Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.1.26.5 - ribonuclease P and Organism(s) Homo sapiens

for references in articles please use BRENDA:EC3.1.26.5
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.1 Acting on ester bonds
             3.1.26 Endoribonucleases producing 5'-phosphomonoesters
                3.1.26.5 ribonuclease P
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Homo sapiens
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Homo sapiens
The enzyme appears in selected viruses and cellular organisms
Reaction Schemes
endonucleolytic cleavage of RNA, removing 5'-extranucleotides from tRNA precursor
Synonyms
rnase p, rnase p rna, rnase mrp, ribonuclease p, m1 rna, c5 protein, rnase p protein, rnase p holoenzyme, rpp30, protein c5, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hPOP1
-
-
-
-
hPOP4
-
-
-
-
hPOP7
-
-
-
-
mitochondrial RNase P protein 1
-
-
nuclear ribonclease P ribonucleoprotein
-
-
nuclease, ribo-, P
-
-
-
-
POP1
-
-
Pop5
-
-
Protein C5
-
-
-
-
ribonuclease P
ribosomal RNA processing ribonucleoprotein
-
-
RNA processing protein POP1
-
-
-
-
RNA processing protein POP5
-
-
-
-
RNA processing protein POP6
-
-
-
-
RNA processing protein POP7
-
-
-
-
RNA processing protein POP8
-
-
-
-
RNase MRP
-
-
RNase P
RNase P protein
-
-
-
-
RNase P/MRP
-
-
RNaseP protein
-
-
-
-
RNaseP protein p20
-
-
-
-
RNaseP protein p30
-
-
-
-
RNaseP protein p38
-
-
-
-
RNaseP protein p40
-
-
-
-
RPP14
-
-
Rpp21
-
-
Rpp29
-
-
Rpp30
-
-
Rpp38
-
-
RPP40
-
-
tRNA processing enzyme
-
-
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
endonucleolytic cleavage of RNA, removing 5'-extranucleotides from tRNA precursor
show the reaction diagram
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis of phosphoric ester
-
-
-
-
PATHWAY SOURCE
PATHWAYS
-
-
CAS REGISTRY NUMBER
COMMENTARY hide
71427-00-4
not distinguished from EC 3.1.26.7
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
influenza virus mRNA + H2O
?
show the reaction diagram
-
-
-
-
?
pre-rRNA + H2O
mature rRNA
show the reaction diagram
-
enzyme RNase MRP plays an important role in pre-rRNA processing
-
-
?
pre-rRNA + H2O
mature rRNA + 5'-oligonucleotide
show the reaction diagram
-
RNase MRP
-
-
?
pre-tRNA + H2O
?
show the reaction diagram
-
in mitochondria, RNase P function has been taken over by an unrelated, protein-only enzyme activity
-
-
?
pre-tRNA + H2O
tRNA + 5'-oligoribonucleotide
show the reaction diagram
pre-tRNA precursor + H2O
tRNA + 5'-oligoribonucleotide
show the reaction diagram
SupS1 precursor + H2O
?
show the reaction diagram
-
-
-
-
?
syntaxin18 mRNA + H2O
?
show the reaction diagram
-
-
-
-
?
tRNA precursor + H2O
mature tRNA + 5'-oligonucleotide
show the reaction diagram
tRNA precursor + H2O
mature tRNA + 5'-terminal oligonucleotide
show the reaction diagram
-
enzyme is responsible for removing the 5'-leader segment of precursor tRNA during maturation
-
-
?
tRNATyr precursor + H2O
mature tRNATyr + 5'-oligonucleotide
show the reaction diagram
-
cleavage of 5'-terminal oligonucleotide, reconstituted mini-enzyme and wild-type enzyme, both cleave at positions G28-G29
generates 5'-phosphate,3'-hydroxyl-product, reconstituted mini-enzyme and wild-type enzyme
-
?
tRNATyrUAG precursor + H2O
?
