma cell line
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
expression of GFP-tagged PLD1 in COS-1 cells that are stimulated with mastoparan after cultivation in 20 micromol linoleic or linolenic acid for 4 days demonstrate that PLD1 dramatically alters its cellular distribution and is redistributed from intracellular vesicles to the cell surface
Manually annotated by BRENDA team
localisation in resting cells
Manually annotated by BRENDA team
expression of GFP-tagged PLD1 in COS-1 cells that are stimulated with mastoparan after cultivation in 20 micromol linoleic or linolenic acid for 4 days demonstrate that PLD1 dramatically alters its cellular distribution and is redistributed from intracellular vesicles to the cell surface
Manually annotated by BRENDA team
in resting OVCAR-3 cells PLD1 is predominatly localised to vesicular structure in the cytosol. During integrin-mediated spreading cells, both PLD1 and PLD2 predominantly localize at the plasma membrane and distribution of PLD1 closely resembles that of PLD2
Manually annotated by BRENDA team
-
isozyme PLD1
Manually annotated by BRENDA team
-
PLD1 is associated with late endosomes and also at the plasma membrane. PLD2 is located at the plasma membrane and also associated with clathrin-independent endosomes in HeLa cells
Manually annotated by BRENDA team
-
isozyme PLD1 and isozyme PLD2, the latter is almost exclusively present at the plasma membrane in lipid raft fractions
Manually annotated by BRENDA team
-
regulation of neurite outgrowth by PLD, overview
-
Manually annotated by BRENDA team
-
isozyme PLD1
-
Manually annotated by BRENDA team
-
PLD1 actively translocates to the phagosomal wall after particle ingestion
-
Manually annotated by BRENDA team
-
cytoplasmic vesicles, PLD1
Manually annotated by BRENDA team
additional information
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
evolution
the enzyme belongs to the PLD superfamily, PLD superfamily members share a common core structure, and thereby, a common catalytic mechanism
malfunction
metabolism
physiological function
additional information
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
PLD1_HUMAN
1074
0
124184
Swiss-Prot
other Location (Reliability: 2)
PLD2_HUMAN
933
0
105987
Swiss-Prot
other Location (Reliability: 1)
B7Z905_HUMAN
498
0
57259
TrEMBL
Mitochondrion (Reliability: 5)
I3L3I7_HUMAN
197
0
22215
TrEMBL
Mitochondrion (Reliability: 5)
Q86YQ7_HUMAN
630
0
71610
TrEMBL
other Location (Reliability: 3)
Q59EA4_HUMAN
1059
0
122009
TrEMBL
other Location (Reliability: 4)
I3L381_HUMAN
196
0
21686
TrEMBL
other Location (Reliability: 2)
H7C0L3_HUMAN
234
0
26300
TrEMBL
other Location (Reliability: 3)
Q59FT5_HUMAN
282
0
31567
TrEMBL
other Location (Reliability: 4)
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
105000
PLD2a
105500
PLD1b2
109700
PLD1a2
116000
PLD1b
120000
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
?
-
x * 120000, SDS-PAGE
additional information
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
D389N
-
single nucleotide polymorphism, activity comparable to wild-type
F250S
-
dramatic reduction of enzyme activity
G901D
naturally occuring polymorphism, mutation results in catalytically inactive protein
H380R
-
single nucleotide polymorphism, complete loss of activity
K228R
-
dramatic reduction of enzyme activity
K758R
K898R
L207F
-
single nucleotide polymorphism, complete loss of activity
R128K
-
isoform PLD1, mutation in phox homology domain, reduction in activation of GTPase, unable to increase endocytosis of epidermal growth factor receptor
R145K
-
isoform PLD1, mutation in phox homology domain, reduction in activation of GTPase, unable to increase endocytosis of epidermal growth factor receptor
R165K
-
isoform PLD1, mutation in phox homology domain, reduction in activation of GTPase, unable to increase endocytosis of epidermal growth factor receptor
R197K
-
isoform PLD1, mutation in phox homology domain, reduction in activation of GTPase, unable to increase endocytosis of epidermal growth factor receptor
S152A
-
single nucleotide polymorphism, activity comparable to wild-type
S230F
-
dramatic reduction of enzyme activity
W253C
-
almost complete loss of enzyme activity
additional information
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
-80°C, partially purified, 4 weeks, 8% loss of activity
-
unstable, one cycle of freezeing and thawing causes loss of up to 50% of enzymic activity. Addition of 1% w/v octyl glucoside improves stability
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
partial
-
recombinant PLD2
-
using using Ni2+-affinity and ion-exchange chromatography
