Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 1.8.3.7 - formylglycine-generating enzyme and Organism(s) Homo sapiens

for references in articles please use BRENDA:EC1.8.3.7
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     1 Oxidoreductases
         1.8 Acting on a sulfur group of donors
             1.8.3 With oxygen as acceptor
                1.8.3.7 formylglycine-generating enzyme
IUBMB Comments
Requires a copper cofactor and Ca2+. The enzyme, which is found in both prokaryotes and eukaryotes, catalyses a modification of a conserved L-cysteine residue in the active site of sulfatases, generating a unique 3-oxo-L-alanine residue that is essential for sulfatase activity. The exact nature of the thiol involved is still not clear - dithiothreitol and cysteamine are the most efficiently used thiols in vitro. Glutathione alo acts in vitro, but it is not known whether it is used in vivo.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Homo sapiens
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Homo sapiens
The expected taxonomic range for this enzyme is: Bacteria, Eukaryota, Archaea
Reaction Schemes
a [sulfatase]-L-cysteine
+
+
2
=
a [sulfatase]-3-oxo-L-alanine
+
+
+
Synonyms
sumf1, formylglycine-generating enzyme, formylglycine generating enzyme, sulfatase-modifying factor 1, fgly-generating enzyme, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
C-alpha-formylglycine-generating enzyme 1
-
Calpha-formylglycine-generating enzyme
-
Calpha-formylglycine-generating enzyme 1
-
-
-
-
FGly-generating enzyme
-
formylglycine generating enzyme
-
sulfatase-modifying factor 1
SUMF1
SYSTEMATIC NAME
IUBMB Comments
[sulfatase]-L-cysteine:oxygen oxidoreductase (3-oxo-L-alanine-forming)
Requires a copper cofactor and Ca2+. The enzyme, which is found in both prokaryotes and eukaryotes, catalyses a modification of a conserved L-cysteine residue in the active site of sulfatases, generating a unique 3-oxo-L-alanine residue that is essential for sulfatase activity. The exact nature of the thiol involved is still not clear - dithiothreitol and cysteamine are the most efficiently used thiols in vitro. Glutathione alo acts in vitro, but it is not known whether it is used in vivo.
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
a [sulfatase]-L-cysteine + O(2) + a thiol
a [sulfatase]-3-oxo-L-alanine + hydrogen sulfide + a disulfide + H2O
show the reaction diagram
a [sulfatase]-L-cysteine + O2 + 2 a thiol
a [sulfatase]-3-oxo-L-alanine + hydrogen sulfide + a disulfide + H2O
show the reaction diagram
preference of the enzyme for CXPXR-type motifs
-
-
?
a [sulfatase]-L-cysteine + O2 + a thiol
a [sulfatase]-3-oxo-L-alanine + hydrogen sulfide + a disulfide + H2O
show the reaction diagram
Ac-AL-3-oxo-L-Ala-TPSRGSLFTGR-NH2 + hydrogen sulfide + oxidized dithiothreitol + H2O
?
show the reaction diagram
-
-
-
?
Ac-EQSCTAGRAAFITGQGLCTPSRAG-NH2 + O2 + reduced dithiothreitol
? + hydrogen sulfide + oxidized dithiothreitol + H2O
show the reaction diagram
accepts the sequence CTPSR. The human enzyme strictly converts proline-containing aldehyde tags, either in vivo or in vitro, whereas in the presence of copper, the enzyme fom Streptomyces coelicolor and Mycobacterium tuberculosis tolerate proline-to-alanine substitutions in the core motif
-
-
?
acetyl-MTDFYVPVSLCTPSRAALLTGRS-amide + O2 + dithiothreitol
?
show the reaction diagram
-
-
-
?