show the reaction diagram
-
RNase P cleavage of this substrate generates a 5' matured tRNA with a 7 base pair amino acceptor stem
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
pre-rRNA + H2O
mature rRNA
show the reaction diagram
-
enzyme RNase MRP plays an important role in pre-rRNA processing
-
-
?
pre-tRNA + H2O
tRNA + 5'-oligoribonucleotide
show the reaction diagram
tRNA precursor + H2O
mature tRNA + 5'-oligonucleotide
show the reaction diagram
tRNA precursor + H2O
mature tRNA + 5'-terminal oligonucleotide
show the reaction diagram
-
enzyme is responsible for removing the 5'-leader segment of precursor tRNA during maturation
-
-
?
additional information
?
-
COFACTOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
additional information
-
RNase P RNA is capable of cleaving its substrate in vitro in the absence of any protein cofactor
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Ca2+
-
Ca2+ can replace Mg2+
Cs+
-
less effective in activation than K+
Li+
-
less effective in activation than K+
Pb2+
-
Pb2+ can replace Mg2+
Zn2+
-
Zn2+ can replace Mg2+
additional information
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
ATP
-
above 2 mM, progressively inhibitory
NaCl
-
inhibition of the reconstituted mini-enzyme at 0.4 M NaCl
neomycin B
-
the inhibition is of non-competitive type, increasing Mg2+ concentrations from 3 to 20 mM, at a constant neomycin concentration (0.05 mM), result in a considerable recovery of the activity (about 40%)
puromycin
-
in millimolar range
Zn2+
-
results in misscleavage of te substrate at 1-5 mM
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.000244
SupS1 precursor
-
in 50 mM Tris /HCl pH 7.5, 100 mM NH4Cl, 5 mM MgCl2, 2.5 mM EGTA and 0.5 U Rnasin
-
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.037
neomycin B
-
in 50 mM Tris /HCl pH 7.5, 100 mM NH4Cl, 5 mM MgCl2, 2.5 mM EGTA and 0.5 U Rnasin
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.074
neomycin B
Homo sapiens
-
in 50 mM Tris /HCl pH 7.5, 100 mM NH4Cl, 5 mM MgCl2, 2.5 mM EGTA and 0.5 U Rnasin
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
7.4
-
assay at
7.7 - 8.7
-
-
8
-
broad optimum around pH 8.0
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
7 - 9
-
less than 50% of maximal activity at pH 7.0 and 9.0
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
pI VALUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
4.6 - 4.7
4.9
-
protein subunit Rpp40
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
tissue culture
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
contains protein subunits Rpp29 and Rpp38
Manually annotated by BRENDA team
-
RNA subunit H1
-
Manually annotated by BRENDA team
-
RNase MRP
Manually annotated by BRENDA team
additional information
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
evolution
malfunction
physiological function
additional information
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
MRPP3_HUMAN
583
0
67315
Swiss-Prot
Mitochondrion (Reliability: 5)
POP1_HUMAN
1024
0
114709
Swiss-Prot
-
RPP38_HUMAN
283
0
31834
Swiss-Prot
other Location (Reliability: 1)
RPP29_HUMAN
220
0
25425
Swiss-Prot
-
POP5_HUMAN
163
0
18820
Swiss-Prot
-
RPP25_HUMAN
199
0
20632
Swiss-Prot
-
POP7_HUMAN
140
0
15651
Swiss-Prot
-
RPP14_HUMAN
124
0
13693
Swiss-Prot
-
RPP30_HUMAN
268
0
29321
Swiss-Prot
-
RPP21_HUMAN
154
0
17570
Swiss-Prot
-
RPP40_HUMAN
363
0
41834
Swiss-Prot
other Location (Reliability: 2)
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
105000
-