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
coexpression of GFP-tagged Rap1 and RFP-tagged PLD1 in COS-1 and HeLa cells showing colocalization is evident on both the plasma membrane and cytoplasmic vesicles
-
coexpression of HA-tagged PLD1 and various epitope-tagged GTPases in HEK-293 cells for interaction analysis, overview
-
DNA and amino acid sequence determination and analysis, sequence comparison and phylogenetic tree, expression analysis and regulation
expressed as a GFP fusion protein in COS-1 cells that are stimulated with mastoparan
expressed in C-6 glioma cells
-
expressed in Escherichia coli
-
expression in Drosophila melanogaster
Q13393, Q14939
expression in HEK-293 cell
-
expression in human embryonic kidney cell
expression in Spodoptera frugiperda
-
expression of EGFP-PLD1 in MIN6N8 cells
-
expression of isozyme PLD2alpha in HEK-293 cells, overexpression of GFP-tagged isozyme in vitro
expression of isozymes PLD1b and PLD2a in HEK-293, HeLa, or undifferentiated PC12 cells
-
expression of isozymes PLD1beta and PLD2alpha in HEK-293 cells, overexpression of GFP-tagged isozymes in vitro
overexpression in dermal fibroblast
-
overexpression in HL-60 cell
overexpression in SNU 484 cell
-
overexpression of wild-type and inactive mutant PLD1 in bovine pulmonary artery smooth muscle cells
-
PLD2 from PC-3 cells, stable expression of active and inactive HA-tagged PLD2 in EL4 lymphoma cells, i.e. C5 cells, devoid of endogeneous PLD1 and PLD2. Proliferation and Erk activation are unchanged in cells transfected with active PLD2, while proliferation rate is decreased in cells expressing inactive PLD2. Basal tyrosine phosphorylation of focal adhesion kinase is increased in cells expressing active PLD2, as is phosphorylation of Akt; while inactive PLD2 has no effect. Expression of active PLD2 is associated with increased spreading and elongation of cells on tissue culture plastic, whereas inactive PLD2 inhibits cell spreading. Inactive PLD2 also inhibits cell adhesion, migration, and serum-induced invasion. Cells expressing active PLD2 form metastases in syngeneic mice, as do the parental cells, cells expressing inactive PLD2 form fewer metastases than parental cells
-
stable expression of PLD2 in Jurkat cells. Overexpression of a dominant negative PLD2 attenuates the early and sustained increase in ERK1/2 phosphorylation induced by PLD2, overview. Phosphorylation of ERK1/2 promoted by PMA-ionomycin in transfected Jurkat cells is inhibited by 1-butanol
-
transient expression of isozymes PLD1 or PLD2 in MDA-MB-231 cells and various other cancer cell lines, overview. MDA-MB-231 breast cancer cells express predominantly PLD1 protein. Expression of PLD isozymes is downregulated by triptolide at both transcriptional and post-transcriptional levels, overview
-
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
an increase in PLD2 expression correlates with an enhanced ERK-1/-2 activation following PMA/ionomycin stimulation
-
phorbol 12-myristate 13-acetate, PMA, as a tumor promoter enhances PLD1 expression via NFkappaB-dependent signaling pathway and increases cell proliferation and invasion
-
PLD is suppressed in endothelial cell senescence
-
PLD1 expression is induced by high glucose levels
-
triptolide, a natural, biologically active compound as a diterpenoid triepoxide originally purified from the Chinese herb Tripterygium wilfordii, induces suppression of phospholipase D expression, inhibits proliferation of MDA-MB-231 breast cancer cells and significantly inhibits PLD promoter activity in cells expressing the PLD promoters both PLD isozymes with similar inhibitory potency, triptolide decreases both basal and phorbol 12-myristate 13-acetate-induced PLD activation, overview
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
analysis
-
chemical method for imaging phosphatidic acid synthesis by PLD enzymes in live cells. The method is specific to PLD-generated phosphatidic acid. PLD enzymes can accept azidoalcohols as reporters in a transphosphatidylation reaction. The resultant azidolipids are then fluorescently tagged enabling visualization of cellular membranes bearing active PLD enzymes. The method reveals a heterogeneity in PLD activities at both the cellular and subcellular levels
medicine
molecular biology
synthesis
phospholipase D is a useful enzyme for its transphosphatidylation activity, which enables the enzymatic synthesis of various phospholipids, natural and unnatural phospholipids, and phospholipids with a functional head group, detailed overview
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Hodgkin, M.N.; Clark, J.M.; Rose, S.; Saqib, K.; Wakelam, M.J.