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
a [sulfatase]-L-cysteine + O(2) + a thiol
a [sulfatase]-3-oxo-L-alanine + hydrogen sulfide + a disulfide + H2O
show the reaction diagram
a [sulfatase]-L-cysteine + O2 + a thiol
a [sulfatase]-3-oxo-L-alanine + hydrogen sulfide + a disulfide + H2O
show the reaction diagram
COFACTOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
additional information
-
the enzyme is cofactor-independent
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Cu2+
the enzyme contains a copper cofactor. The purified enzyme requires preactivation with copper
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
Cu2+
the substrate specificity for the cysteine motifs CTPS is not changed upon addition of the cofactor copper
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
O2
for maximal activity the enzyme requires an O2 concentration of 9% (0.105 mM)
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
malfunction
metabolism
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
SUMF1_HUMAN
374
0
40556
Swiss-Prot
Secretory Pathway (Reliability: 2)
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
glycoprotein
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
in complex with bromide and iodide ions, using 20-25% (w/v) PEG 4000, 0.1 M Tris-HCl pH 8.0-9.0, 0.2-0.3 M CaCl2
using 20-25% (w/v) PEG 4000/0.1 M Tris-HCl, pH 8.0-9.0, 0.2-0.3 M CaCl2
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
A177P
A279V
A348P
C218Y
C336R
C336S
C341S
active site mutant
C346W
the mutant show reduced enzyme activity
E130D
G247R
the mutant show reduced enzyme activity
G263V
the mutant show reduced enzyme activity
N259I
P266L
R224W
R345C
R349Q
R349W
R364C
the mutant show reduced enzyme activity
S155P
S234R
the mutant show reduced enzyme activity
W179S
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
HisTrap column chromatography and Superdex 200 gel filtration
HisTrap column chromatography, and Superdex 200 gel filtration
HisTrap Excel resin column chromatography and Sephadex G-25 gel filtration
MonoQ column chromatography
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expressed in COS-7 cells
-
expressed in Hi5 cells
expressed in Sf9 cells and High Five cells
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
the expression of endogenous enzyme is particularly low in human brain
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
biotechnology
medicine
-
coexpression of formylglycine-generating enzyme is essential for gene therapy of metachromatic leukodystrophy
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Dierks, T.; Schmidt, B.; Borissenko, L.V; Peng, J.; Preusser, A.; Mariappan, M.; von Figura, K.
Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme
Cell
113
435-444
2003
Homo sapiens (Q8NBK3)
Manually annotated by BRENDA team
Dierks, T.; Dickmanns, A.; Preusser-Kunze, A.; Schmidt, B.; Mariappan. M.; von Figura, K.; Ficner, R.; Rudolph, M.G.
Molecular Basis or Multiple Sulfatase Deficiency and Mechanism for Formylglycine Generation of the Human Formylglycine-Generating Enzyme
Cell
121
541-552
2005
Homo sapiens (Q8NBK3), Homo sapiens
Manually annotated by BRENDA team
Roeser, D.; Schmidt, B.; Preusser-Kunze, A.; Rudolph, M.G.
Probing the oxygen-binding site of the human formylglycine-generating enzyme using halide ions
Acta Crystallogr. Sect. D
63
621-627
2007
Homo sapiens (Q8NBK3), Homo sapiens
Manually annotated by BRENDA team
Dierks, T.; Dickmanns, A.; Preusser-Kunze, A.; Schmidt, B.; Mariappan, M.; von Figura, K.; Ficner, R.; Rudolph, M.G.
Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme
Cell
121
541-552
2005
Homo sapiens (Q8NBK3), Homo sapiens
Manually annotated by BRENDA team
Bojarova, P.; Williams, S.
Sulfotransferases, sulfatases and formylglycine-generating enzymes a sulfation fascination
Curr. Opin. Chem. Biol.
12
573-581
2008
Homo sapiens
Manually annotated by BRENDA team
Schlotawa, L.; Radhakrishnan, K.; Baumgartner, M.; Schmid, R.; Schmidt, B.; Dierks, T.; Gaertner, J.
Rapid degradation of an active formylglycine generating enzyme variant leads to a late infantile severe form of multiple sulfatase deficiency
Eur. J. Hum. Genet.
21
1020-1023
2013
Homo sapiens (Q8NBK3), Homo sapiens
Manually annotated by BRENDA team
Gande, S.L.; Mariappan, M.; Schmidt, B.; Pringle, T.H.; von Figura, K.; Dierks, T.
Paralog of the formylglycine-generating enzyme - retention in the endoplasmic reticulum by canonical and noncanonical signals
FEBS J.
275
1118-1130
2008
Homo sapiens (Q8NBK3), Homo sapiens
Manually annotated by BRENDA team
Peng, J.; Alam, S.; Radhakrishnan, K.; Mariappan, M.; Rudolph, M.G.; May, C.; Dierks, T.; von Figura, K.; Schmidt, B.
Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction
FEBS J.
282
3262-3274
2015
Homo sapiens (Q8NBK3)
Manually annotated by BRENDA team
Takakusaki, Y.; Hisayasu, S.; Hirai, Y.; Shimada, T.
Coexpression of formylglycine-generating enzyme is essential for synthesis and secretion of functional arylsulfatase A in a mouse model of metachromatic leukodystrophy
Hum. Gene Ther.