1 * 115000, protein subunit Pop1, + 1 * 40000, protein subunit Rpp40, + 1 * 38000, protein subunit Rpp38, + 1 * 30000, protein subunit Rpp30 or Rpp1, + 1 * 29000, protein subunit Rpp29 or Pop4, + 1 * 25000, protein subunit Rpp25, + 1 * 21000, protein subunit Rpp21 or Rpr2, + 1 * 20000, protein subunit Rpp20 or Pop7 or Rpp2, + 1 * 14000, protein subunit Rpp14, + 1 * 105000, RNA subunit H1
115000
-
1 * 115000, protein subunit Pop1, + 1 * 40000, protein subunit Rpp40, + 1 * 38000, protein subunit Rpp38, + 1 * 30000, protein subunit Rpp30 or Rpp1, + 1 * 29000, protein subunit Rpp29 or Pop4, + 1 * 25000, protein subunit Rpp25, + 1 * 21000, protein subunit Rpp21 or Rpr2, + 1 * 20000, protein subunit Rpp20 or Pop7 or Rpp2, + 1 * 14000, protein subunit Rpp14, + 1 * 105000, RNA subunit H1
13200
-
2 * 16000, full-length Rpp20, gel filtration. 2 * 14100, Rpp20(16-140), gel filtration. 2 * 13200, HisRpp20(35-140), gel filtration
14000
-
1 * 115000, protein subunit Pop1, + 1 * 40000, protein subunit Rpp40, + 1 * 38000, protein subunit Rpp38, + 1 * 30000, protein subunit Rpp30 or Rpp1, + 1 * 29000, protein subunit Rpp29 or Pop4, + 1 * 25000, protein subunit Rpp25, + 1 * 21000, protein subunit Rpp21 or Rpr2, + 1 * 20000, protein subunit Rpp20 or Pop7 or Rpp2, + 1 * 14000, protein subunit Rpp14, + 1 * 105000, RNA subunit H1
14100
-
2 * 16000, full-length Rpp20, gel filtration. 2 * 14100, Rpp20(16-140), gel filtration. 2 * 13200, HisRpp20(35-140), gel filtration
15400
-
mutant Rpp25(25-170), gel filtration
16000
-
2 * 16000, full-length Rpp20, gel filtration. 2 * 14100, Rpp20(16-140), gel filtration. 2 * 13200, HisRpp20(35-140), gel filtration
170000
-
rate-zonal sedimentation in linear isokinetic glycerol gradients
20000
-
1 * 115000, protein subunit Pop1, + 1 * 40000, protein subunit Rpp40, + 1 * 38000, protein subunit Rpp38, + 1 * 30000, protein subunit Rpp30 or Rpp1, + 1 * 29000, protein subunit Rpp29 or Pop4, + 1 * 25000, protein subunit Rpp25, + 1 * 21000, protein subunit Rpp21 or Rpr2, + 1 * 20000, protein subunit Rpp20 or Pop7 or Rpp2, + 1 * 14000, protein subunit Rpp14, + 1 * 105000, RNA subunit H1
20600
-
mutant Rpp25, gel filtration
20700
-
mutant Rpp25(25-170), sequence analysis
21000
-
1 * 115000, protein subunit Pop1, + 1 * 40000, protein subunit Rpp40, + 1 * 38000, protein subunit Rpp38, + 1 * 30000, protein subunit Rpp30 or Rpp1, + 1 * 29000, protein subunit Rpp29 or Pop4, + 1 * 25000, protein subunit Rpp25, + 1 * 21000, protein subunit Rpp21 or Rpr2, + 1 * 20000, protein subunit Rpp20 or Pop7 or Rpp2, + 1 * 14000, protein subunit Rpp14, + 1 * 105000, RNA subunit H1
25000
-
1 * 115000, protein subunit Pop1, + 1 * 40000, protein subunit Rpp40, + 1 * 38000, protein subunit Rpp38, + 1 * 30000, protein subunit Rpp30 or Rpp1, + 1 * 29000, protein subunit Rpp29 or Pop4, + 1 * 25000, protein subunit Rpp25, + 1 * 21000, protein subunit Rpp21 or Rpr2, + 1 * 20000, protein subunit Rpp20 or Pop7 or Rpp2, + 1 * 14000, protein subunit Rpp14, + 1 * 105000, RNA subunit H1
26000
-
MRPP2
26400
-
mutant HisRpp20(35-140), gel filtration
28100
-
mutant Rpp20(16-140), gel filtration
28600
-
mutant Rpp20(35-140)/Rpp25(25-170), gel filtration
29000
-
1 * 115000, protein subunit Pop1, + 1 * 40000, protein subunit Rpp40, + 1 * 38000, protein subunit Rpp38, + 1 * 30000, protein subunit Rpp30 or Rpp1, + 1 * 29000, protein subunit Rpp29 or Pop4, + 1 * 25000, protein subunit Rpp25, + 1 * 21000, protein subunit Rpp21 or Rpr2, + 1 * 20000, protein subunit Rpp20 or Pop7 or Rpp2, + 1 * 14000, protein subunit Rpp14, + 1 * 105000, RNA subunit H1