Characterization of the regulation of phospholipase D activity in the detergent-insoluble fraction of HL60 cells by protein kinase C and small G-proteins
Biochem. J.
339
87-93
1999
Homo sapiens
Manually annotated by BRENDA team
Vinggaard, A.M.; Hansen, H.S.
Characterization and partial purification of phospholipase D from human placenta
Biochim. Biophys. Acta
1258
169-176
1995
Homo sapiens
Manually annotated by BRENDA team
Stuckey, J.A.; Dixon, J.E.
Crystal structure of a phospholipase D family member
Nat. Struct. Biol.
6
278-284
1999
Homo sapiens (Q13393)
Manually annotated by BRENDA team
Pappan, K.; Wang, X.
Molecular and biochemical properties and physiological roles of plant phospholipase D
Biochim. Biophys. Acta
1439
151-166
1999
Arabidopsis sp., Brassica oleracea, Saccharomyces cerevisiae, Ricinus communis, Catharanthus roseus, Homo sapiens, Mus musculus, Oryza sativa, Spuriopimpinella brachycarpa, Rattus norvegicus, Zea mays, Vigna unguiculata (O04865), Nicotiana tabacum (P93400)
Manually annotated by BRENDA team
Rumenapp, U.; Schmidt, M.; Wahn, F.; Tapp, E.; Grannass, A.; Jakobs, K.H.
Characteristics of protein-kinase-C- and ADP-ribosylation-factor-stimulated phospholipase D activities in human embryonic kidney cells
Eur. J. Biochem.
248
407-414
1997
Homo sapiens
Manually annotated by BRENDA team
Hodgkin, M.N.; Masson, M.R.; Powner, D.; Saqib, K.M.; Ponting, C.P.; Wakelam, M.J.O.
Phospholipase D regulation and localization is dependent upon a phosphatidylinositol 4,5-bisphosphate-specific PH domain
Curr. Biol.
10
43-46
2000
Homo sapiens
Manually annotated by BRENDA team
Kurz, T.; Kemken, D.; Mier, K.; Weber, I.; Richardt, G.
Human cardiac phospholipase D activity is tightly controlled by phosphatidylinositol 4,5-bisphosphate
J. Mol. Cell. Cardiol.
36
225-232
2004
Homo sapiens, Homo sapiens (Q13393)
Manually annotated by BRENDA team
Huang, Y.; Zhang, X.Y.; Liu, F.; Chen, H.L.
Regulation of phospholipase D from human hepatocarcinoma cell line by purine nucleotides and protein kinase A
Mol. Cell. Biochem.
207
3-8
2000
Homo sapiens
Manually annotated by BRENDA team
Grab, L.T.; Kearns, M.W.; Morris, A.J.; Daniel, L.W.
Differential role for phospholipase D1 and phospholipase D2 in 12-O-tetradecanoyl-13-phorbol acetate-stimulated MAPK activation, Cox-2 and IL-8 expression
Biochim. Biophys. Acta
1636
29-39
2004
Homo sapiens
Manually annotated by BRENDA team
Tou, J.S.; Gill, J.S.
Lysophosphatidic acid increases phosphatidic acid formation, phospholipase D activity and degranulation by human neutrophils
Cell. Signal.
17
77-82
2005
Homo sapiens
Manually annotated by BRENDA team
Chien, E.J.; Chen, C.C.; Chien, C.H.; Yeh, T.P.; Lu, L.M.
Activation and up-regulation of phospholipase D expression by lipopolysaccharide in human peripheral T cells
Chin. J. Physiol.
47
203-209
2004
Homo sapiens
Manually annotated by BRENDA team
Cadwallader, K.A.; Uddin, M.; Condliffe, A.M.; Cowburn, A.S.; White, J.F.; Skepper, J.N.; Ktistakis, N.T.; Chilvers, E.R.
Effect of priming on activation and localization of phospholipase D-1 in human neutrophils
Eur. J. Biochem.
271
2755-2764
2004
Homo sapiens
Manually annotated by BRENDA team
Ahn, B.H.; Min, G.; Bae, Y.S.; Min do, S.