16
929-936
2005
Homo sapiens
Manually annotated by BRENDA team
Schlotawa, L.; Steinfeld, R.; von Figura, K.; Dierks, T.; Gaertner, J.
Molecular analysis of SUMF1 mutations stability and residual activity of mutant formylglycine-generating enzyme determine disease severity in multiple sulfatase deficiency
Hum. Mutat.
29
205
2008
Homo sapiens (Q8NBK3)
Manually annotated by BRENDA team
Mariappan, M.; Preusser-Kunze, A.; Balleininger, M.; Eiselt, N.; Schmidt, B.; Gande, S.L.; Wenzel, D.; Dierks, T.; von Figura, K.
Expression, localization, structural, and functional characterization of pFGE, the paralog of the Calpha-formylglycine-generating enzyme
J. Biol. Chem.
280
15173-15179
2005
Homo sapiens (Q8NBK3)
Manually annotated by BRENDA team
Dickmanns, A.; Schmidt, B.; Rudolph, M.G.; Mariappan, M.; Dierks, T.; von Figura, K.; Ficner, R.
Crystal structure of human pFGE, the paralog of the Calpha-formylglycine-generating enzyme
J. Biol. Chem.
280
15180-15187
2005
Homo sapiens (Q8NBK3), Homo sapiens
Manually annotated by BRENDA team
Mariappan, M.; Gande, S.L.; Radhakrishnan, K.; Schmidt, B.; Dierks, T.; von Figura, K.
The non-catalytic N-terminal extension of formylglycine-generating enzyme is required for its biological activity and retention in the endoplasmic reticulum
J. Biol. Chem.
283
11556-11564
2008
Homo sapiens (Q8NBK3)
Manually annotated by BRENDA team
Mariappan, M.; Radhakrishnan, K.; Dierks, T.; Schmidt, B.; von Figura, K.
ERp44 mediates a thiol-independent retention of formylglycine-generating enzyme in the endoplasmic reticulum
J. Biol. Chem.
283
6375-6383
2008
Homo sapiens (Q8NBK3)
Manually annotated by BRENDA team
Ennemann, E.C.; Radhakrishnan, K.; Mariappan, M.; Wachs, M.; Pringle, T.H.; Schmidt, B.; Dierks, T.
Proprotein convertases process and thereby inactivate formylglycine-generating enzyme
J. Biol. Chem.
288
5828-5839
2013
Homo sapiens (Q8NBK3), Homo sapiens
Manually annotated by BRENDA team
Holder, P.G.; Jones, L.C.; Drake, P.M.; Barfield, R.M.; Banas, S.; de Hart, G.W.; Baker, J.; Rabuka, D.
Reconstitution of formylglycine-generating enzyme with copper(II) for aldehyde tag conversion
J. Biol. Chem.
290
15730-15745
2015
Homo sapiens (Q8NBK3), Streptomyces coelicolor (Q9F3C7)
Manually annotated by BRENDA team
Meshach Paul, D.; Chadah, T.; Senthilkumar, B.; Sethumadhavan, R.; Rajasekaran, R.
Structural distortions due to missense mutations in human formylglycine-generating enzyme leading to multiple sulfatase deficiency
J. Biomol. Struct. Dyn.
36
3575-3585
2017
Homo sapiens
Manually annotated by BRENDA team
Roeser, D.; Preusser-Kunze, A.; Schmidt, B.; Gasow, K.; Wittmann, J.G.; Dierks, T.; von Figura, K.; Rudolph, M.G.
A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme
Proc. Natl. Acad. Sci. USA
103
81-86
2006
Homo sapiens (Q8NBK3), Homo sapiens
Manually annotated by BRENDA team
Boschanski, M.; Krueger, T.; Karsten, L.; Falck, G.; Alam, S.; Gerlach, M.; Mueller, B.; Mueller, K.M.; Sewald, N.; Dierks, T.
Site-specific conjugation strategy for dual antibody-drug conjugates using aerobic formylglycine-generating enzymes
Bioconjug. Chem.
32
1167-1174
2021
Mycobacterium tuberculosis, Streptomyces coelicolor, Homo sapiens (Q8NBK3)
Manually annotated by BRENDA team
Krueger, T.; Dierks, T.; Sewald, N.
Formylglycine-generating enzymes for site-specific bioconjugation
Biol. Chem.
400
289-297
2019
Mycobacterium tuberculosis, Homo sapiens (Q8NBK3)
Manually annotated by BRENDA team