30000
-
1 * 115000, protein subunit Pop1, + 1 * 40000, protein subunit Rpp40, + 1 * 38000, protein subunit Rpp38, + 1 * 30000, protein subunit Rpp30 or Rpp1, + 1 * 29000, protein subunit Rpp29 or Pop4, + 1 * 25000, protein subunit Rpp25, + 1 * 21000, protein subunit Rpp21 or Rpr2, + 1 * 20000, protein subunit Rpp20 or Pop7 or Rpp2, + 1 * 14000, protein subunit Rpp14, + 1 * 105000, RNA subunit H1
31100
-
mutant Rpp20(35-140)/Rpp25(25-170), sequence analysis
31500
-
mutant Rpp20/Rpp25(25-170), gel filtration
32100
-
full-length Rpp20, gel filtration
36600
-
mutant Rpp20/Rpp25, gel filtration
38000
-
1 * 115000, protein subunit Pop1, + 1 * 40000, protein subunit Rpp40, + 1 * 38000, protein subunit Rpp38, + 1 * 30000, protein subunit Rpp30 or Rpp1, + 1 * 29000, protein subunit Rpp29 or Pop4, + 1 * 25000, protein subunit Rpp25, + 1 * 21000, protein subunit Rpp21 or Rpr2, + 1 * 20000, protein subunit Rpp20 or Pop7 or Rpp2, + 1 * 14000, protein subunit Rpp14, + 1 * 105000, RNA subunit H1
39200
-
mutant Rpp25, sequence analysis
39900
-
mutant HisRpp20(35-140), sequence analysis
40000
-
1 * 115000, protein subunit Pop1, + 1 * 40000, protein subunit Rpp40, + 1 * 38000, protein subunit Rpp38, + 1 * 30000, protein subunit Rpp30 or Rpp1, + 1 * 29000, protein subunit Rpp29 or Pop4, + 1 * 25000, protein subunit Rpp25, + 1 * 21000, protein subunit Rpp21 or Rpr2, + 1 * 20000, protein subunit Rpp20 or Pop7 or Rpp2, + 1 * 14000, protein subunit Rpp14, + 1 * 105000, RNA subunit H1
41100
-
mutant Rpp20/Rpp25(25-170), sequence analysis
44400
-
mutant [Rpp20(35-140)-Rpp25(25-170)]/P3 RNA, gel filtration
45300
-
mutant Rpp20(16-140), sequence analysis
47000
-
full-length Rpp20, sequence analysis
52500
-
mutant [Rpp20-Rpp25]/P3 RNA, gel filtration
53800
-
mutant Rpp20/Rpp25, sequence analysis
56400
-
mutant [Rpp20(35-140)-Rpp25(25-170)]/P3 RNA, sequence analysis
71400
-
mutant [Rpp20-Rpp25]/P3 RNA, sequence analysis
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
heterodimer
-
Rpp20 and Rpp25, ITC-200 microcalorimeter experiments
homodimer
-
2 * 16000, full-length Rpp20, gel filtration. 2 * 14100, Rpp20(16-140), gel filtration. 2 * 13200, HisRpp20(35-140), gel filtration
monomer
-
Rpp25 in solution
oligomer
additional information
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
ribonucleoprotein
additional information
-
not a ribonucleoprotein, but a protein enzyme
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
sitting drop vapor diffusion method at 4 °C
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
resistant to rigorous treatments with nucleases
-
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
-70°C, 50 mM Tris /HCl pH 7.5, 100 mM NH4Cl, 5 mm MgCl2, 2.5 mM EGTA, and 0.5 U RNasin, few weeks, the enzyme activity remains stable
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
affinity purification
-
DEAE-Sepharose column chromatography and Sephacryl S-100 gel filtration
-
mitochondrial enzyme, and RNase P partially
-
MRPP1, affinity purified
-
partial
-
partial purification into protein and RNA subunit. Reconstitution of homologous enzyme complex and heterologous enzyme complexes with subunits from the Escherichia coli enzyme
-
partially purified by DEAE Sepharose column chromatography
-
phosphocellulose column chromatography
-
recombinant His-tagged subunits Rpp14, Rpp20, Rpp21, Rpp25, Rpp29, Rpp30, Rpp38, Rpp40, and hPop5 from Escherichia coli as soluble and refolded proteins
-
recombinant protein and RNA subunits H1, Rpp21, and Rpp29 from Escherichia coli