Phospholipase D is activated and phosphorylated by casein kinase-II in human U87 astroglioma cells
Exp. Mol. Med.
38
55-62
2006
Homo sapiens, Homo sapiens (O14939), Homo sapiens (Q13393)
Manually annotated by BRENDA team
Paruch, S.; El-Benna, J.; Djerdjouri, B.; Marullo, S.; Perianin, A.
A role of p44/42 mitogen-activated protein kinases in formyl-peptide receptor-mediated phospholipase D activity and oxidant production
FASEB J.
20
142-144
2006
Homo sapiens
Manually annotated by BRENDA team
Tomassen, S.F.; van der Wijk, T.; de Jonge, H.R.; Tilly, B.C.
Activation of phospholipase D by osmotic cell swelling
FEBS Lett.
566
287-290
2004
Homo sapiens
Manually annotated by BRENDA team
Yoon, M.S.; Koo, J.B.; Hwang, J.H.; Lee, K.S.; Han, J.S.
Activation of phospholipase D by 8-Br-cAMP occurs thrpugh novel pathway involving Src, Ras, and ERK in human endometrial stromal cells
FEBS Lett.
579
5635-5642
2005
Homo sapiens
Manually annotated by BRENDA team
Lee, H.Y.; Park, J.B.; Jang, I.H.; Chae, Y.C.; Kim, J.H.; Kim, I.S.; Suh, P.G.; Ryu, S.H.
Munc-18-1 inhibits phospholipase D activity by direct interaction in an epidermal growth factor-reversible manner
J. Biol. Chem.
279
16339-16348
2004
Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Kim, J.H.; Kim, H.W.; Jeon, H.; Suh, P.G.; Ryu, S.H.
Phospholipase D1 regulates cell migration in a lipase activity-independent manner
J. Biol. Chem.
281
15747-15756
2006
Homo sapiens
Manually annotated by BRENDA team
di Fulvio, M.; Gomez-Cambronero, J.
Phospholipase D (PLD) gene expression in human neutrophils and HL-60 differentiation
J. Leukocyte Biol.
77
999-1007
2005
Homo sapiens (Q13393), Homo sapiens
Manually annotated by BRENDA team
Kurz, T.; Kemken, D.; Mier, K.; Weber, I.; Richardt, G.
Human cardiac phospholipase D activity is tightly controlled by phosphatidylinositol 4,5-bisphosphate
J. Mol. Cell. Cardiol.
36
207-211
2004
Homo sapiens
Manually annotated by BRENDA team
Yamada, Y.; Banno, Y.; Yoshida, H.; Kikuchi, R.; Akao, Y.; Murate, T.; Nozawa, Y.
Catalytic inactivation of human phospholipase D2 by a naturally occurring Gly901Asp mutation
Arch. Med. Res.
37
696-699
2006
Homo sapiens (O14939), Homo sapiens
Manually annotated by BRENDA team
Ohguchi, K.; Banno, Y.; Akao, Y.; Nozawa, Y.
Involvement of phospholipase D1 in collagen type I production of human dermal fibroblasts
Biochem. Biophys. Res. Commun.
348
1398-1402
2006
Homo sapiens
Manually annotated by BRENDA team
Cho, J.H.; Hong, S.K.; Kim, E.Y.; Park, S.Y.; Park, C.H.; Kim, J.M.; Kwon, O.J.; Kwon, S.J.; Lee, K.S.; Han, J.S.
Overexpression of phospholipase D suppresses taxotere-induced cell death in stomach cancer cells
Biochim. Biophys. Acta
1783
912-923
2007
Homo sapiens
Manually annotated by BRENDA team
Lehman, N.; Di Fulvio, M.; McCray, N.; Campos, I.; Tabatabaian, F.; Gomez-Cambronero, J.
Phagocyte cell migration is mediated by phospholipases PLD1 and PLD2
Blood
108
3564-3572
2006
Homo sapiens, Homo sapiens (Q13393)
Manually annotated by BRENDA team
Gadir, N.; Lee, E.; Garcia, A.; Toschi, A.; Foster, D.A.
Suppression of TGFbeta signaling by phospholipase D
Cell Cycle
6
2840-2845
2007
Homo sapiens
Manually annotated by BRENDA team
Paruch, S.; Heinis, M.; Lemay, J.; Hoeffel, G.; Maranon, C.; Hosmalin, A.; Perianin, A.
CCR5 signaling through phospholipase D involves p44/42 MAP-kinases and promotes HIV-1 LTR-directed gene expression
FASEB J.