-
recombinant protein subunit Rpp25, and native wild-type enzyme from HeLa cells
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
cDNAs of full-length Rpp20 and Rpp25 cloned into pCR4-TOPO. Full-length Rpp25 (encompassing residues 1-199) subcloned with an N-terminal hexahistidine tag into a pPROEX-HTb expression vector using Nco1/Not1 restriction sites. Full-length Rpp20 (residues 1-140) subcloned into a pET-30 expression vector. The pET-30 vector modified to bear a TEV cleavage site to remove the N-terminal hexahistidine tag. Mutant Rpp20(35-140) amplified from pET-30 Rpp20 to introduce 5' Asc1 and 3' Not1 sites and then ligated into a modified version of pET-15b vector with an Asc1 site inserted directly after the his tag. Fragments Rpp20, mutant Rpp20(16-140), mutant Rpp25(25-170) and co-expressed Rpp20/Rpp25 (in which Rpp20 bears the his tag) subcloned in pETDuet-1 vector with an N-terminal hexahistidine tag. Mutant Rpp25(25-170) also subcloned in a pCDFDuet-1 vector also with an N-terminal hexahistidine tag. Rpp25, Rpp20 (from pET-30 vector) and mutant Rpp20(35-140) expressed in Escherichia coli strain BL21(DE3)pLysS. All the other proteins subcloned into pETDuet-1 or pCDFDuet-1 vectors expressed in Escherichia coli KRX strain
-
chromosomal localization of genes encoding the RNase P subunits
-
expression of His-tagged protein subunits Rpp29, Rpp21, and RNA subunit H1 in Escherichia coli BL21(DE3)
-
expression of His-tagged subunits Rpp14, Rpp20, Rpp21, Rpp25, Rpp29, Rpp30, Rpp38, Rpp40, and hPop5 in Escherichia coli
-
expression of wild-type and mutant external guide sequences in brief, amphotropic PA317 cells
-
expression of wild-type enzyme and protein subunit Rpp25 in Escherichia coli
-
tagged overexpression of MRPP1, MRPP2 and MRPP3 in human cells
-
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
down-regulation of a single RNase P protein in cultured human cells results in a concomitant decrease of up to four other RNase P proteins (but not the RNase P RNA), likely due to transcriptional repression
-
RNase P-external guide sequence and short hairpin RNAi technologies have about equal levels of inhibition of RNase P protein subunits
-
RENATURED/Commentary
ORGANISM
UNIPROT
LITERATURE
reconstitution of a functional mini-enzyme from protein subunits Rpp21 and Rpp29 with the RNA subunit H1, all 3 coponents are essential for reconstitution
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
medicine
construction of external guide sequences (EGSs) from a variant to target the mRNA encoding herpes simplex virus 1 (HSV-1) major transcription regulator ICP4, which is essential for the expression of viral early and late genes and viral growth. The EGS variant induces human RNase P cleavage of ICP4 mRNA sequence 60times better than the EGS generated from a natural pre-tRNA. A decrease of about 97% and 75% in the level of ICP4 gene expression and an inhibition of about 7,000- and 500-fold in viral growth are observed in HSV infected cells expressing the variant and the pre-tRNA-derived EGS, respectively. The study shows that engineered external guide sequences (EGSs) can inhibit HSV-1 gene expression and viral growth. The results demonstrate the potential for engineered EGS RNAs to be developed and used as anti-HSV therapeutics
pharmacology
-
specific external guide sequences offer a possibility for specific decrease of gene expression by inhibition of RNase P
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Altman, S.