21
4038-4046
2007
Homo sapiens
Manually annotated by BRENDA team
Birbes, H.; Zeiller, C.; Komati, H.; Nemoz, G.; Lagarde, M.; Prigent, A.F.
Phospholipase D protects ECV304 cells against TNFalpha-induced apoptosis
FEBS Lett.
580
6224-6232
2006
Homo sapiens
Manually annotated by BRENDA team
Alvarez-Breckenridge, C.A.; Waite, K.A.; Eng, C.
PTEN regulates phospholipase D and phospholipase C
Hum. Mol. Genet.
16
1157-1163
2007
Homo sapiens
Manually annotated by BRENDA team
Krisanaprakornkit, S.; Chotjumlong, P.; Kongtawelert, P.; Reutrakul, V.
Involvement of phospholipase D in regulating expression of anti-microbial peptide human beta-defensin-2
Int. Immunol.
20
21-29
2008
Homo sapiens
Manually annotated by BRENDA team
Wang, J.; Okamoto, Y.; Morishita, J.; Tsuboi, K.; Miyatake, A.; Ueda, N.
Functional analysis of the purified anandamide-generating phospholipase D as a member of the metallo-beta-lactamase family
J. Biol. Chem.
281
12325-12335
2006
Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Iyer, S.S.; Agrawal, R.S.; Thompson, C.R.; Thompson, S.; Barton, J.A.; Kusner, D.J.
Phospholipase D1 regulates phagocyte adhesion
J. Immunol.
176
3686-3696
2006
Homo sapiens
Manually annotated by BRENDA team
Koch, T.; Wu, D.F.; Yang, L.Q.; Brandenburg, L.O.; Hoellt, V.
Role of phospholipase D2 in the agonist-induced and constitutive endocytosis of G-protein coupled receptors
J. Neurochem.
97
365-372
2006
Homo sapiens
Manually annotated by BRENDA team
Lee, C.S.; Kim, I.S.; Park, J.B.; Lee, M.N.; Lee, H.Y.; Suh, P.G.; Ryu, S.H.
The phox homology domain of phospholipase D activates dynamin GTPase activity and accelerates EGFR endocytosis
Nat. Cell Biol.
8
477-484
2006
Homo sapiens
Manually annotated by BRENDA team
Cho, E.Y.; Yun, C.H.; Chae, H.Z.; Chae, H.J.; Ahn, T.
Lysophosphatidylserine-induced functional switch of human cytochrome P450 1A2 and 2E1 from monooxygenase to phospholipase D
Biochem. Biophys. Res. Commun.
376
584-589
2008
Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Gemeinhardt, A.; Alfalah, M.; Gueck, T.; Naim, H.; Fuhrmann, H.
The influence of linoleic and linolenic acid on activity and intracellular localisation of phospholipase D in COS-1 cells
Biol. Chem.
390
253-258
2008
Homo sapiens (O14939), Homo sapiens (Q13393)
Manually annotated by BRENDA team
Lewis, J.A.; Scott, S.A.; Lavieri, R.; Buck, J.R.; Selvy, P.E.; Stoops, S.L.; Armstrong, M.D.; Brown, H.A.; Lindsley, C.W.
Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: Impact of alternative halogenated privileged structures for PLD1 specificity
Bioorg. Med. Chem. Lett.
19
1916-1920
2009
Homo sapiens (O14939), Homo sapiens (Q13393)
Manually annotated by BRENDA team
Lavieri, R.; Scott, S.A.; Lewis, J.A.; Selvy, P.E.; Armstrong, M.D.; Alex Brown, H.; Lindsley, C.W.
Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part II. Identification of the 1,3,8-triazaspiro[4,5]decan-4-one privileged structure that engenders PLD2 selectivity
Bioorg. Med. Chem. Lett.
19
2240-2243
2009
Homo sapiens (O14939), Homo sapiens (Q13393)
Manually annotated by BRENDA team
Disse, J.; Vitale, N.; Bader, M.F.; Gerke, V.
Phospholipase D1 is specifically required for regulated secretion of von Willebrand factor from endothelial cells
Blood
113
973-980
2009
Homo sapiens
Manually annotated by BRENDA team
Sethu, S.; Mendez-Corao, G.; Melendez, A.J.