Ribonuclease P: an enzyme with a catalytic RNA subunit
Adv. Enzymol. Relat. Areas Mol. Biol.
62
1-36
1989
Bos taurus, Escherichia coli, Haloferax volcanii, Homo sapiens
Manually annotated by BRENDA team
Pace, N.R.; Smith, D.
Ribonuclease P: function and variation
J. Biol. Chem.
265
3587-3590
1990
Bacillus subtilis, Saccharomyces cerevisiae, Homo sapiens, Schizosaccharomyces pombe, Xenopus laevis
Manually annotated by BRENDA team
Gold, H.A.; Altman, S.
Reconstitution of RNAase P activity using inactive subunits from E. coli and HeLa cells
Cell
44
243-249
1986
Escherichia coli, Homo sapiens
Manually annotated by BRENDA team
Koski, R.A.; Bothwell, A.L.M.; Altman, S.
Identification of a ribonuclease P-like activity from human KB cells
Cell
9
101-116
1976
Escherichia coli, Homo sapiens
Manually annotated by BRENDA team
Doersen, C.J.; Guerrier-Takada, C.; Altman, S.; Attardi, G.
Characterization of an RNase P activity from HeLa cell mitochondria. Comparison with the cytosol RNase P activity
J. Biol. Chem.
260
5942-5949
1985
Homo sapiens
Manually annotated by BRENDA team
Jarrous, N.; Eder, P.S.; Guerrier-Takada, C.; Hoog, C.; Altman,S.
Autoantigenic properties of some protein subunits of catalytically active complexes of human ribonuclease P
RNA
4
407-417
1998
Homo sapiens
Manually annotated by BRENDA team
Rossmanith, W.; Karwan, R.M.
Characterization of human mitochondrial RNase P: novel aspects in tRNA processing
Biochem. Biophys. Res. Commun.
247
234-241
1998
Homo sapiens
Manually annotated by BRENDA team
Xiao, S.; Scott, F.; Fierke, C.A.; Engelke, D.R.
Eukaryotic ribonuclease P: a plurality of ribonucleoprotein enzymes
Annu. Rev. Biochem.
71
165-189
2002
Bacillus subtilis, Saccharomyces cerevisiae, Cyanophora paradoxa, Escherichia coli, Homo sapiens, Methanothermobacter thermautotrophicus, Nicotiana tabacum, Spinacia oleracea
Manually annotated by BRENDA team
Gopalan, V.; Vioque, A.; Altman, S.
RNase P: variations and uses
J. Biol. Chem.
277
6759-6762
2002
Aspergillus nidulans, Bacillus subtilis, Saccharomyces cerevisiae, Cyanophora paradoxa, Escherichia coli, Homo sapiens, Leishmania sp., Mus musculus, Trypanosoma sp.
Manually annotated by BRENDA team
Xiao, S.; Houser-Scott, F.; Engelke, D.R.
Eukaryotic ribonuclease P: increased complexity to cope with the nuclear pre-tRNA pathway
J. Cell. Physiol.
187
11-20
2001
Bacillus subtilis, Bacteria, Saccharomyces cerevisiae, Cyanophora paradoxa, Homo sapiens, Spinacia oleracea
Manually annotated by BRENDA team
Mann, H.; Ben-asouli, Y.; Schein, A.; Moussa, S.; Jarrous, N.
Eukaryotic RNase P: role of RNA and protein subunits of a primordial catalytic ribonucleoprotein in RNA-based catalysis
Mol. Cell
12
925-935
2003
Homo sapiens
Manually annotated by BRENDA team
Jarrous, N.
Human ribonuclease P: subunits, function, and intranuclear localization
RNA
8
1-7
2002
Saccharomyces cerevisiae, Homo sapiens
Manually annotated by BRENDA team
Guerrier-Takada, C.; Eder, P.S.; Gopalan, V.; Altman, S.
Purification and characterization of Rpp25, an RNA-binding protein subunit of human ribonuclease P
RNA
8
290-295
2002
Homo sapiens
Manually annotated by BRENDA team
Bassett, T.; Harpur, B.; Poon, H.Y.; Kuo, K.H.; Lee, C.H.
Effective stimulation of growth in MCF-7 human breast cancer cells by inhibition of syntaxin18 by external guide sequence and ribonuclease P
Cancer Lett.
272
167-175
2008
Homo sapiens
Manually annotated by BRENDA team
Walker, S.C.; Engelke, D.R.
A protein-only RNase P in human mitochondria
Cell
135
412-414
2008
Homo sapiens
Manually annotated by BRENDA team
Holzmann, J.; Frank, P.; Loeffler, E.; Bennett, K.L.; Gerner, C.; Rossmanith, W.
RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme
Cell
135
462-474
2008
Homo sapiens
Manually annotated by BRENDA team
Vourekas, A.; Vryzaki, E.; Toumpeki, C.; Stamatopoulou, V.; Monastirli, A.; Tsambaos, D.; Drainas, D.
Partial purification and characterization of RNase P from human peripheral lymphocytes
Exp. Dermatol.
18
130-133
2009
Homo sapiens
Manually annotated by BRENDA team
Kirsebom, L.A.; Trobro, S.
RNase P RNA-mediated cleavage
IUBMB Life
61
189-200
2009
Bacillus subtilis, Chlamydia sp., Homo sapiens, no activity in Nanoarchaeum equitans
Manually annotated by BRENDA team
Reiner, R.; Krasnov-Yoeli, N.; Dehtiar, Y.; Jarrous, N.
Function and assembly of a chromatin-associated RNase P that is required for efficient transcription by RNA polymerase I
PLoS ONE
3
e4072
2008
Homo sapiens
Manually annotated by BRENDA team
Lai, L.B.; Vioque, A.; Kirsebom, L.A.; Gopalan, V.
Unexpected diversity of RNase P, an ancient tRNA processing enzyme: challenges and prospects
FEBS Lett.
584
287-296
2010
Saccharomyces cerevisiae, Escherichia coli, Homo sapiens, Methanothermobacter thermautotrophicus
Manually annotated by BRENDA team
Holzmann, J.; Rossmanith, W.
tRNA recognition, processing, and disease: hypotheses around an unorthodox type of RNase P in human mitochondria
Mitochondrion
9
284-288
2009
Homo sapiens
Manually annotated by BRENDA team
Lundblad, E.W.; Altman, S.
Inhibition of gene expression by RNase P
New Biotechnol.
27
212-221
2010
Synechocystis sp., Escherichia coli, Homo sapiens, Spinacia oleracea, no activity in Nanoarchaeum equitans, Ignicoccus hospitalis
Manually annotated by BRENDA team
Hands-Taylor, K.L.; Martino, L.; Tata, R.; Babon, J.J.; Bui, T.T.; Drake, A.F.; Beavil, R.L.; Pruijn, G.J.; Brown, P.R.; Conte, M.R.