Phospholipase D1 plays a key role in TNF-alpha signaling
J. Immunol.
180
6027-6034
2008
Homo sapiens (O14939), Homo sapiens (Q13393), Homo sapiens
Manually annotated by BRENDA team
Chae, Y.C.; Kim, J.H.; Kim, K.L.; Kim, H.W.; Lee, H.Y.; Heo, W.D.; Meyer, T.; Suh, P.G.; Ryu, S.H.
Phospholipase D activity regulates integrin-mediated cell spreading and migration by inducing GTP-Rac translocation to the plasma membrane
Mol. Biol. Cell
19
3111-3123
2008
Homo sapiens (O14939), Homo sapiens (Q13393)
Manually annotated by BRENDA team
Vorland, M.; Holmsen, H.
Phospholipase D in human platelets: presence of isoenzymes and participation of autocrine stimulation during thrombin activation
Platelets
19
211-224
2008
Homo sapiens (O14939), Homo sapiens (Q13393), Homo sapiens
Manually annotated by BRENDA team
Vorland, M.; Holmsen, H.
Phospholipase D activity in human platelets is inhibited by protein kinase A, involving inhibition of phospholipase D1 translocation
Platelets
19
300-307
2008
Homo sapiens (O14939), Homo sapiens (Q13393), Homo sapiens
Manually annotated by BRENDA team
Liu, Y.; Fanburg, B.L.
Phospholipase D signaling in serotonin-induced mitogenesis of pulmonary artery smooth muscle cells
Am. J. Physiol. Lung Cell Mol. Physiol.
295
L471-L478
2008
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Wright, M.H.; Farquhar, M.J.; Aletrari, M.O.; Ladds, G.; Hodgkin, M.N.
Identification of caspase 3 motifs and critical aspartate residues in human phospholipase D1beta and phospholipase D2alpha
Biochem. Biophys. Res. Commun.
369
478-484
2008
Homo sapiens (O14939), Homo sapiens (Q13393), Homo sapiens
Manually annotated by BRENDA team
Rappley, I.; Gitler, A.D.; Selvy, P.E.; LaVoie, M.J.; Levy, B.D.; Brown, H.A.; Lindquist, S.; Selkoe, D.J.
Evidence that alpha-synuclein does not inhibit phospholipase D
Biochemistry
48
1077-1083
2009
Saccharomyces cerevisiae, Homo sapiens
Manually annotated by BRENDA team
Hamdi, S.M.; Cariven, C.; Coronas, S.; Malet, N.; Chap, H.; Perret, B.; Salles, J.P.; Record, M.
Potential role of phospholipase D2 in increasing interleukin-2 production by T-lymphocytes through activation of mitogen-activated protein kinases ERK1/ERK2
Biochim. Biophys. Acta
1781
263-269
2008
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Donaldson, J.G.
Phospholipase D in endocytosis and endosomal recycling pathways
Biochim. Biophys. Acta
1791
845-849
2009
Homo sapiens
Manually annotated by BRENDA team
Rudge, S.A.; Wakelam, M.J.
Inter-regulatory dynamics of phospholipase D and the actin cytoskeleton
Biochim. Biophys. Acta
1791
856-861
2009
Homo sapiens, Mus musculus, Rattus norvegicus, Streptomyces chromofuscus
Manually annotated by BRENDA team
Lee, C.S.; Kim, K.L.; Jang, J.H.; Choi, Y.S.; Suh, P.G.; Ryu, S.H.
The roles of phospholipase D in EGFR signaling
Biochim. Biophys. Acta
1791
862-868
2009
Bos taurus, Cricetulus griseus, Oryctolagus cuniculus, Homo sapiens, Mus musculus, Rattus norvegicus
Manually annotated by BRENDA team
Raghu, P.; Manifava, M.; Coadwell, J.; Ktistakis, N.T.
Emerging findings from studies of phospholipase D in model organisms (and a short update on phosphatidic acid effectors)
Biochim. Biophys. Acta
1791
889-897
2009
Saccharomyces cerevisiae, Caenorhabditis elegans, Danio rerio (A2BG86), Danio rerio, Homo sapiens (O14939), Homo sapiens (Q13393), Dictyostelium discoideum (Q54UK0), Dictyostelium discoideum (Q54WR4), Dictyostelium discoideum (Q54Z25), Drosophila melanogaster (Q7KML4)
Manually annotated by BRENDA team
Kanaho, Y.; Funakoshi, Y.; Hasegawa, H.