Heterodimerization of the human RNase P/MRP subunits Rpp20 and Rpp25 is a prerequisite for interaction with the P3 arm of RNase MRP RNA
Nucleic Acids Res.
38
4052-4066
2010
Homo sapiens
Manually annotated by BRENDA team
Ellis, J.; Brown, J.
The RNase P family
RNA Biol.
6
362-369
2009
Cupriavidus necator, Bacillus subtilis, Saccharomyces cerevisiae, Chlamydia trachomatis, Chlorobium limicola, Escherichia coli, Giardia intestinalis, Homo sapiens, Methanothermobacter thermautotrophicus, Methanocaldococcus jannaschii, Mycoplasmopsis fermentans, Mycoplasma hyopneumoniae, no activity in Aquifex aeolicus, Pyrobaculum aerophilum, Thermomicrobium roseum, Porphyra purpurea, Synechococcus elongatus PCC 6301, Reclinomonas americana
Manually annotated by BRENDA team
Marvin, M.C.; Engelke, D.R.
RNase P: increased versatility through protein complexity?
RNA Biol.
6
40-42
2009
Saccharomyces cerevisiae, Homo sapiens
Manually annotated by BRENDA team
Jarrous, N.; Gopalan, V.
Archaeal/eukaryal RNase P: subunits, functions and RNA diversification
Nucleic Acids Res.
38
7885-7894
2010
Saccharomyces cerevisiae, [Candida] glabrata, Escherichia coli, Homo sapiens, Methanothermobacter thermautotrophicus, Mus musculus, Mycoplasmopsis fermentans, Pyrococcus furiosus, Saccharolobus solfataricus
Manually annotated by BRENDA team
Reiner, R.; Alfiya-Mor, N.; Berrebi-Demma, M.; Wesolowski, D.; Altman, S.; Jarrous, N.
RNA binding properties of conserved protein subunits of human RNase P
Nucleic Acids Res.
39
5704-5714
2011
Homo sapiens
Manually annotated by BRENDA team
Howard, M.J.; Liu, X.; Lim, W.H.; Klemm, B.P.; Fierke, C.A.; Koutmos, M.; Engelke, D.R.
RNase P enzymes: divergent scaffolds for a conserved biological reaction
RNA Biol.
10
909-914
2013
Bacillus subtilis, Saccharomyces cerevisiae, Homo sapiens, Thermotoga maritima, Trypanosoma brucei, Ostreococcus tauri, Arabidopsis thaliana (Q66GI4), Arabidopsis thaliana
Manually annotated by BRENDA team
Jiang, X.; Chen, Y.C.; Gong, H.; Trang, P.; Lu, S.; Liu, F.
Ribonuclease P-mediated inhibition of human cytomegalovirus gene expression and replication induced by engineered external guide sequences
RNA Biol.
9
1186-1195
2012
Homo sapiens
Manually annotated by BRENDA team
Oerum, S.; Roovers, M.; Rambo, R.P.; Kopec, J.; Bailey, H.J.; Fitzpatrick, F.; Newman, J.A.; Newman, W.G.; Amberger, A.; Zschocke, J.; Droogmans, L.; Oppermann, U.; Yue, W.W.
Structural insight into the human mitochondrial tRNA purine N1-methyltransferase and ribonuclease P complexes
J. Biol. Chem.
293
12862-12876
2018
Homo sapiens (O15091), Homo sapiens
Manually annotated by BRENDA team
Liu, J.; Shao, L.; Trang, P.; Yang, Z.; Reeves, M.; Sun, X.; Vu, G.P.; Wang, Y.; Li, H.; Zheng, C.; Lu, S.; Liu, F.
Inhibition of herpes simplex virus 1 gene expression and replication by RNase P-associated external guide sequences
Sci. Rep.
6
27068
2016
Homo sapiens (Q99575 AND O95707 AND Q969H6 AND O75817 AND O95059 AND Q9H633 AND Q9BUL9 AND P78346 AND P78345 AND O75818), Homo sapiens
Manually annotated by BRENDA team