Phospholipase D signalling and its involvement in neurite outgrowth
Biochim. Biophys. Acta
1791
898-904
2009
Homo sapiens, Mus musculus, Rattus norvegicus
Manually annotated by BRENDA team
Oliveira, T.G.; Di Paolo, G.
Phospholipase D in brain function and Alzheimer's disease
Biochim. Biophys. Acta
1801
799-805
2010
Homo sapiens
Manually annotated by BRENDA team
Park, M.H.; Ahn, B.H.; Hong, Y.K.; Min, D.S.
Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase A/NF-kappaB/Sp1-mediated signaling pathways
Carcinogenesis
30
356-365
2009
Homo sapiens
Manually annotated by BRENDA team
Greco, E.; Santucci, M.B.; Quintiliani, G.; Papi, M.; De Spirito, M.; Fraziano, M.
CpG oligodeoxynucleotides promote phospholipase D dependent phagolysosome maturation and intracellular mycobacterial killing in M. tuberculosis infected type II alveolar epithelial cells
Cell. Immunol.
259
1-4
2009
Homo sapiens
Manually annotated by BRENDA team
Kang, D.W.; Lee, J.Y.; Oh, D.H.; Park, S.Y.; Woo, T.M.; Kim, M.K.; Park, M.H.; Jang, Y.H.; Min, d.o..S.
Triptolide-induced suppression of phospholipase D expression inhibits proliferation of MDA-MB-231 breast cancer cells
Exp. Mol. Med.
41
678-685
2009
Homo sapiens
Manually annotated by BRENDA team
Issuree, P.D.; Pushparaj, P.N.; Pervaiz, S.; Melendez, A.J.
Resveratrol attenuates C5a-induced inflammatory responses in vitro and in vivo by inhibiting phospholipase D and sphingosine kinase activities
FASEB J.
23
2412-2424
2009
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Idkowiak-Baldys, J.; Baldys, A.; Raymond, J.R.; Hannun, Y.A.
Sustained receptor stimulation leads to sequestration of recycling endosomes in a classical protein kinase C- and phospholipase D-dependent manner
J. Biol. Chem.
284
22322-22331
2009
Homo sapiens
Manually annotated by BRENDA team
Fang, M.; Olivares-Navarrete, R.; Wieland, M.; Cochran, D.L.; Boyan, B.D.; Schwartz, Z.
The role of phospholipase D in osteoblast response to titanium surface microstructure
J. Biomed. Mater. Res. A
93
897-909
2010
Homo sapiens (O14939), Homo sapiens
Manually annotated by BRENDA team
Cowell, C.F.; Doeppler, H.; Yan, I.K.; Hausser, A.; Umezawa, Y.; Storz, P.
Mitochondrial diacylglycerol initiates protein-kinase D1-mediated ROS signaling
J. Cell Sci.
122
919-928
2009
Homo sapiens
Manually annotated by BRENDA team
El Azreq, M.A.; Garceau, V.; Harbour, D.; Pivot-Pajot, C.; Bourgoin, S.G.
Cytohesin-1 regulates the Arf6-phospholipase D signaling axis in human neutrophils: impact on superoxide anion production and secretion
J. Immunol.
184
637-649
2010
Homo sapiens
Manually annotated by BRENDA team
Koch, T.; Seifert, A.; Wu, D.F.; Rankovic, M.; Kraus, J.; Boerner, C.; Brandenburg, L.O.; Schroeder, H.; Hoellt, V.
mu-opioid receptor-stimulated synthesis of reactive oxygen species is mediated via phospholipase D2
J. Neurochem.
110
1288-1296
2009
Homo sapiens
Manually annotated by BRENDA team
Everett, P.B.; Senogles, S.E.
D3 dopamine receptor signals to activation of phospholipase D through a complex with Rho
J. Neurochem.
112
963-971
2010
Homo sapiens
Manually annotated by BRENDA team
Webb, L.M.; Arnholt, A.T.; Venable, M.E.
Phospholipase D modulation by ceramide in senescence
Mol. Cell. Biochem.
337
153-158
2010
Homo sapiens
Manually annotated by BRENDA team
Mor, A.; Wynne, J.P.; Ahearn, I.M.; Dustin, M.L.; Du, G.; Philips, M.R.
Phospholipase D1 regulates lymphocyte adhesion via upregulation of Rap1 at the plasma membrane
Mol. Cell. Biol.
29
3297-3306
2009
Homo sapiens
Manually annotated by BRENDA team
Brandenburg, L.O.; Seyferth, S.; Wruck, C.J.; Koch, T.; Rosenstiel, P.; Lucius, R.; Pufe, T.
Involvement of phospholipase D 1 and 2 in the subcellular localization and activity of formyl-peptide-receptors in the human colonic cell line HT29
Mol. Membr. Biol.
26
371-383
2009
Homo sapiens (O14939), Homo sapiens (Q13393), Homo sapiens
Manually annotated by BRENDA team
Knoepp, S.M.; Chahal, M.S.; Xie, Y.; Zhang, Z.; Brauner, D.J.; Hallman, M.A.; Robinson, S.A.; Han, S.; Imai, M.; Tomlinson, S.; Meier, K.E.
Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells
Mol. Pharmacol.
74
574-584
2008
Homo sapiens
Manually annotated by BRENDA team
Sun, Y.; Fang, Y.; Yoon, M.S.; Zhang, C.; Roccio, M.; Zwartkruis, F.J.; Armstrong, M.; Brown, H.A.; Chen, J.
Phospholipase D1 is an effector of Rheb in the mTOR pathway
Proc. Natl. Acad. Sci. USA
105
8286-8291
2008
Homo sapiens
Manually annotated by BRENDA team
Ma, W.N.; Park, S.Y.; Han, J.S.
Role of phospholipase D1 in glucose-induced insulin secretion in pancreatic beta cells
Exp. Mol. Med.
42
456-464
2010
Homo sapiens
Manually annotated by BRENDA team
Lavieri, R.R.; Scott, S.A.; Selvy, P.E.; Kim, K.; Jadhav, S.; Morrison, R.D.; Daniels, J.S.; Brown, H.A.; Lindsley, C.W.
Design, synthesis, and biological evaluation of halogenated N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor
J. Med. Chem.
53
6706-6719
2010
Homo sapiens
Manually annotated by BRENDA team
Damnjanovic, J.; Iwasaki, Y.
Phospholipase D as a catalyst: application in phospholipid synthesis, molecular structure and protein engineering
J. Biosci. Bioeng.
116
271-280
2013
Actinomadura sp., Streptomyces chromofuscus, Streptomyces cinnamoneus, Brassica oleracea (O82549), Saccharomyces cerevisiae (P36126), Homo sapiens (Q13393), Streptomyces antibioticus (Q53728), Saccharomyces cerevisiae ATCC 204508 (P36126), Actinomadura sp. 362
Manually annotated by BRENDA team
Brandenburg, L.O.; Pufe, T.; Koch, T.
Role of phospholipase d in G-protein coupled receptor function
Membranes
4
302-318
2014
Homo sapiens
Manually annotated by BRENDA team
Bumpus, T.W.; Baskin, J.M.
Clickable substrate mimics enable imaging of phospholipase D activity
ACS Cent. Sci.
3
1070-1077
2017
Homo sapiens
Manually annotated by BRENDA team
Scott, S.; Spencer, C.; OReilly, M.; Brown, K.; Lavieri, R.; Cho, C.; Jung, D.; Larock, R.; Brown, H.; Lindsley, C.
Discovery of desketoraloxifene analogues as inhibitors of mammalian, Pseudomonas aeruginosa, and NAPE phospholipase D enzymes
ACS Chem. Biol.
10
421-432
2015
Homo sapiens, Pseudomonas aeruginosa
Manually annotated by BRENDA team
Tao, X.; Jia, N.; Cheng, N.; Ren, Y.; Cao, X.; Liu, M.; Wei, D.; Wang, F.Q.
Design and evaluation of a phospholipase D based drug delivery strategy of novel phosphatidyl-prodrug
Biomaterials
131
1-14
2017
Homo sapiens, Streptomyces chromofuscus (Q8KRU5)
Manually annotated by BRENDA team
Panda, A.; Thakur, R.; Krishnan, H.; Naik, A.; Shinde, D.; Raghu, P.
Functional analysis of mammalian phospholipase D enzymes
Biosci. Rep.
38
BSR20181690
2018
Homo sapiens (Q13393), Homo sapiens (Q14939), Homo sapiens
Manually annotated by BRENDA team
Park, J.; Park, J.; Lee, J.; Kim, D.; Hahm, J.; Bae, Y.
Role of phospholipase D in the lifespan of Caenorhabditis elegans
Exp. Mol. Med.
50
008
2018
Homo sapiens, Caenorhabditis elegans (G5EDU3)
Manually annotated by BRENDA team